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Analysis of resonant pull-in of micro-electromechanical oscillators 

Jérôme Juillard, GEEPS/ECO2/SE, CentraleSupélec, France 

Abstract 

In this paper, the equations governing the pull-in of electrostatic MEMS (micro-

electromechanical systems) oscillators are established and analyzed. This phenomenon defines 

the maximal oscillation amplitude that can be obtained without incurring instability and, hence, 

an upper limit to the performance of a given device. The proposed approach makes it possible to 

accurately predict pull-in behaviour from the purely resonant case, in which the electrostatic 

bias is very small, to the static case. The method is first exposed in the case of a parallel-plate 

resonator and the influence of the excitation waveform on the resonant pull-in characteristics is 

assessed. It is then extended to the more complex case of clamped-clamped and cantilever 

beams. The results are validated by comparison with transient simulations. 

1 Introduction 

The static pull-in of capacitive MEMS structures is a well-studied phenomenon, theoretically and 

experimentally [1-2]. In particular, it is well-known that a voltage-controlled parallel-plate capacitor 

may not be displaced by electrostatic forces to a position exceeding one third of the gap without 

incurring instability. The validity of this result is limited to the case when the bias voltage applied to 

the capacitor is increased quasi-statically or when the structure is critically damped. Several works 

have been concerned with establishing similar results to the case when the structure is under-damped, 

mostly when the voltage is applied as a step [3-5] or when it is a superposition of a DC and of an AC 

component [6-8]. The latter case is of great importance for resonant sensing applications, in which the 

resonance frequency of a structure is measured to track changes in a physical quantity. In this context, 

it is important to determine the largest stable oscillation amplitude since it determines the maximal 

magnitude of the detected signal, and, consequently, sets the constraints on the design of the 

associated electronics of the MEMS/electronics interconnection scheme [9-10].  

 

Fig.1 – Open-loop (a) and closed-loop (b) techniques for resonance frequency measurements. In the open-loop 

technique, the resonator is typically excited with a chirp. The amplitude and phase response of the system are 

obtained by demodulating the excitation and the resonator output. In the closed-loop technique, the resonator is 

excited with the signal output by an electronic circuit enforcing some self-oscillation conditions in the loop. The 

feedback electronics may include a phase-locked loop in order to guarantee a specific input-output phase 

relationship, as symbolized by the dotted arrow, or may have a purely feed-forward architecture.  

The measurement of the resonance frequency of a MEMS structure can be performed using open-loop 

or closed-loop techniques (Fig. 1). This paper is dedicated to the latter case, in which feedback 

electronics sense the position of the resonator and actuate it close to its resonance frequency by 

enforcing a set of so-called “self-oscillation” conditions (Barkhausen criterion) [11]. Although the 

electrostatic closed-loop scheme is ubiquitous [12-17], its stability has received little attention so far. 

Most papers dedicated to resonant pull-in are concerned with open-loop techniques [6-8], in which the 

excitation frequency is controlled and the amplitude and phase of the displacement are free to vary. 

Only a handful of papers [18-20] are dedicated to resonant pull-in in closed-loop, in which the phase is 
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set and the amplitude and frequency vary. Of these, [18] is dedicated to the case when the resonator is 

a parallel-plate capacitor actuated with a square-wave voltage and is only valid when the DC bias 

applied to the structure is very small compared to the static pull-in voltage. These three limitations 

(geometry, waveform and bias voltage) prevent using the results from [18] in the majority of resonant 

MEMS/NEMS applications. Such applications are most often based on sine-wave actuation, operate at 

finite bias voltage and have flexible moving parts, very far from the plane-capacitance hypothesis. In 

[19], the framework of [18] is expanded to account for other nonlinearities (caused by strain-

stiffening) and the study is made for large DC bias. However, as shown in the present paper, the 

approach used by the authors of [19] does not take into account the interdependence of the static 

component of the displacement and the oscillation amplitude. Consequently, this approach leads to 

qualitatively and quantitatively inaccurate results, especially at large DC bias. In [20], resonators of 

various shapes (parallel-plate, bridge or cantilever beams) with different types of actuation waveforms 

(square-wave, sine-wave, pulses) and large DC bias are considered. However, the study is limited to 

the case of symmetric double-sided actuation, in which the static component of the displacement is 

equal to zero. In an electrostatic MEMS resonator, asymmetry may result from several causes, the 

most common being that a single electrode is used to actuate the resonator and sense its position; in 

the present paper, we show that, in such asymmetric cases, the static component of the displacement 

(resulting from the asymmetry) plays a key role in the pull-in phenomenon.  

In this paper, the case of a resonator (parallel-plate, bridge, or cantilever) actuated from only one side 

is considered and the influence of the excitation waveform on the resonant pull-in amplitude is 

studied. The main contributions of the paper are that  

- a general methodology, based on harmonic balancing, for deriving the resonant pull-in 

condition in asymmetric electrostatic resonators is derived.  

- this theory is valid from zero DC bias (purely resonant pull-in, as in [18]) to large DC bias 

(static, non-resonant pull-in).  

- the resonant pull-in conditions are given in terms of oscillation amplitude, oscillation 

frequency and static component of displacement for common resonator geometries and 

excitation waveforms.   

- voltage pull-in conditions are also established for these geometries and waveforms, in terms of 

maximal actuation voltage versus bias voltage.  

- it is shown that, as in the case of double-sided actuation [20], the greater travel range for a 

given DC bias is obtained with pulse-actuation, regardless of the geometry of the resonator. 

The outline of the paper is the following. In section 2, the framework and the model governing the 

transient dynamics of a parallel-plate resonator are described. In section 3, the equations governing the 

averaged dynamics of the model are established, based on a describing function approach [11]. Section 

4 presents the method for deriving the resonant pull-in characteristics from the averaged dynamics. 

The analysis is based on an extension of one of the stability criteria presented in [11] to the case when 

the displacement of the structure has an amplitude-dependent DC component. This is illustrated in the 

case of square-wave actuation and show that the method proposed in [19] for determining resonant 

pull-in is faulty in the case of a finite DC bias. Section 5 discusses the limits of this work and its 

extension to more complex cases, in particular to the case of clamped-clamped and cantilever beams. 

Section 6 contains some concluding remarks. 

2 Framework 

We consider the one-sided closed-loop electrostatic actuation of a parallel-plate resonator with 

stiffness K , mass M , natural pulsation 0 /K M   and quality factor Q . An electrode with 

surface area 
eS  is situated across a gap 0G  from the resonator, supposed to be very small with respect 

to the lateral dimensions of the electrode. A voltage     1bV t V v t   is applied across the gap and 

exerting an electrostatic force on the resonator and setting it into motion. Throughout the paper, the 



actuation voltage is assumed to be very small with respect to the bias voltage (i.e. 1v ). The 

influence of this hypothesis is illustrated in section 4.3. 

The position of the resonator as it moves across the gap is given by    0G t G a t , so that 1a   

means that the structure touches the opposite electrode (Fig. 2).  

 

Fig. 2 – Parallel-plate resonator with no voltage applied (a) and in a deflected position (b). 

Letting a dot (as in a ) denote differentiation with respect to 
0t t , and defining the non-dimensional 

bias voltage as: 
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where 
0  is the permittivity of vacuum, the dynamics of the resonator are governed by: 
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where  N a  represents the dependence of the electrostatic force with respect to a . Throughout the 

rest of this paper, the tilde is dropped and t  is used to describe non-dimensional time. 

It is assumed that  0 sina A A t   and that the (non-dimensional) actuation voltage v  is in 

quadrature with a  so that an oscillator loop is formed. As we will show in sections 3 and 4, the static 

component of the displacement, 
0A , plays an important role in the stability of the oscillator. This 

makes the analysis of single-sided resonators more involved than that of double-sided resonators [20]. 

The following three waveforms are considered, which can easily be generated in closed loop when a  

or a  is measured:  

- Square-wave:   0 sign cosv v t . 

- Sine-wave:  0 cosv v t . 
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- Pulses:  0 , ,v v a a   , where  , ,a a   is equal to  sign a  for a duration 2   when a  

crosses the threshold 
0A , and is equal to 0 otherwise. 

 

Fig. 3 - From left to right: square (a), sinusoidal (b) and pulse (c) waveforms (continuous line), for 
0 1v  . The 

dashed line represents  sin t . 

The three waveforms, represented in Fig. 3, can be used to make the resonator oscillate, because the 

first harmonic of v  is, by design, in quadrature with a  (the out-of-quadrature case is addressed in 

section 5). Square and sine waveforms are the most commonly used. Pulsed actuation was introduced 

in [21] and studied in [20-22]. Pulses can be efficiently generated by high-pass filtering the sign of the 

detected signal, as described in [26]. Among the advantages of pulse-actuation is the possibility to 

reach very large oscillation amplitude regimes (hence, large signal-to-noise ratios) [22]. Also, in 

capacitive MEMS applications, the detected signal is often a superposition of the useful, motional 

signal (proportional to a ) and of a parasitic signal (proportional to v ) due to capacitive feedthrough. 

This feedthrough phenomenon makes it difficult to guarantee quadrature between v  and a  when sine-

wave and square-wave actuation are used. When pulsed actuation is used, this problem is irrelevant, 

because the sign of a v  (where 0   represents an unknown amount of capacitive feedthrough) is 

the same as the sign of a , no matter how large v  may be [22]. This simplifies the design of the 

oscillator [26] and can also be put to use for performing open-loop characterization of the resonator. 

However, the pulsed-actuation technique is practically limited by the amount of energy that can be 

supplied to the resonator at each period (the shorter the pulse, the larger 
0v  must be), and by the fact 

that it may become difficult to generate well-defined pulses at very high frequencies (say, greater than 

a few tens of MHz). 

The static pull-in position spia  is defined as the position for which the equilibrium of (3) becomes 

unstable, when v  and all time derivatives equal 0. It is well-known [1] that 

1

3
spia   (4) 

and that this position is reached for: 

4

27
spi 



  . (5) 

3 Steady-state dynamics 

1 Determination of the steady-state regime 

Describing function analysis [11] can be applied to (3) to determine the existence of steady-state 

solutions. We define: 

0 3.14 6.28
-1

-0.5

0

0.5

1

0 3.14 6.28
-1

-0.5

0

0.5

1

0 3.14 6.28
-1

-0.5

0

0.5

1
(a) (b) (c) 



 

2

0
2

DCf N a dt






  ,    

2

sin

0

sinf N a t dt







  , 

 
   

2

cos

00

cos
v t

f N a t dt
v







  .  (6) 

These quantities have analytical expressions that are summarized in table 1, where the following 

notation is used: 

01

A
R

A



.  

Although it is not mandatory to perform this change of variables to analyze the system, the use of the 

“reduced amplitude” R  proves to be very convenient, mostly because R  varies between 0 and 1, 

whereas A  varies between 0 and 
01 A , which is quantity that depends on the bias level   applied to 

the system. 
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Table 1 – Expressions of 
DCf , 

sinf  and 
cosf  for the three waveforms of Fig. 3. The expression of 

cosf  in the 

case of pulse-actuation uses the assumption that 1  , as in [22], i.e. that the pulses have a short duration 

with respect to the period of the oscillation. 

It is remarkable that 
DCf , 

sinf  and 
cosf  are independent of  , except cosf  in the case of pulse 

actuation. The steady-state regime is determined by solving the nonlinear system of equations: 
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corresponding to the averaged dynamics of (3), as derived in Appendix A. This system may have 

several solutions, the stability of which is studied in section 4. Note that (7-a) defines an implicit 

relation between 
0A  and R  (or equivalently between 

0A  and A ). The fact that these two quantities 

are cross-dependent shows that it is not possible to determine the static component of the displacement 

0A  through a static analysis of (3) alone.  

2 Practical determination of steady-state response curves 

The solutions of (7) have no closed-form expressions in terms of the parameters  , 
0  and Q  , so 

they must be worked out with a numerical root-finding procedure (e.g. Newton-Raphson). 

Alternatively, one may proceed as follows:  



1. Assume Q  is known. 

2. Choose a value of R  between 0 and 1 and   between 0 and spi . 

3. Solve (7-a) for 
0A . Pick the solution (if any) between 0 and spia . 

4. Solve (7-b) for  .  

5. Solve (7-c) for 
0v . 

The only complex step in the procedure is step (3), which requires solving a polynomial of the third 

degree (this can be performed numerically or analytically), while steps (4) and (5) are immediate. If 

the polynomial of step (3) has no root between 0 and spia , one should set 
0v  to “not a number”, 

meaning that no oscillation is possible for the chosen values of Q , R  and  . After repeating this 

process for different values of R  and  , one may then plot the color maps or contour lines of 

 0 ,v R  ,  0 ,v    or  0 0 ,v A  .  

As we have just shown, solving for the steady-state is rather complex. However, the resonant pull-in 

condition can be established with more ease, as illustrated in the following sub-section.  

4 Determination of the resonant pull-in condition 

1 Stability of the steady-state regime 

Let us denote by  * * *

0 , ,A R   a solution of (7). A necessary and sufficient condition for this 

equilibrium to be stable is that the Jacobian of (A-14):  
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verifies the Routh-Hurwitz criterion, where the derivative operator 
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accounts for the cross-dependence of 
0A  and R . In (9),  

0

0

A B B

R AR

  
 
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  (10) 

is obtained by applying the implicit function theorem to (7-a). The Routh-Hurwitz criterion consists in 

a set of inequalities which must be verified by the coefficients of the characteristic polynomial of J , 

   3detP   J I , for the system to be stable: 

1
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.   (11) 

One may verify that, for all waveforms, the first inequality is always met provided 0Q  . 

Furthermore, the second inequality is also met provided *

0 spiA a . Since these two conditions are 

always met in practice, the stability of the oscillation boils down to: 



0
DC S DS C

DR DR 

 
 

 
.  (12)

 1
 

This condition can be used to complement the numerical procedure described in section 3-2 and 

discriminate stable solutions of (7) from unstable ones. However, there is not much physical insight 

gained from numerically evaluating this quantity, so it is interesting to go one step further and try to 

derive a resonant pull-in condition from (12). 

2 Resonant pull-in condition 

By definition, the system is at the resonant pull-in condition when in a state  0 , ,rpi rpi rpiA R   which 

verifies (7) and  

0
DS C DC S

DR DR 

 
 

 
. (13) 

The resonant pull-in condition is defined by a set of four equations, (7) and (13), with three parameters 

( , Q  and 
0v ) and three unknowns (

0

rpiA , rpiR  and rpi ). It is then a tedious but straightforward 

process of algebraic manipulation to remove four of these quantities and obtain a single relation 

between the two remaining ones. The simplest way to do that, which also leads to the most meaningful 

relations, is to eliminate  , Q , 
0v  and rpi  from (7) and (13) and derive a waveform-dependent 

relation of the form  0

rpi rpi

rpiR f A . This relation defines an “upper bound” for the solutions of (7), in 

the sense that  * * *

0 , ,A R   is stable provided  * *

0rpiR f A  (and unstable otherwise).  

In the case of square-wave actuation, it is found that: 
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in the case of sine-wave actuation: 
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and, in the case of pulse-actuation
2
: 
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


. (14-c) 

Note that these relations not only predict the occurrence of resonant pull-in but also that static pull-in 

takes place when 0 1/ 3rpi

spiA a  , since in that case we find 0rpiR  , independently of the 

waveform. On the other hand, the maximal oscillation amplitude is waveform-dependent: it is 

obtained when 
0 0rpiA   (a situation which may happen when a very small electrostatic bias is used, as 

in [18]). In that case, we find for square-wave actuation: 

                                                      
1
 This inequality is derived in [11] using a more “physical” approach, in the case when 

0 0A  . An alternative 

approach to the determination of this inequality is given in appendix A. 

2
 In that case, we find that 0
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, and the pull-in condition (13) simplifies to: 0
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1
0.58

3

rpiR   ,  (15-a) 

which is a well-known result [18]. For sine-wave actuation, the maximal oscillation amplitude is found 

to be: 

6
0.64

11 13

rpiR  


. (15-b) 

Finally, we find, for pulse-actuation: 

1rpiR  ,  (15-c) 

i.e. that a full-gap travel range is possible if the electrostatic bias is very small. It is interesting to note 

that these values are the same as those obtained in the case of double-sided actuation [20]. 

One can calculate rpi  by combining (7-a) and (7-b) which yields:  
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or equivalently 
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
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
,  (16-b) 

which is valid for all waveforms.  

It is interesting to note that (14) and (7-a) imply that 
0

rpiA  and rpiR  (and, consequently, rpi ) depend 

only on   and not on Q  or 
0v . There are no closed-form expressions for  0

rpiA  ,  rpiR   or 

 rpi  , but these quantities are plotted in Fig. 4 for the three considered waveforms. Equation (7-c) 

can then be used to determine, for a given quality factor and a given waveform, the maximal value of 

0v  that can be used without incurring resonant pull-in (i.e. a “voltage pull-in condition”, as defined in 

[19]), as plotted in Fig. 5.  



Fig. 4 -  0

rpiA  ,  rpiR   and  rpi   for the square (a), sine (b) and pulse (c) waveforms, as calculated by 

(14) and (7-a). 

 

 

(a) (b) 

(c) 



 

Fig. 5 – Voltage pull-in condition. Note that the plot represents  0Qv   for square and sine wave actuation and 

 0Qv    for pulse actuation. 

These results are compared to those from [19] in the following section. 

3 Application to square-wave actuation 

In this sub-section, we focus on the case of square wave-actuation. Equation (7-c) can then be 

rewritten as: 

   
3

2

0 0

1
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Q


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Equation (17) should be compared to the resonant pull-in condition found in [19], which can be 

written, using our notations: 
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where, for a given DC bias  , the authors propose to estimate 0

rpiA  in (18) thanks to a static analysis 

of (1) and to use the following approximation for rpi : 
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
, (19) 

based on a first-order linearization of (1) close to the static solution.  



Transient simulations of (1) are performed with Matlab/Simulink, for different values of   and 

10Q  . For each value of  , the value of 0v  is increased step by step until resonant pull-in is reached. 

The smallest value of 0v  for which the system is unstable is noted down. These results are compared 

with those obtained with (17) and (18) (Fig. 6). As could be expected, (17) and (18) yield similar 

results when the DC bias is small ( 1  ) but overestimate the value of 
0v . For finite values of  , the 

two methods no longer agree: while transient simulation of (1) show that (18) fails to predict the 

correct resonant pull-in condition for finite values of  , the results obtained with (17) are very 

accurate.  

 

Fig. 6 – Voltage pull-in condition obtained with three different methods compared to transient simulation 

results. The dashed curve corresponds to the dotted curve of Fig. 5, translated by one decade (since 10Q  ). 

This discrepancy for finite values of   can be attributed to an error made in [19] in deriving (18): it is 

assumed in [19] that equation (29), reproduced hereafter with our notations: 

 
23 0

0

8
1 0

Q v
A A A




      (20) 

is a polynomial of the third degree in A  and that resonant pull-in is reached when its discriminant is 

zero. However, as explained in section 3, 
0A  and A  are cross-dependent so that (i) one may not 

derive values of 
0A  and   from a static analysis alone and (ii) one cannot consider (20) as a third-

degree polynomial. 

In the case of small  , the difference between the results obtained with both methods and transient 

simulations can be explained by the fact that the predicted values of 
0v  are then finite and, 

consequently, fall outside the scope of both studies. However, in the square-wave case, 2 2

0v v  is a 

constant, and the analysis made in the previous sections still holds, provided one multiplies 
DCf  and 



sinf  by 
2

01 v  in (7). Equations (14-a) and (16) remain valid in spite of this modification. Thus, in 

order to find the maximal value of 
0v  that can be used without incurring resonant pull-in, one should 

(i) choose a value of rpiR  between 0 and 1/ 3 , (ii) deduce the corresponding 0

rpiA  and rpi  with (14-

a) and (16-a), (iii) eliminate 
0v  from (7-a) and (7-c) and solve the resulting second-degree polynomial 

for  , (iv) calculate 
0v  from (7-c). The results obtained with this approach are also represented in Fig. 

6 and show an excellent agreement with transient simulation results. 

5 Extension to more complex cases and limits of the study 

1 Extension to other resonator geometries 

Electrostatically-actuated cantilever beam and clamped-clamped beam resonators with rectangular 

cross-sections are commonplace in MEMS and NEMS applications. Calculating the resonant pull-in 

condition for these geometries is more arduous than for parallel-plate resonators. Still this can be 

achieved by numerically approximating the projection of the electrostatic force on the shape function 

used to describe the beam deformation in a proper way, and, consequently, the functions 
sinf , 

cosf  and 

DCf .  

For example, we start with the Euler-Bernoulli equation, governing the displacement w  of an 

electrostatically-actuated rectangular beam with length L , thickness h , width b , Young’s modulus E

, viscous damping coefficient   and density  : 

 
 

3 4 2 2

0

,24 2

0
12 2

L L

bEbh w w w V
bh

x t t G w
 


  

  
  

   
,  (21) 

where it is supposed that the actuation electrode extends from 0x L   to x L L  , and 
 ,L L 

  

is the indicator function of  ,L L  . Note also that the electrode/beam length is supposedly large 

with respect to the gap and to the width of the beam, so that the plane capacitor approximation remains 

valid in a cross-section of the beam. Setting x Lx , 0w G w  and 0t t , and remembering that 

1v , (21) becomes: 

 
 

23 4 2
2 0

0 0 ,24 4 2 3

0

1 2

12 2 1

b

L L

bVEbh w w w v
bh

L x t t G w
 


   

   
  

   
.  (22) 

Letting      1,w x t a t w x , where  1w x  is the first beam eigenmode, normalized so that 

 1max 1w  , a Galerkin procedure is applied to (22). This leads to the projected non-dimensional 

dynamics: 

 
 

  
1

2

1

1 2
1

w xa
a a v dx

Q aw x





   


 ,  (23) 

where  
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3 3

1 0

1 bL V

E h G


 


, 

2

2 2

E bh
Q

L




   (24) 

with 
1 33.12   and 2 6.46   for a clamped-clamped beam, and 

1 0.515   and 2 1.015   for a 

cantilever beam. 



Approximate expressions for the right-hand side of (23) can be obtained as explained in appendix B, 

guaranteeing that the relative error between the projected force and its approximation is bounded for 

1a  .  For example, in the trivial case when 0   and 1  , the projected dynamics become: 

 
 

3/2

1 0.017
0.523 1 2

1

a a
a a v

Q a



   


,  (25) 

in the case of a clamped-clamped beam, and 

     
1 0 783

0.392 1 2 0 531 0 114 log 1
1

a + . a
a a v  + . + . a - a  

Q a


 
     

 
 (26) 

for a cantilever beam. The resulting reduced-order models can then be averaged over one period to 

yield the equivalent of system (7) for a deformable beam. The expressions of 
DCf , 

sinf  and 
cosf  can 

be derived as shown in appendix C of this paper (the calculation of 
DCf  is illustrated in appendix D). 

The same process as in section 4 can then be applied to determine resonant pull-in conditions: these 

are represented in Fig. 7 and Fig. 8, in the case when 0   and 1  . Note that this last step must be 

performed numerically: while it is simple to use (13) and the steady-state equations to obtain an 

implicit relation between 
0

rpiA  and rpiR  where only these two quantities appear, it is (to the author’s 

knowledge) impossible to make it explicit, as opposed to the parallel-plate case. Finally, in the more 

general case when the lengths of the beam and the actuating electrode are different, one should replace 

 N a  in (6) by a parameterized reduced-order model  ˆ ,N a θ , established as in appendix B, and 

follow the same procedure as above.  



 

Fig. 7 -  0

rpiA  ,  rpiR   and  rpi   for the three waveforms, in the case of a clamped-clamped beam 

(a,b,c) and in the case of a cantilever beam (d,e,f). 

  

  

  
 

(a) 

(b) 

(c) (f) 

(e) 
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Fig. 8 – Voltage pull-in condition for a clamped-clamped beam (a) and for a cantilever beam (b). 

2 Extension and limits of the study 

This study is admittedly limited to an idealized framework and the presented results should always be 

quantitatively questioned when working in an experimental context. In this section, the main 

limitations of our study are listed, in order of ascending difficulty, and some guidelines for tackling 

them are given.  

a) Non-ideality of the geometry 

First of all, it must be stressed that the reduced-order models proposed in section 5.1 are valid as long 

as the plane capacitor approximation holds in a cross-section of the beam. However, this hypothesis is 

not always verified, in particular in nanoscale devices. Geometries with small length/gap or width/gap 

ratios require either that fringing fields be accounted for in the expression of the electrostatic force 

(this may also be done with the approach proposed in [23]), or that other reduced-order modeling 

strategies be used, such as the fully numerical approach proposed in [25]. Regardless of which 

approach is used, the resonant pull-in condition may still be derived from (13), provided the dynamics 

of the device can be captured with only one mode. In spite of the added complexity of deriving a 

model of the electrostatic force, no new parameter is introduced in the equations and the resonant pull-

in condition may still be obtained at no great cost. 

Other interesting “non-ideal” geometries are asymmetric double-sided resonators, to which the 

methods presented in this paper can readily be applied.  

b) Presence of other nonlinearities 

When other nonlinearities (e.g. caused by beam elongation, squeezed-film damping, etc.) are present, 

the set of four equations defining the resonant pull-in condition contains more than four parameters. 

Consequently, it is not possible, in such a case, to derive “nice” closed-form expressions of the 

resonant pull-in condition, such as (14). Yet, it is still possible to use (13) to obtain resonant-pull-in 

curves parameterized by the supplementary parameters.  

For example, beam elongation is equivalent to Duffing stiffening, with a geometry-dependent Duffing 

coefficient  . If this phenomenon is taken into account, the resonant pull-in condition, can be worked 

out as previously, by eliminating  , Q , 
0v  and rpi  from (13) and (7). The resulting relation between 

0

rpiA , 
rpiR   is then parameterized by   (the case 0   corresponding to Fig. 7 and 8).   

 

(a) (b) 



c) Non-ideality of the feedback loop  

In the present paper, it is assumed that the displacement of the structure ( a ) or its velocity ( a ) is 

directly measured and the waveform used for actuation is perfectly in quadrature with a . This makes 

it possible to “nicely” separate the influence of the actuation voltage from that of the bias voltage in 

the steady-state equations, and yields closed-form expressions of the resonant pull-in condition
3
. 

However a phase delay   may be present in the feedback loop, which also introduces a supplementary 

parameter in (7) and (13) and should be treated as in 5.2.b.  

For example, detection nonlinearities may make it practically difficult to generate the actuation 

waveform in quadrature with the displacement. A typical example is when a capacitive detection 

scheme is used: first of all, the detected signal is polluted by “feedthrough”, i.e. the detected signal is 

the superposition of the motional signal a  and of the actuation waveform, which impacts the loop 

delay. Also, the detected signal becomes heavily distorted as a  increases (the capacitance being a 

nonlinear function of a ), which may make it difficult to ensure quadrature in the loop, unless some 

particular electronics are used (e.g. a PLL).  

Thus, one should use the present study “as is” only when the feedback loop correctly enforces 

quadrature over the whole range of possible values of a . Otherwise, one should adapt the theory to the 

non-ideal framework.  

d) Interaction with other modes 

It should be pointed out that the present study is limited to the case when the resonator can be modeled 

as a system with a single degree-of-freedom. It should be used with caution for complex structures 

because of possible modal interactions induced by electrostatic coupling. In particular, as a  increases 

and becomes finite, it may be incorrect to neglect the components of the electrostatic force at 2 , 3 , 

etc. and their effect on the dynamics of the system [26].  

6 Conclusion 

In this paper, a method for determining the steady-state dynamics and the resonant pull-in condition of 

MEMS-based oscillators actuated from only one side was proposed. After illustrating this method in 

the case of a parallel-plate resonator, this approach was extended to clamped-clamped beam and 

cantilever beam resonators. The proposed approach is original as it accurately captures the cross-

dependence of the static and dynamic components of the resonator displacement. This is in contrast 

with the double-sided case (in which the displacement has no static component) [20].  

The proposed approach also predicts pull-in for 0 spi   , i.e. from “purely resonant” to static pull-

in, whereas previous studies of closed-loop single-sided actuation are either limited to the case when 

the bias voltage is very small with respect to the static pull-in voltage (i.e. spi  ) and square-wave 

actuation [18] or fail to accurately predict pull-in [19], as comparison with the proposed method and 

transient simulations has shown. The increased displacement range obtained when using pulsed 

actuation compared to sine-wave or square-wave actuation is also an interesting outcome of this study.  

In the case of flexible beam resonators, the proposed approach is used in conjunction with a single-

mode approximation of the nonlinear actuation forces, which is valid across the whole gap [23], and 

resonant pull-in conditions are also established. It should be noted that the calculations resulting from 

this approach are simpler than those which would be obtained with the reduced-order modeling 

approach proposed in [6], which requires several modes to capture the large-amplitude behavior of 

                                                      
3
 At least for parallel-plate resonators. In the other geometries, the pull-in condition can easily be established 

using a numerical procedure, as shown in section 5.1 and 5.2.a. 



electrostatically-actuated MEMS beams
4
. Moreover, the reduced-order modeling approach proposed in 

[6] is inaccurate when used with only one mode (dramatically so if used in conjunction with one-

harmonic harmonic balance analysis, as shown in [27]). Because of this added complexity, and also 

because the open-loop problem is more involved than the closed-loop problem, no resonant pull-in 

conditions are established in [7-8].  

Consequently, extending the method of the present paper to the open-loop case, in which the 

frequency is set and the phase varies, is the subject of ongoing work. Future work will also be devoted 

to accounting for non-idealities described in section 5-2, in particular to feedback loop non-idealities 

such as phase-delay and capacitive feedthrough. 

Appendix A – Averaged dynamics of the system 

Let  

     0 sina t A A t t  ,  (A-1) 

where  A t  and  t  are assumed to be slowly-varying functions of time. Following [11], we define  

A

A
  ,  (A-2) 

the rate of change of the amplitude and  

  . (A-3) 

Differentiating (A-1) yields: 

 sin cosa A      ,  (A-4) 

    2 2 sin 2 cosa A            . (A-5) 

Injecting (A-1), (A-4) and (A-5) in (3) and taking the average, the projection on sin  and the 

projection on cos  over one period of the resulting equations leads to: 

0 DCA f ,  (A-6) 

 2 2sin 1
f

A Q


        ,  (A-7) 

cos
02 2

f
v

A Q


     .  (A-8) 

Equations (A-2), (A-7) and (A-8) are a nonlinear autonomous dynamical system. The equilibrium is 

reached when the time-derivatives equal zero, i.e. 

0 0A    ,  (A-9) 

                                                      
4
 As stated by the authors of [6-7] themselves: “A minimum of three modes were employed in the reduced-order 

model used to predict the transient and steady-state responses reported here. This corresponds to a six-

dimensional phase space. As a result, generating the device stability maps is a nontrivial task.” 



 2sin 1 0
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A
    ,  (A-10) 

cos 0
f

A Q


   .  (A-11) 

One may introduce the reduced amplitude R  defined by  

01

A
R

A



, (A-12) 

in all of these equations, since  
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Using this notation, the dynamical system can be written, with the notations defined in section 3, as: 
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. (A-14) 

The stability of the system is studied in section 5, by applying the Routh-Hurwitz criterion to the 

jacobian matrix of (A-14).  

Alternatively, one may derive a stability condition by assuming that a  is given by: 

 0cos 1 cosa A V A      (A-15) 

instead of (A-3), where V  would be a reduced velocity. The dynamics of the system are then 

governed by: 
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while (A-6) remains unchanged. The stability of this dynamic system is guaranteed provided  

0

0

0
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    
  
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.  (A-18) 

Taking the total derivative of  0 , ,A R V  with respect to V  yields: 

R D

V DRV

  
 


, (A-19) 

where the differential operator D  is the same as in section 4: 
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Differentiating  0 ,B A R  with respect to V  yields: 
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Thus, the stability condition may be expressed as: 

0
D D

DR DRV V

   
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At equilibrium, this equation is actually equivalent to (12), because 0C   implies that  

C
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V V

 
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 
,  (A-23) 

and 

D DC
R

DR DR


 . (A-24) 

Furthermore, we have: 

 0 0, , , ,
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A R V S A R
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   

 
.  (A-25) 

Finally, the jacobian determinant of the transformation from  ,R   coordinates to  ,R V  coordinates 

is positive. Thus, (A-22) is equivalent to (12). 

Appendix B – Reduced-order modelling of MEMS beams 

By and large, the reduced order models given in the paper are obtained as in [23], by minimizing the 

relative error between a numerical estimation of the projection of the electrostatic force on the first 

beam eigenmode, denoted by 
1w : 
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and a model parameterized by θ ,  ˆ ,N a θ . The relative error is summed over a set of chosen modal 

amplitudes 
ia , so that the optimal parameters are given by:  
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For a clamped-clamped beam, provided 1    (the actuation electrode is centered), the model has 

the following form: 
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
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For a cantilever beam, provided 1   (the actuation electrode extends to the tip of the beam), it can 

be chosen as: 
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. (B-4) 

The coefficients 
CC

N  and 
CAN  are calculated so that    ˆ 0, 0N Nθ , i.e. the model and the projection 

of the electrostatic force coincide when 0a  . The structure of the model, independently of its 

parameters, guarantees that the asymptotic behavior (as a  goes to 1) of  ˆ ,N a θ  is the same as that of 

 N a , as shown in [23], so that the relative error is bounded across the whole gap. 

To obtain the parameters appearing in (25) and (26), (B-2) is solved: this is a trivial linear least 

squares problem. The error is minimized over a set of 100 values 
ia  of the modal amplitude, 

uniformly spaced between -0.99 and 0.99.  

Introducing the log function in the ROM of the cantilever beam (B-4) gives better results than the 

approach proposed in [23]. This approach was already used in [20].  

Note that the exact values of the model parameters depend not only on the chosen abscissas, but also 

on the geometry of the actuation electrode. The numerical values given in the paper are only valid 

when the actuation electrode is the same length as the beam. However, the approach of [23] can also 

be used to approximate integrals of the form: 
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and thus account for fringing field effects ( 1n p  ) or other nonlinear forces.  

Appendix C – Calculations of 
DCf , 

sinf  and 
cosf  for clamped-clamped and cantilever beams 

In order to calculate 
DCf , 

sinf  and 
cosf  in the case of cantilever or clamped-clamped beams, one 

should replace  N a  in (6) by the reduced-order model  ˆ ,N a θ  obtained in appendix B. The 

resulting integrals can all be expressed in terms of Gauss hypergeometric function 
2 1F  [24].  

In particular, the following equality is useful for determining 
DCf :  
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which is valid for any real n .  

We also have:  
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and  
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sinf  can be determined in the same fashion using:  
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and 
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It is immediate to derive the waveform-dependent function 
cosf  in the case of pulse actuation. For the 

square-wave case, the following formulas must be used:  
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Finally, in the case of sine-wave actuation, we have: 
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 (C-13). 



Note that (C-1), (C-4) and (C-11) can be simplified when n  is an integer, as in the parallel-plate case 

and in the cantilever case, or a half-integer, as in the clamped-clamped case. The corresponding 

expressions, tabulated from [24], are given in Table C-1. 
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Table C-1 – Expressions of Gauss’ hypergeometric function for half-integer values of n  (clamped-clamped 

beams) and for 1n   (cantilever beams). In this table, K  (resp. E ) stands for the complete elliptic integral of 

the first (resp. second) kind, with argument  2 / 1R R . 

Appendix D – Example calculation of electrostatic force and 
DCf  for clamped-clamped and 

cantilever beams 

As an example, consider a reduced-order model for a clamped-clamped beam with a centered 

electrode of arbitrary length: 
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 or, equivalently: 
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Assuming (A-1) holds, the right-hand side of (D-2) becomes: 
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Using the reduced amplitude (A-12), this becomes: 
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Provided the actuation voltage v  is in quadrature with the displacement, taking the average of (D-4) 

over one period of   yields, using (C-1) in the case 3 / 2n   and 1/ 2n  : 
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where K  (resp. E ) stands for the complete elliptic integral of the first (resp. second) kind, with 

argument  2 / 1R R , as in table C-1 . 



Similarly, for a cantilever beam, the non-dimensional electrostatic force projected on the first mode 

may be expressed as: 
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Assuming (A-1) holds and making use of the reduced amplitude, (D-6) becomes: 
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Provided the actuation voltage v  is in quadrature with the displacement, taking the average of (D-7) 

over one period of   yields, using (C-1) in the case 1n  , (C-2) and (C-3): 
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The expressions of 
sinf  and 

cosf  may be derived in a similar fashion. 
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