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nonlinear open-loop frequency responses
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Abstract— The aim of this paper is to demonstrate robust
parameter extraction from the frequency response of MEMS
devices exhibiting pronounced nonlinearities. We describe a
general methodology, based on parameter extraction from
nonlinear large-signal frequency response, whose accuracy
appears to be limited in practice only by noise and by the
mathematical model of the structure under consideration. We
illustrate this by two complete case studies of capacitive MEMS
resonators driven to large-amplitude regimes. Theoretical
analysis, simulations and experimental measurements strongly
support our conclusions.

Keywords— Electrostatic nonlinearity, open-loop frequency
response, clamped-clamped resonator, parallel-plate resonator,
MEMS

1. INTRODUCTION

In this paper, we give evidence of the advantages of a general
characterization method based on parameter extraction from a
nonlinear resonant frequency response. We adapt our method to
capacitive MEMS driven to large amplitude regimes and show
that our parameter extraction procedure succeeds in obtaining
accurate values.

Commonly, the characterization of a resonator consists in
estimating its natural frequency and Q-factor, either via open-
loop frequency response curves [1], or exponential decay time
measurements [2]. To carry out this characterization, all the
forces applied on the resonator are considered to give linear
responses, or are linearized assuming that the resonator operates
in small amplitude oscillation regimes. Under these
assumptions, measurements are hampered by low SNR. This
obstacle gives impulse to the investigation of frequency
responses in large amplitude regimes, in which the nonlinear
behavior of the resonator cannot be ignored.

In nonlinear regimes, open-loop frequency responses are
distorted so that the symmetry of amplitude resonance curves
around the natural frequency is broken, sometimes resulting in
the emergence of hysteresis cycles. A recent study has
demonstrated Q-factor estimation from a nonlinear frequency
response [3], via precise measurements at low amplitudes
(hence at low SNR) and the knowledge of the maximal
amplitude on the frequency response. However, both of them
are difficult to measure in practice. Another study has
demonstrated the efficacy of nonlinear least-squares fitting for
parameter estimation of piezoelectric MEMS resonators from a
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nonlinear frequency response exhibiting hysteresis [4]. This
method is also experimentally demanding because it requires
numerous measurements around the upper bifurcation point, a
difficult endeavor since this point is, by definition, unstable in
open loop regimes. These impediments gave impulse to our
search for a new approach.

Our study is focalized on capacitive MEMS frequency
responses. These responses are known to be distorted by the
parasitic current effects in linear [5] and nonlinear [6] regimes.
However, a few methods avoid this problem, whether via
subharmonic sine-wave actuation [7,8] or via de-embedded
pulsed-mode actuation [9]. In this paper, we will assume that
the nonlinear frequency response is obtained without significant
parasitic current effects.

This paper is organized as follows: in Section II, the general
background required to perform parameter extraction of a
nonlinear response is presented. This general model has already
been disclosed, and was adapted to practical uses under
restrictive assumptions [10]. In Section III, we show how this
scheme can be used for the characterization of plane-capacitance
and clamped-clamped MEMS resonators. Section IV illustrates
parameter extraction on different synthetic (i.e. simulated) data
sets corresponding to the presented models. Finally, Section V
validates the method with experimental measurements.

II. DYNAMIC BEHAVIOR OF MEMS RESONATORS

MEMS resonators exhibit a large variety of nonlinearities,
from hardening to softening effects [11]. For instance, the
behavior of a resonator under sine-wave actuation may be
described by:
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where x is the normalized displacement of the resonator, @ its
natural frequency, Q its Q-factor and F® and G® normalized
forces depending on a vector 0 of parameters. For the sake of
simplicity, we will assume that the static displacement of the
resonator can be neglected. The equations may be adapted to
take into account this static displacement. Calculations are
tedious but straightforward. Then, assuming that £® and G® only
exhibit static memory-less nonlinearities and x(f)=Asinw?
(where 0<A4<1), F®(x(#)) and G®(x(£)) may be expressed:
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Equation (1) may be analyzed with the method of harmonic
balance. Considering (2), this method yields:
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Finally:
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Equation (4) models the general case. Next, we will
cast (4) into formulations suited to various types of devices.
III.  APPLICATION TO MEMS RESONATORS

In this section, we derive from (4) several formulations
adapted to specific MEMS applications. Without loss of
generality, we will assume that the oscillation of the resonator
gives rise to an output signal of amplitude V'=g4 where g is an
a priori unknown gain.

A. MEMS resonator subject to a cubic nonlinear force

Assuming a cubic nonlinearity with cubic stiffness y and a
linear force f, the equation of motion (1) becomes:
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Finally, 7 may be written:
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This expression is suitable for the characterization of MEMS
resonator via optical measurements where no electrostatic force
is applied. However, it requires the knowledge of the actuation
force for the gain g since f, g, and y may not be independently
identified in (5).

When the resonator is actuated via an AC voltage, more
complex expressions must be considered. In the following
examples, we will focus on capacitive MEMS resonators.

B. Electrostatic softening of a capacitive MEMS under the
plane-capacitance approximation
In small-displacement nonlinear regimes, the capacitance of
the MEMS resonator may sometimes be approximated by a
time-varying plane capacitance. Under this approximation, for a
one-sided capacitive MEMS, the equation of motion becomes:
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where &,=nwo%, Vo=VudVs<<l where V. is the actuation
voltage, V5 the bias voltage, n=eSV,*(2 wo’G’m), S the surface
of the plane electrodes at rest, G the gap between the two
electrodes, m the mass of the resonator and ¢ the permittivity of
the material between the two electrodes.

In this case, (4) may be written:
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where s2(V)=(1-(V/g))"2 and d=(V)= (1-s5(V))+V2(s2(V)-2)¥/ .

We will first focus on this model since it yields a first
estimate of the parameters when the exact shape of the resonant
mode is questionable. On the other hand, when this shape is
well known, a more precise formula can be adopted, as
illustrated on a clamped-clamped resonator in Subsection I11.C.

C. Electrostatic softening of a clamped-clamped beam
resonator

1) General expression
As the oscillation amplitude grows, a more realistic model
than the plane-capacitance approximation must be considered.
For instance, in the case of a clamped-clamped one-sided
capacitive resonator, assuming Vo=V../Vy<<l, the dynamic
behavior of the resonator is described by:
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with
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where E.~nwo*ly/I;, 1/70.523, 1;=0.397, k=0.014 [12] and 1 is
defined in equation (6).



For the sake of simplicity, we will assume k=0 in the following
equations. Finally,
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where K (resp. E) stands for the complete elliptic integral of the
first (resp. second) kind, with argument 2 V7/(g+V).

We will work with this model since it is the best suited to our
particular application.

2) Simplified expression
Taylor-series expansions of the electrostatic force are often
reported in the literature [13,14] since they yield simpler
formulations than the exact expression of the electrostatic force.
For instance, after a third-order expression of (8), / is equal to:
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Even though this model is only valid for low-amplitude

oscillations, it will be fitted to experimental results and
compared to (7) and (9) in Section V.

IV. SIMULATIONS

The aim of this section is to explain the fitting procedure and
illustrate its accuracy on simulated data. We illustrate our
method on resonators described by (7) and (9).

A. Formulation of the characterization problem

Let us now consider a set of N measurements (Vo) with
k € [1;N], obtained by sweeping ® at a constant actuation
amplitude. Our aim is to identify, with this data, the values of
parameters wo, Q and 0 that characterize the resonator. A general
characterization method consists in minimizing:

N
H(g,0,0,0) = Y [h(V;, 0, 8,09, 0,0) (11)

k=1

where £ is defined by (4). We fit a 4-parameter nonlinear
frequency response via the minimization of (11).

B. Characterization procedure

In the following sections, we assume that the experimenter
has a priori information on the values of g, @, O and 1 within
a range of +£100%. We run nonlinear least-squares fitting
procedures based on the trust-region algorithm, with a lower
bound (g,w0,0,1)=(max(¥),0,0,0) where max(¥) corresponds
to the maximal amplitude measured during the sweep. This last
condition ensures that 4<l. We apply the iterative procedure
depicted in Fig. 1 with random initial conditions on the four

parameters (g,m0,0,M).

Choose random initial values (g;,0,,0;,n;)

Local
minimum

found?

Nonlinear least-squares fit
(100 iterations and 1000
function evaluations max.)

Yes

Fig. 1 — Flow-chart of the recursive procedure.

In Subsection III.B. and III.C., this procedure is illustrated
on sets of simulated data corresponding to the plane-
capacitance model (7) and then the CC model (9). Each set of
40-point data stands for 40 experimental amplitude
measurements where the actuation frequency is swept down
around the peak response. We choose g=1, fi=wo/(21)=68kHz,
0=10000, V,=10mV, 25mV, 50mV and 70mV and V=60V
since these parameters are realistic for our MEMS resonators
[15]. We choose &..=E)(=1.2.10%s%) so that equivalent
actuation forces are applied in both cases.

C. Characterization of plane-capacitance MEMS resonator

The results of the described procedure for a plane-
capacitance resonator are reported in Fig. 2 where the
normalized frequency is defined as ®/wo. The crosses
correspond to simulated results (i.e. pseudo-experimental
results) and the continuous lines to the curves fitted to these
responses according to the procedure listed in Fig. 1.
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Fig. 2 — Typical frequency responses of a plane-capacitance
resonator for different values of Vi, Simulated data sets
(crosses) and corresponding nonlinear least-squares fits (solid
lines).

Fig. 2 highlights the precision of the curve fittings. We
checked that the four parameter (f5,O,m,g) are determined
without bias, to verify the accuracy of the presented method.

D. Characterization of a clamped-clamped resonator

Assuming a clamped-clamped resonator described by (9),
Fig. 3 reports the results of the fitting procedure with the
parameter and voltage values given in Subsection IV.A. The
parameter extraction and curve fitting for the CC model is as
accurate as for the parallel-plate model.

Clamped-clamped resonator

0.15" ‘ ‘ + ‘10mV 4
25mV
% + 50mV
-E 0.1r + 75mV | |
£
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0.9948 09949 0995 09951 09952 0.9953
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Fig. 3 — Typical frequency responses of a clamped-clamped
resonator for different values of V., Simulated data sets
(crosses) and corresponding nonlinear least-squares fits
(continuous lines).

One may notice that our method is unaffected by the
presence of hysteretic cycles. Moreover, it does not require
bifurcation point measurements. Few measurements are
required close to the peak amplitude and one single series of
sweep-down measurements is sufficient to determine the four
unknown parameters. In the next section, we will present our
experimental setup and apply our method on experimental data.

V. EXPERIMENTAL RESULTS

A. Experimental setup
The resonator characterized in this study was originally
developed by SEXTANT Avionics (currently THALES) [15].

It is industrially assembled by the fusion-bonding of three
etched silicon wafers and consists of a resonant beam resting on

arectangular diaphragm. During the manufacturing process, the
beam is encapsulated in vacuum to achieve a high mechanical
Q-factor (Q = 2x10* at V=15V and V,.~=10mV). The natural
frequency fy=wo/2 wof the device is close to 68kHz (wp=4.3x103
rad.s™).

In our setup, a bias voltage V=60V is applied to the
resonator. It is directly actuated in open-loop by a waveform
generator delivering voltage pulses of width 7,=1us and
amplitude V,=2.5V, repeated every T seconds, where T (=1/f) is
close to a multiple of 2n/wo (here 22n/an). In this setup,
Vaer=VpTpan/(111) with similar considerations as in [9]. This
actuation scheme combined with adequate signal processing
suppresses parasitic capacitance effects on the frequency
response as explained in [9].

B. Experimental results on the clamped-clamped resonator

The following results are obtained within one series of
measurements where the frequency is only swept down. Fig. 4
reports the experimental measurements and fitted curves after
the non-linear least-squares fitting procedure explained in
Section IV. In comparison to linear regimes presented in [9],
the SNR of the presented measurements are up to 10 times
better.

Knowing that the first resonant mode of the resonator is an
out-of-plane clamped-clamped mode [16], we choose the model
(9) for the curve fitting. We report in Fig. 4.a the fit obtained
with the plane capacitance model (7), the CC model (9) and the
TS model (10). As Fig.4.a. highlights, our method can be
adapted to the three models. The fitted curves highlight a good
agreement between the three models and experimental results
(see Fig. 3). According to the curve fitting, the maximal
oscillation amplitude achieved in this regime is close to 24% of
the gap distance.

In the next subsections, we compare the results of the three
models to estimate the robustness of our method against noise
and modeling errors.

C. Accuracy of the curve fitting

In order to evaluate the quality of the experimental curve
fitting, we compare the predicted upper bifurcation point with
the experimental jump point measured with the frequency
sweep-down. In a perfect scenario, the frequency of the upper
bifurcation point corresponds to the experimental jump
discontinuity, represented by the dashed dark line in Fig. 4.
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Fig. 4.a. — Experimental frequency response: Measurement
points (crosses) and corresponding nonlinear least-squares fits.
The dash-dotted dark line corresponds to (7), the solid dark line
to (9), and the dash-dotted grey line to (10). The experimental
bifurcation frequency is represented by the dashed dark line.
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Fig. 4.b. — Zoom on the upper bifurcation point.

The upper bifurcation point predicted by the clamped-
clamped model fits better than the one predicted by the Taylor
series and the plane-capacitance models, justifying the need for
the model described by (9). However, the three models predict
the position of the jump discontinuity quite well. The maximal
error on the upper bifurcation frequency is close to 0.01% (TS
model). In Subsection V.D., we will compare the parameters
extracted with the different models to the clamped-clamped
model (9).

D. Robustness against modeling errors
Considering that the clamped-clamped model (9) is the most

accurate, we report in Table I the relative error on the
parameters extracted with the different models.

Table I. Relative error on the estimated parameters with the
CC model as a reference (B=eS/(mG>)).
Model o 0 B g
TS 0.03% | 7% 2.8% -2.3%
Parallel-plate 0.1% | 1.9% 8.7% 21%

Table I illustrates the robustness of our method against
modeling errors. All the models yield a good estimation of the
natural frequency and the Q-factor in large-amplitude
oscillation regimes.

However, the parallel-plate model overestimates
B(=eS/(mG%) and g. These overestimations may be partially
explained by the influence of the static displacement of the
resonator. Our model may be adjusted to take into account this
static displacement in (4). Second-order corrections may also
be related to the nonlinear detection, which means that, instead
of V=gA, one should use V=g{(4)4A where the function {
depends on the considered model.

VI. CONCLUSION

In this paper, we developed a generic characterization
method and applied it to capacitive MEMS resonators. We
validated the method on simulated and experimental data
illustrating its accuracy in large amplitude regimes. The general
formulation of MEMS characterization problems was adapted
to several models corresponding to common approximations.
For all the presented models, this general formulation yields
unbiased parameter estimation without requiring precise peak
amplitude or bifurcation point measurements. Hence,
capacitive MEMS devices can be characterized in nonlinear
regime with one single series of measurements. In a near future,
nonlinear regimes may be exploited to study the amplitude-
dependence of quality factors of MEMS resonators subject to
nonlinear damping. Since our sensor exhibits parametric
resonance in non-linear regime [16], future work will also aim
at experimental characterization of parametric resonance in
open-loop regimes.
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