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Abstract— This paper gives a further look at reduced-order
modeling (ROM) techniques that can be applied to MEMS beams
subject to nonlinear forces. It is focused on the popular method
which consists in multiplying the equation governing the
displacement of the beam by the displacement-dependent
denominator of the nonlinear (electrostatic) force before modal
projection is performed. Having already shown that in the case of
1-mode, 1-harmonic analysis, this method can lead to
dramatically wrong results, we propose another choice of
multiplicative coefficient, with much improved behavior. This
method is illustrated, discussed and compared to other
approaches in terms of simplicity, accuracy and range of validity.
electrostatic
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I. INTRODUCTION

Being able to accurately determine the nonlinear frequency
response of a resonant M/NEMS device is of interest at several
stages of a device’s life, from the early design and modeling
stage to the characterization or the calibration stage. For
example, at the design stage, frequency responses are used as a
priori information to assess the characteristics (natural
frequency, quality factor, influence of nonlinearity) of a
structure. Experimental (nonlinear) frequency responses can be
used to monitor the variations of these characteristics, for test,
calibration or measurement. While the experimental
determination of frequency responses is a problem unto itself
[1-3], the issues raised by their theoretical determination should
not be brushed aside. In [4], we compared three analysis
techniques for tackling problems involving non-polynomial
nonlinear forces. It turned out that, in the simple case of the
single-sided electrostatic actuation of an otherwise linear beam,
the popular method which consists in multiplying the equation
governing the displacement of the beam by the displacement-
dependent denominator of the electrostatic force before modal
projection is performed (MBP method, [5-6]), failed to capture:

- the down-shift of the resonance frequency caused by
the DC bias, even at very small oscillation amplitudes.

- large amplitude effects such as the
characteristic of the frequency response.

hysteretic

On the other hand, these phenomena were qualitatively
captured by straightforward Taylor series expansion of the
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nonlinear force (TS method, as in [7-8]), and quantitatively
captured, even for very large displacements, by approximating
the projection integrals with a function of similar asymptotic
behavior (API method, as introduced in [9]). Note that several
applications, such as characterization based on frequency
response measurements, cannot rely on purely qualitative
results.

In this paper, we consider, as in [4], the single-sided
clectrostatic actuation of an otherwise linear clamped-clamped
beam, governed by:
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where Gw(x,t) is the displacement, the beam has Young’s

modulus E, density p, length L, width b, electrostatic gap G,
moment of inertia /, damping coefficient 4, and ¥(7) is the
applied voltage. Note that the term describing the elongation of
the beam is voluntarily omitted from (1). While, strictly
speaking, it should be accounted for, it would only make our
analysis more complex and our results more difficult to
interpret. For the sake of clarity and brevity, we will only
consider the simpler case described by (1).

Our objectives are (i) to shed a new light on why MBP,
used as in [1], fails to capture nonlinear behavior, and (ii) to
propose an alternative to MBP, actually another choice of
multiplicative coefficient, with much improved behavior. In
section II, we compare the frequency responses obtained, as in
[4], from a single-mode, single-harmonic analysis of (1)
through the TS and MBP approaches. The differences between
the two expressions give us insight into why MBP can be
highly inaccurate. In section III, we propose a modification of
MBP that overcomes this issue. This method is illustrated,
discussed and compared to other approaches in terms of
simplicity, accuracy and range of validity.



II.  DETERMINATION OF NONLINEAR FREQUENCY
RESPONSES THROUGH TS AND MBP

Letting £ =x/L and 7=y, where
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supposing V' (7) =V, (1+v, cos(@r)), where v,<<1, and
w(&,7)=a(t)we (&) with we. (&) the first clamped-

clamped eigenmode, equation (1) can be rewritten as:
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where the dot denotes differentiation with respect to 7, 77 is

an electromechanical coupling coefficient and O is the

quality factor.

A. TS method

The right-hand side of (3) is expanded assuming
aw,. << 1. For a third order expansion, this yields:
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Projection on w,,. results in the transient 1 degree-of-freedom

model:
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where [, =[(we) " dE  (1,=0523,  [,=0397,

0

1, =0.332 and I, = 0.291).

The steady-state model is obtained by assuming that
a(7) = Asin(@r+¢) and projecting (5) on sin(@7r+¢) and
cos(@r+¢) (i.e. by balancing over one period [10]). This

yields the following equations:
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One may then express v, as a function of 4 and @ by
eliminating sin@ and cos¢ from (6) and plot contour lines
of v,vs. 4 and ® using numerical approximation methods

(e.g. the contour function in Matlab). This yields the
frequency response of the system for various values of v, .

B. MBP method

Equation (3) is multiplied by (1—aw. )2 , yielding:
(a+g+iijwcc (1—awe ) =n(1+2v, cos(wz))  (7)
and projected on w,. . This results in the 1-dof model:
(a +g+éij(l1 =2al,+a’l,)=1n(1+2v,cos(wr))I,. (8)

The method of harmonic balance then yields:
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from which the frequency response can be plotted, as in I1-A.

C. Qualitative and quantitative comparison of TS and MBP

Despite the general similarity of (6) and (9), there is a very
large qualitative difference between the two expressions. This
can be emphasized by determining how the resonance
frequency changes with amplitude. To this end, we let ¢ =0
in (9), which yields:

w=1. (10)
The same operation in (6) yields:
13 2
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In other words, the MBP method predicts a constant resonant
frequency, independent of the excitation amplitude v, or of the
DC bias 7, as opposed to the TS method. This was illustrated
in [4].

This behavior of MBP is in fact not so surprising: it is
known that, if a(z’) is represented with one harmonic only, the
method of harmonic balance will not take even nonlinearities
into account [11]. Thus, the DC bias term appearing on the
right-hand side of (8), being independent of a(7), has no



influence on the frequency response predicted with MBP, as
(10) shows. On the contrary, the electrostatic softening
phenomenon is predicted by the TS approach thanks to the odd
nonlinear terms on the right-hand side of (5). Moreover, we
know that, for very small oscillation amplitudes, the resonance
frequency is accurately predicted by (11). These considerations
must be taken into account in order to construct an “improved”
MBP method.

D. Construction of an improved MBP method

Several avenues can be pursued in order to improve the
results obtained with MBP. Sticking to harmonic balance, an
obvious development would be to increase the number of

harmonics used for representing a(7). However, this leads to

very complex expressions from which it becomes difficult to
extract a frequency response. Moreover, the fact that the
motion of an electrostatic oscillating beam can be accurately
described with only one mode and one harmonic is confirmed
experimentally [12]. So increasing the number of modes or of
harmonics goes against empirical fact.

One may also look for more adequate basis functions for
the representation of w and/or for the projection of the
equation resulting from MBP (e.g. (7)): this is somehow
justified, since, through MBP, the differential operator
appearing in (1) becomes highly nonlinear and the beam
eigenmodes are not as relevant as in the linear case. Although
this approach might be worth considering for improving the
results of MBP in the static case, straightforward calculations
show that it would have no qualitative consequence on the
predicted frequency responses. Yet another possibility is to
look for a more complex, but hopefully more appropriate

than (l—w)z. The new

multiplicative coefficient should have the same benefits as the
old one (solving for the oscillation amplitude should remain a
polynomial problem), and it should also capture softening at
least as well as Taylor series expansion. In other words, one
may improve the results of MBP by choosing as a
multiplicative coefficient:

multiplicative  coefficient

P(w)(1-w)’, (12)

where P(w) verifies:

P(w)=1+2w+h.o.t., (13)

so that the two lowest-degree terms of P(w) match those of

the Taylor series expansion of (l—w)_2 . Although there are
infinitely many polynomials meeting this criterion, we find that

P(w)=1+2w+w* =(1+w)’, (14)

is both convenient and accurate. This choice of P(w) means
that the improved MBP consists in multiplying both sides of

(1) by (l—w2 )2. Assuming a single mode representation of

displacement w , this yields:
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Thus, the first two terms on the right-hand side do correspond
to those obtained with the TS approach (5): this guarantees an
accurate static response and resonance frequency for small
displacements. Furthermore, only odd nonlinearities appear on
the left-hand side of (16), which ensures that 1-harmonic
harmonic balancing will take into account the effect of
nonlinearity. Finally, it is worth noting that the proposed
multiplicative coefficient is the one that naturally arises in
double-sided configurations, when the resonator is placed
between two equidistant electrodes.

The frequency response is obtained by using the method of
harmonic balance on (16). This yields:
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from which the frequency response can be plotted, as in II-A.

E.  API method

Equation (3) is projected on w.:

deé: .(18)
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The right hand-side is approximated, following [9], as:
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The choice of x depends on the criterion used for fitting

both sides of (18). In [4], a coefficient of 2.15x107> was used,
determined numerically to yield the smallest relative error for
0<a<0.99. Alternatively, we may choose x so that the first
two terms of the TS expansion of the electrostatic force are
matched. This yields:
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The method of harmonic balance yields:
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and K (resp. E) stands for the complete elliptic integral of the
first (resp. second) kind, with argument 24/(1+A4). Even
though (22-23) are not polynomials in A, it is not costly to
evaluate them. The frequency response is then easily obtained
by drawing the contour lines of v, .

III.  RESULTS

A. Comparison of MBP and improved MBP methods

First of all, let us illustrate the qualitative improvement
introduced with the proposed approach over the MBP method.
We plot in Fig. 1 the frequency responses computed with (9)
and (17) for Q =500, 7 =0.01 and different values of the
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Fig. 1. Comparison of frequency responses obtained with the MBP method
(thick lines) and the improved MBP method (thin lines).

actuation voltage (0.02<v, <0.05). These parameter values

remain unchanged throughout section III. This shows clearly
that the frequency response determined with the improved
MBP method does capture electrostatic softening, as opposed
to the classical MBP method.

B.  Comparison of improved MBP, API and TS methods

A first measure of the accuracy of the improved MBP
method consists in comparing it with the TS approach. The
frequency responses obtained with improved MBP (17), and
with a 3" order TS expansions (6) are represented in Fig. 2. As
expected, for small and moderate amplitudes, the results
obtained with the improved MBP and TS methods are
consistent. On the other hand, notable discrepancies start to
appear at large oscillation amplitudes (about one third of the
gap). Although only the results obtained with 3" order Taylor
expansion are reported here, increasing the order of the series
does not seem to reduce discrepancy. Similar discrepancies can
be observed at large oscillation amplitudes between the

improved MBP and API methods (Fig. 3), with x=1.56x107.

In our simulations, we observe that the nonlinear behavior
is always more marked in frequency responses predicted with
API than in those predicted with improved MBP. The same
goes for improved MBP compared to TS.

To estimate the accuracy of each method, one may compare
the actuation voltage calculated at given oscillation amplitudes
and oscillation frequencies through (i) improved MBP (17), (ii)
API (23) and (iii) direct use of harmonic balance and modal
projection on (3) through double numerical quadrature
(although the procedure is quite costly). The latter approach is
used as a reference method and the relative error on the
actuation voltages found with API and improved MBP are
plotted in Fig. 4 and 5. The error obtained with API stays
below 3% on the whole studied range, while that of improved
MBP is much higher, especially at large oscillation amplitudes,
where it may exceed 50%.
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Fig. 2. Comparison of frequency responses obtained with the TS method
(thick lines)and the improved MBP method (thin lines).
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Fig. 3. Comparison of frequency responses obtained with the API method
(thick lines) and the improved MBP method (thin lines).

IV. DISCUSSION

Several conclusions may be drawn from our study. First of
all, it is possible to choose a multiplicative coefficient in the
MBP method which yields qualitatively good results if used in
conjunction with harmonic balance. The choice of this
coefficient is not unique. A physically-meaningful one is the
one that naturally arises in evenly-spaced double-sided
configurations.

If this choice is made, the resulting steady-state model has a
similar complexity to the one obtained through a 3" order TS
expansion, but is more accurate. On the other hand, it is much
less accurate, at large oscillation amplitudes, than the
admittedly more complex steady-state model obtained with
API. Consequently, one should prefer API to other methods
when looking for quantitatively sound results, for example
when trying to characterize a structure from its nonlinear
frequency response.
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Fig. 5. Relative error on v0 between API and reference method.

Several questions remain open, in particular concerning the
extension of the MBP to more complex cases, e.g. when other
nonlinearities are present (stress-stiffening, squeezed-fim
damping) or asymmetrical double-sided configurations.
Another point worth investigating is how to take into account
the constant (DC) component of the displacement, that was
neglected throughout this work, and which may in fact play an
important role in asymmetrical configurations, especially at
large oscillation amplitudes, as theory and simulations show
[13].
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