
HAL Id: hal-01235050
https://centralesupelec.hal.science/hal-01235050

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multirate technique for explicit Discontinuous Galerkin
computations of time domain Maxwell equations on

complex geometries
Abelin Kameni, Bruno Seny, Lionel Pichon

To cite this version:
Abelin Kameni, Bruno Seny, Lionel Pichon. Multirate technique for explicit Discontinuous Galerkin
computations of time domain Maxwell equations on complex geometries. IEEE Transactions on Mag-
netics, 2016, 52 (3), pp.7204604. �10.1109/TMAG.2015.2480537�. �hal-01235050�

https://centralesupelec.hal.science/hal-01235050
https://hal.archives-ouvertes.fr


CMP 652 1

Multirate technique for explicit Discontinuous Galerkin computations
of time domain Maxwell equations on complex geometries

A. Kameni1, B. Seny2, L. Pichon1

1 Group of Electrical Engineering - Paris, UMR 8507 CNRS, CentraleSupelec, Université Paris Sud, Université Pierre et Marie Curie,
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4-6 avenue Georges Lemaı̂tre B-1348, Louvain-la-Neuve, Belgique

This paper presents a multirate technique to improve and optimize the time step of a second order 2−stages Explicit Runge-Kutta
scheme (ERK). In this technique, the mesh elements are stored in different groups according to their stable time steps. These groups
are sorted into two classes. The bulk groups where the 2−stages ERK method is applied once or repeatedly. The buffer groups
that used to accommodate transition between two bulks groups. This technique is proposed for accelerating explicit discontinuous
Galerkin computations of time domain Maxwell equations. An application example on human skull is proposed to show the efficiency
of this technique to simulate wave propagation on complex geometries.

Index Terms—Discontinuous Galerkin method, Explicit Runge-Kutta (ERK) schemes, Maxwell equations, Multirate technique

I. INTRODUCTION

EXPLICIT methods such as the Runge-Kutta schemes
(ERK) are commonly used to perform electromagnetic

modeling of complex systems. The maximum allowable time
step to ensure stability and convergence depends on the CFL
(Courant-Friedrichs-Lewy) condition. The time step must be
proportional to the element size and inversely proportional
to the maximum eigenvalue of the Jacobian of the system.
Unstructured meshes are often required to capture a wide
spectrum of physical scales. Local mesh refinements may
be responsible for significant gaps between the smallest an
the average element sizes. In such cases, the efficiency of
traditional single rate explicit time stepping methods may be
drastically low with respect to the problem size.
The discontinuous Galerkin methods are well suited to be used
in combination with a local time stepping strategy to reduce the
expensive computations by adapting the time step under local
stability conditions [1] [2]. The multirate methods are a subset
of the local time-stepping schemes family. They allow the use
of different time steps that are integer ratios of each other to
solve a discrete system [3]. This technique has been used with a
multi-step Adams-Bashforth scheme to improve Discontinuous
Galerkin computations of Maxwell equations when the mesh
is sorted in two groups [4]. The first is constituted by fine
elements where Adams-Bashforth scheme is applied repeatly
and the second by coarse elements where Adams-Bashforth
scheme is applied once. The development and implementation
of ERK multirate schemes have been recently proposed to
accelerate geophysical flow computations when the mesh is
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sorted in few groups [5]. An extension of these strategies to
the parallel framework hase also been proposed in [6].
In this paper a multirate technique based on a second order
accurate 2−stages ERK method (Heun’s method) is presented
and applied on Maxwell equations. This approach consists in
gathering the mesh elements in different groups that satisfy the
CFL condition for a certain range of time steps. These groups
are sorted into two classes. The bulk groups where a 2−stages
ERK method is applied once or repeatedly. The buffer groups
which are used to accommodate the transition between two
bulk groups and where a 2−stages ERK scheme is adapted
to coincide with the ERK schemes used in the bulk groups.
Using of these buffer groups allow to increase reduction of
computational cost. The efficiency of this approach is shown
through computations of an electric field on a human skull.

II. MAXWELL EQUATIONS AND DISCRETE SYSTEM

Let E, H and J respectively, be the electric field and
the magnetic field and the current density. They satisfy the
Maxwell equations given by (1):{

ε∂tE −∇×H = −J
µ∂tH +∇× E = 0

(1)

where ε and µ are respectively the permittivity and the perme-
ability of the medium. In a conductive medium, J = σE, with
σ the conductivity.
The Discontinuous Galerkin methods are introduced for solv-
ing the conservative form of partial differential equations. This
method consists in discretizing the variational formulation of
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(2) on each mesh element T of the domain Ω = ∪T .
∫
T

ε∂tEφ−
∫
T

H ×∇φ−
∫
∂T

(n×H)φ = −
∫
T

σEφ∫
T

µ∂tHψ +

∫
T

E ×∇ψ +

∫
∂T

(n× E)ψ = 0

(2)
where φ and ψ are test functions.
In each T , a Finite Element Method is applied and the mapping
technique is used to facilitate the use of high order mesh
elements. The interfaces terms are replaced by numerical
flux expressions as in a Finite Volume Method. Different
formulations of the flux expressions exist [7]. These following
expressions (3) resulting in different numerical schemes are
implemented. For α = 0, centered fluxes are obtained and
numerical schemes are dispersive. For α = 1, upwind fluxes
are obtained and numerical schemes are dissipative.

(n×H)num = n×
{
√

µ
εH}

{
√

µ
ε }
− α

(
n× (n× [E])

{
√

µ
ε }

)

(n× E)num = n×
{
√

ε
µE}

{
√

ε
µ}

+ α

n× (n× [H])

{
√

ε
µ}

 (3)

where [u] =
u+ − u−

2
and {u} =

u+ + u−

2
, with u = (E,H).

The subscript ”-” denotes the values for fields in the current
element, while ”+” is for the adjacent element.
The spatial discretization of Maxwell’s equations leads to an
ordinary differential equation on each mesh element T that can
be presented as a Cauchy problem (4) given by:

dui
dt

= f(ui(t), t)

ui(0) = u0i

(4)

The explicit Runge-Kutta methods are set to integrate the
solution in time.

III. MULTIRATE STRATEGY

A. Multirate time integration

In this paper the multirate time integration is based on the
Heun’s method which is a second order accurate 2−stages ERK
method, that we note RK22, whose Butcher tableau is given
in TABLE I(Left). It allows to compute the next step solution
un+1 from the previous one un:

(s1) : u(1) = un and K1 = f(u(1), tn)

(s2) : u(2) = un + ∆tK1 and K2 = f(u(2), tn + ∆t)

un+1 = un +
1

2
∆t
(
K1 +K2

)
(5)

The aim of the multirate time integration is to compute the
discrete solution in groups whose stable time steps are differ-
ent. Let’s consider a mesh example in Fig.1(Left). It has two
bulk groups of stable time steps ∆tm and 2∆tm respectively
noted R and P . With a traditional single rate method, the time
step ∆tm is used for all mesh elements. Our goal is to run the
elements of group R with time step ∆tm and those of P with

2∆tm to reduce the computational costs. The idea is to apply
once the RK22 on P , and twice successively on R.

∆tm

2∆tm

2∆tm

2∆tm

∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

∆tm

2∆tm

2∆tm

2∆tm

∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

2∆tm

Fig. 1. Example group partitionning for multirate: (Left) Initial bulk groups
P with time step 2∆tm and R with time step ∆tm, (Right) a buffer group
G with time step 2∆tm is inserted between the two bulk groups.

The use of RK22 in group R with time step ∆tm has an
influence on the integration scheme in group P . This influence
is limited at the two connected neighboring elements because
the base method has two stages. If RK22 with 2∆tmis used
on these elements, conservation of the fluxes at interfaces is
not satisfied. That is why a buffer region is introduced between
groups of different stable time step as shown in Fig.1 (Right)
where a buffer group noted G is inserted between the bulk
group P and R.

Let’s denote u0 the solution on an element of R, u1 the
solution on an element of G neighbor of R, u2 the solution in
an element of G neighbor of P , u3 the solution in an element
of P .
Apply RK22 with time step 4tm leads to un+

1
2

0 :

(s1) : u
(1)
0 = un0 ; K1

0 = f(u
(1)
0 , tn)

(s2) : u
(2)
0 = un0 +

1

2
∆tK1

0 ; K2
0 = f(u

(2)
0 , tn +

1

2
∆t)

u
n+ 1

2
0 = un0 +

1

4
∆t
(
K1

0 +K2
0

)
(6)

Apply again RK22 allows to compute un+1
0 :

(s3) : u
(3)
0 = u

n+ 1
2

0 ; K3
0 = f(u

(3)
0 , tn+

1
2 )

(s4) : u
(4)
0 = u

n+ 1
2

0 +
1

2
∆tK3

0 ; K4
0 = f(u

(4)
0 , tn+

1
2 +

1

2
∆t)

un+1
0 = un0 + ∆t

(
1

4
K1

0 +
1

4
K2

0 +
1

4
K3

0 +
1

4
K4

0

)
(7)

These four steps constitute a 4−stages ERK method noted
RK224a stable for the time step ∆t whose Butcher tableau
is given by TABLE I(Center).

0
1 1

1/2 1/2

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4

0
1 1
0 0 0
1 0 0 1

1/4 1/4 1/4 1/4

TABLE I
(LEFT) BUTCHER TABLEAU OF RK22 (CENTER) BUTCHER TABLEAU OF

RK224a ISSUED FROM APPLYING TWICE RK22, (RIGHT) BUTCHER
TABLEAU OF THE EXTENDED METHOD RK224b .

Since RK224a has four stages, the base method RK22 is
extended to a four stages method noted RK224b, stable for
the time step ∆t, whose Butcher tableau is given by TABLE
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I(Right). For elements of P whose integration schemes are
not influenced by the use of RK224a, the solution un+1

3 is
computed by RK224b in four stages:

(s1) : u
(1)
3 = un3 ; K1

3 = f(u
(1)
3 , tn)

(s2) : u
(2)
3 = un3 + ∆tK1

3 ; K2
3 = f(u

(2)
3 , tn + ∆t)

(s3) : u
(3)
3 = u

(1)
3 ; K3

3 = K1
3 (8)

(s4) : u
(4)
3 = u

(2)
3 ; K4

3 = K2
3

un+1
3 = un3 + ∆t

(
1

4
K1

3 +
1

4
K2

3 +
1

4
K3

3 +
1

4
K4

3

)
Solutions in the buffer group G are obtained by using

coefficients of the Butcher tableau TABLE I(Right).
The solution un+1

1 is obtained with:

(s1) : u
(1)
1 = un1 ; K1

1 = f(u
(1)
1 , tn)

(s2) : u
(2)
1 = un1 + ∆tK1

1 ; K2
1 = f(u

(2)
1 , tn + ∆t)

(s3) : u
(3)
1 = u

(1)
1 ; K3

1 6= K1
1 (9)

(s4) : u
(4)
1 = u

(3)
1 + ∆tK3

1 ; K4
1 = f(u

(4)
1 , tn + ∆t)

un+1
1 = un1 + ∆t

(
1

4
K1

1 +
1

4
K2

1 +
1

4
K3

1 +
1

4
K4

1

)
Note that K3

1 6= K1
1 because it depends on interface term with

an element of group R whose stage (s3) in (7) is computed at
tn+

1
2 .

The solution un+1
2 is obtained with:

(s1) : u
(1)
2 = un2 ; K1

2 = f(u
(1)
2 , tn)

(s2) : u
(2)
2 = un2 + ∆tK1

2 ; K2
2 = f(u

(2)
2 , tn + ∆t)

(s3) : u
(3)
2 = u

(1)
2 ; K3

2 = K1
2 (10)

(s4) : u
(4)
2 = u

(2)
2 ; K4

2 6= K2
2

un+1
2 = un2 + ∆t

(
1

4
K1

2 +
1

4
K2

2 +
1

4
K3

2 +
1

4
K4

2

)
In this case K4

2 6= K2
2 because it depends on interface term

with an element of group G whose stage (s4) in (9) has been
influenced by stage (s3) in (7) computed at tn+

1
2 .

The RK224a and RK224b have the same number of stages and
the same weighting coefficients as shown in TABLE I. This
allows to preserve fluxes conservation at interfaces between
theses two groups. The resulting multirate scheme is a second
order accurate method stable for the time step ∆t = 2∆tm.

B. Construction of the multirate groups

Let’s consider a mesh of the domain defined by the tessel-
lation Ω = ∪T . In this paper, the multirate groups are built
for having their stable time steps of ratio κ = 2. Let’s note
δtm and δtM respectively the time steps according to CFL of
the smallest and the biggest elements. The mesh elements are
gathered in different groups that satisfy the CFL condition for
a certain range of time steps.
If the time step of the multirate strategy is ∆t ∈ [∆tm,∆tM ],
the number of multirate groups Ng = zg + 1 where zg is an

integer defined by zg = log2

(
∆t

∆tm

)
. The multirate group

number 0 is constituted by elements whose time steps are in
[∆t,∆tM ]. The multirate group number z is constituted by el-

ements whose time steps are in
[

∆t

2z+1
,

∆t

2z

]
, with z ≤ zg . The

time step of the multirate strategy ∆t that guarantee stability
of the method has to be chosen such that ∆t ∈ [∆tm, 2

z∆tm]

where 2z∆tm ≤ ∆tM .
For construction of multirate groups we choose in a first

1.2∆tm

2.3∆tm

1.1∆tm

∆tm

3.5∆tm

4.5∆tm

2.1∆tm
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2.8∆tm

3.9∆tm

4.1∆tm
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Fig. 2. Example of sorting of mesh elements into different groups: (Left) The
time steps of each elements according to their CFL condition, (Right) Sorting
of elements in 4 groups of tags 0, 3, 6 and 9.

step to assign a tag θ = 3(zg − z) at each group. The
example mesh presented in Fig.2 shows the organization of
the elements in 4 multirate groups. The tag 9 is assigned to
group number 0 whose elements have stable time steps in
the interval [8∆tm, 10∆tm]. The tag 6 is assigned to group
number 1 whose elements have stable time steps in the interval
[4∆tm, 8∆tm[. The tag 3 is assigned to group number 2 whose
elements have stable time steps in the interval [2∆tm, 4∆tm[.
The tag 0 is assigned to group number 3 whose elements have
stable time steps in the interval [∆tm, 2∆tm[.
The next step is to introduce the buffer groups that serve to
accommodate transition between bulk groups. These buffers
have a size of two connected elements because the base
method ERK22 has two stages. To distinguish groups, the
tag θ = 3(zg − z) + 2 is attributed to buffer groups and
the tag θ = 3(zg − z) is conserved for bulk groups. The
group of tag 0 remains the same, and the buffer elements are
successively introduced. During this process, it is ensured that
two neighboring elements have neighboring tags.
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Fig. 3. Introduction of buffer groups : (Left) The first buffer elements are
introduced around the group of tag 0, (Right) Four bulk groups of tag 0, 3,
6, 9 and three buffer groups of tag 2, 5, 8 are obtained.

The illustration presented in Fig.3 shows the introduction
of buffer elements. The first buffer elements are introduced
around the bulk group of tag 0. Four bulk groups of tag 0, 3,
6, 9 and three buffer groups of tag 2, 5, 8 are constituted.
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Fig. 4. (Left) Location of the unnecessary buffer elements; (Right) The final
multirate partitionning.

The last step consists in transferring the unnecessary buffer
elements to the bulk group with inferior tag. These elements
which appear at the boundary and are not located between
two bulk groups. Fig.4 shows the unnecessary buffers elements
corresponding to groups of tag 2 and 8 (dotted elements) which
are transferred to groups 0 and 6.

IV. NUMERICAL EXAMPLE

The simulation domain is a box B (εB = ε0, σB = 0S/m)
containing a skull SK (εSK

= 32ε0, σSK
= 0.8S/m) which is

inside a sphere S1 (εS1
= 14ε0, σS1

= 0.1S/m) as shown in
Fig.5. Inside the skull there is another sphere S2 (εS2

= 49ε0,
σS2

= 1.15S/m). The permeability of vacuum µ0 is assumed
in all the domain.
The faces of the box oriented along the y−axis are magnetic
walls and those oriented along the z−axis are electric walls. On
the left side, an absorbing Silver-muller boundary condition is
set. An incident field

−→
E inc = (0, 0, Eincz ) propagates from the

right side. It is a Gaussian modulated pulse of center frequency
f0 = 1.2Ghz such that: Eincz (t) = sin(2πf0t)e

−a(t−t0)2 ,
t0 = 2.5ns, a = 15.108. The simulations are carried
out for a duration Tf = 25ns. They are performed on
8cores−15Go/Ram−2.3GHz computer.
A tetrahedral mesh of 279802 third order spatial elements
is used. The minimum and maximum element-wise stable
time steps according to the CFL condition are respectively
∆tm = 24.10−14s and ∆tM = 17.10−12s. The single
rate RK22 and the LeapFrog scheme are firstly used
with ∆tm. Their CPU times are CPURK22 = 254100s,
CPULF = 140100s. They are compared to that obtained with
the multirate strategy in TABLE II to show the computational
gain. The set up of the groups takes few seconds which
are neglected in the CPU times. When Ng increases, the
percentage of buffer elements also increases and the gain
is improved. The higher stable time step is 25∆tm because
26∆tm > ∆tM . The electric field recorded at the center of
the sphere S2 is plotted in Fig.6 to show that results of the
three methods are very close.

V. CONCLUSION

In this paper a multirate technique to reduce the computa-
tional cost of explicit computations of time domain Maxwell

Ng ∆t(s) buffer elts CPUtot(s) GainLF GainRK22

2 2∆tm 1% 137100 1.02 1.85
3 22∆tm 14% 71100 1.97 3.57
4 23∆tm 34% 49200 2.84 5.16
5 24∆tm 38% 45200 3.09 5.62
6 25∆tm 39% 42040 3.33 6.04

TABLE II
CPU TIME OF MULTIRATE SIMULATIONS AND THE GAINS VERSUS
LEAPFROG SCHEME (GAINLF ) AND THE SINGLE RATE SCHEME

(GAINRK22).

Fig. 5. (left) Simulation domain (right) Illustration of the electric field that
propagates.

Fig. 6. Comparison of Ez recorded at the center of the sphere S2.

equations on complex geometries is presented. A numerical
example shows the gain obtained compared to simulations
performed with the classical LeapFrog and Heun methods.

REFERENCES

[1] Schomann, S.; Warburton, T.; Clemens, M.; Local Timestepping Tech-
niques Using Taylor Expansion for Modeling Electromagnetic Wave
Propagation With Discontinuous Galerkin-FEM , IEEE Trans. Magn, vol.
46, num. 8, pp.3504-3507, 2010.

[2] S. Descombes, S.; Lanteri, S.; Moya, L.; Locally Implicit Time Integration
Strategies in a Discontinuous Galerkin Method for Maxwell’s Equations,
J. Sc. Com., vol 56, num. 1, pp.190-218, 2013

[3] Constantinescu, E.M.; Sandu, A.; Multirate time stepping methods for
hyperbolic conservation laws, Journal of Scientific Computing, Vol.33,
pp. 239-278, 2007.

[4] Godel, N.; Schomann, S.; Warburton, T.; Clemens, M.; GPU Accelerated
Adams-Bashforth Multirate Discontinuous Galerkin FEM Simulation of
High-Frequency Electromagnetic Fields , IEEE Trans. Magn, vol. 46, num.
8, pp.2735-2738, 2010.

[5] Seny, B. and al., Multirate time stepping for accelerating explicit dis-
continuous Galerkin computations with application to geophysical flows,
Inter. J. Num. Meth in fluids, vol. 71, pp.41-64, 2013.

[6] B. Seny and al., An efficient parallel implementation of explicit multirate
Runge-Kutta schemes for discontinuous Galerkin computations , Journal
of Computational Physics Vol. 256, pp.135-160, 2014.

[7] L. Fezoui, S. Lanteri , S. Lohrengel, S. Piperno Convergence and Stability
of a Discontinuous Galerkin Time-Domain Method for the 3D Heteroge-
neous Maxwell Equations on Unstructured Meshes, ESAIM-M2AN, Vol
39, number 6, pp. 1149-1176, 2005.


