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AN ALTERNATIVE ESTIMATION PROCEDURE FOR PARTIAL LEAST SQUARES PATH MODELING

Since it s incept ion, part ial least squares pat h modeling has suff ered from t he absence of a single opt imizat ion crit erion for est imat ing comp onent weight s. A new est imat ion procedure is proposed t o address t his enduring issue. T he proposed procedure aims t o minimize a single least squares crit erion for est imat ing component weight s under b ot h Mode A and Mode B. An alt ernat ing least squares algorit hm is develop ed t o minimize t he crit erion. T his procedure provides quit e similar or ident ical solut ions t o t hose obt ained from exist ing Lohmöller's algorit hm in real and simulat ed dat a analyses. T he prop osed procedure can serve as an alt ernat ive t o t he exist ing one in t hat it is well-grounded in t heory as well as performs comparably in pract ice.

Int r od u ct ion

Part ial least squares pat h modeling (P LSP M) [START_REF] Wold | Est imat ion of principal comp onent s and relat ed met hods by it erat ive least squares[END_REF][START_REF] Wold | Nonlinear it erat ive part ial least squares (NIPALS) modeling: Some current development s[END_REF][START_REF] Wold | Soft modeling: T he basic design and some ext ensions[END_REF][START_REF] Lohmöller | Latent variable path modeling with partial least squares[END_REF]) is a long-st anding approach t o st ruct ural equat ion modeling. In paramet er est imat ion, t his approach adopt s a st rat egy of est imat ing a lat ent variable as a component or weight ed composit e of indicat ors. In t his regard, P LSP M can be considered a component -based approach t o st ruct ural equat ion modeling [START_REF] Tenenhaus | Comp onent -based st ruct ural equat ion modelling[END_REF]. It carries out two main st ages sequent ially t o est imat e paramet ers. T he first st age est imat es latent variables as component s, which requires t he est imat ion of component weight s. T his st age uses an iterative algorit hm t o est imat e t he component weight s. T he second st age est imat es remaining paramet ers in measurement and st ruct ural models (i.e., pat h coeffi cient s and/ or loadings) by means of ordinary linear regression. T hat is, pat h coeffi cient s are est imat ed by regressing each dependent lat ent variable on it s explanat ory lat ent variables, whereas loadings are est imat ed by regressing indicat ors on t heir corresponding lat ent variables. T he second st age is t hus non-it erat ive, which is based on t he lat ent variables obt ained from t he first st age. Accordingly, t he first st age is t he most crucial estimat ion procedure in P LSP M [START_REF] Hanafi | P LS pat h modeling: comput at ion of lat ent variables wit h t he est imat ion mode B[END_REF]. [START_REF] Lohmöller | Latent variable path modeling with partial least squares[END_REF] algorit hm is best known for t he first st age and implement ed int o most software programs for P LSP M, including LVP LS [START_REF] Lohmöller | LVPLS program manual[END_REF], P LS Graph [START_REF] Chin | PLS-Graph user's guide ver sion 3.0[END_REF], Smart P LS [START_REF] Ringle | SmartP LS 2.0 (beta)[END_REF], and XLSTAT (Addinsoft , 2009). As will be explained in more det ail in Sect ion 2, t his algorit hm repeat s two st eps, called int ernal and ext ernal est imat ion. In t he int ernal est imat ion st ep, a so-called inner est imat e or inner component is obt ained for each lat ent variable under diff erent schemes such as cent roid, fact orial, and pat h weight ing. In t he ext ernal est imat ion st ep, component weight s for each block of indicat ors are est imat ed in two diff erent ways called Mode A and Mode B.

It is not known which crit erion t he Lohmöller algorit hm aims t o opt imize by repeat ing t he two st eps (e.g., [START_REF] Coolen | Least squares pat h analysis wit h opt imal scaling[END_REF][START_REF] Wold | T he ML and P LS t echniques for modeling wit h lat ent variables: Hist orical and comparat ive Asp ect s[END_REF]. A few at t empt s have been made t o address t his issue. For example, [START_REF] Hanafi | P LS pat h modeling: comput at ion of lat ent variables wit h t he est imat ion mode B[END_REF] present ed associat ion-maximizat ion crit eria for t he cent roid and fact orial schemes under Mode B (also see [START_REF] Tenenhaus | Regularized generalized canonical correlat ion analysis[END_REF]. To our knowledge, nevert heless, no single opt imizat ion crit erion is yet available for t he algorit hm, which includes bot h Mode A and Mode B as special cases. T he lack of a single opt imizat ion crit erion makes it diffi cult t o evaluat e t he algorit hm [START_REF] Mcdonald | P at h analysis wit h comp osit e variables[END_REF].

In t his paper, we propose an alt ernat ive procedure for t he first est imat ion st age of P LSP M. T he proposed procedure aims t o minimize a single least squares crit erion for est imat ing component weight s under bot h Mode A and Mode B. An alt ernat ing least squares (ALS) algorit hm is used t o minimize t he crit erion, which repeat s t he same two st eps used in t he Lohmöller algorit hm. A ma jor diff erence is t hat t he ALS algorit hm updat es t he inner est imat es and component weight s opt imally by minimizing t he least squares crit erion. Consequent ly, t he proposed procedure is well-defined in a least squares sense.

T he paper is organized as follows. In Sect ion 2, we provide a brief descript ion of t he exist ing Lohmöller algorit hm. In Sect ion 3, we provide a det ailed account of t he proposed procedure. In Sect ion 4, we invest igat e t he performance of t he proposed and ext ant procedures t hrough t he analyses of real and simulat ed dat a. In t he final sect ion, we discuss implicat ions of t he proposed procedure.

E x ist in g P LSP M A lgor it h m

We briefly describe t he Lohmöller algorit hm. Refer t o [START_REF] Tenenhaus | P LS P at h Modeling[END_REF] for a fuller descript ion of t he algorit hm.

Let η j denot e an N by 1 vect or of t he j t h lat ent variable (j = 1, . . . , J ), where N is t he number of individuals. Let X j denot e an N by P j mat rix consist ing of a block of indicat ors associat ed wit h η j . Let w j denot e a P j by 1 vect or of component weight s assigned t o X j . In P LSP M, convent ionally, bot h indicat ors and lat ent variables are assumed t o be st andardized, such t hat t hey have zero means and unit variances (e.g., η j η j = N ). However, t hey are t o be normalized here, so t hat t heir lengt h is equal t o one (e.g., η j η j = 1). T his normalizat ion makes t he exposit ion of equat ions simpler while producing ident ical est imat es of weight s, pat h coeffi cient s, and loadings. T he individual scores of st andardized lat ent variables can always be obt ained by mult iplying t heir normalized scores by √ N .

T he Lohmöller algorit hm begins by choosing arbit rary init ial values for w j and comput ing η j = X j w j . T hen, it repeat s t he following two st eps t o est imat e w j and η j . St ep 1 (int ernal est imat ion): Updat e t he inner est imat e for η j . T he inner est imat e, denot ed here by f j , is a weighed composit e of t he lat ent variables connect ed t o η j in a given st ruct ural model. Such connect ed lat ent variables cont ain t hose aff ect ing η j as well as t hose being aff ect ed by η j . The inner estimate takes the general form as follows.

f j = Q j q= 1 e j q η q , (1) 
where e j q is a scalar value, called t he inner weight , which is assigned t o each of t he Q j lat ent variables (η q 's) t hat are connect ed t o η j . As shown in (1), updat ing t he inner est imat e amount s t o updat ing it s inner weight s, given lat ent variables. T hree diff erent ways, so-called schemes, are available for t he calculat ion of t he inner weight s: cent roid [START_REF] Wold | Soft modeling: T he basic design and some ext ensions[END_REF], fact orial [START_REF] Lohmöller | Latent variable path modeling with partial least squares[END_REF], and pat h weight ing. In t he cent roid scheme, e j q 's are t he signs of t he correlat ions between η q 's and η j . In t he fact orial scheme, e j q 's are t he correlat ions between η q 's and η j . In t he pat h weight ing scheme, e j q 's are t he regression coeffi cient s of η j on η q 's if η j is a dependent variable, whereas t hey are t he correlat ions between η q 's and η j if η j is an explanat ory variable. T he pat h weight ing scheme is recommended over t he ot her schemes because it t akes int o account bot h direct ions and magnit udes of t he relat ionships between lat ent variables [START_REF] Esposit O Vinzi | P LS pat h modeling: from foundat ions t o recent development s and op en issues for model assessment and improvement[END_REF].

Figure 1 displays a prot otype, st ruct ural model t o illust rat e t he first st ep. T his model consist s of four lat ent variables (J = 4). For t he prot otype model, t he inner est imat e for each of t he four lat ent variables is given as f 1 = e 13 η 3 f 2 = e 23 η 3 f 3 = e 31 η 1 + e 32 η 2 + e 34 η 4 f 4 = e 43 η 3

(2)

As explained above, t he inner weight s for t hese inner est imat es are calculat ed based on which scheme is chosen. For example, if t he pat h weight ing scheme is adopt ed, e 31 and e 32 are t he regression coeffi cient s of η 3 on η 1 and η 2 , because η 1 and η 2 are explanat ory variables for η 3 , whereas e 34 are t he correlat ion between η 3 and η 4 , because η 3 is an explanat ory variable for η 4 . All t he ot her inner weight est imat es are simply correlat ions between two connect ed lat ent variables, because all lat ent variables are normalized and t he regression coeffi cient of one lat ent variable on t he ot her is equivalent t o t he correlat ion between t hem. St ep 2 (ext ernal est imat ion): Updat e w j . T here are two ways of est imat ing component weight s on t he basis of t he nat ure of t he measurement model: Mode A and Mode B. Mode A is known t o be more suit able for reflect ive indicat ors, whereas Mode B is for format ive indicat ors (e.g., [START_REF] Tenenhaus | P LS P at h Modeling[END_REF]. Specifically, under Mode A, w j is updat ed by regressing X j on f j , as follows.

w j = X j f j (f j f j ) -1 .
(3) Under Mode B, w j is updat ed by regressing f j on X j , as follows.

w j = (X j X j ) -1 X j f j . (4) 
Subsequent ly, η j is updat ed by η j = X j w j , and normalized such t hat η j η j = w j X j X j w j = 1. T his normalizat ion can be done by mult iplying w j by (w j X j X j w j ) -1/ 2 , indicat ing t hat t he eff ect of (f j f j ) -1 in (3) will be cancelled out . Consequent ly, under Mode A, w j can be updat ed simply by w j = X j f j .

(5)

T he above st eps are repeat ed unt il no subst ant ial diff erences occur between t he previous and current weight est imat es for all J blocks of indicat ors. A summary of t his algorit hm is provided in t he Appendix.

As st at ed earlier, it is unknown which opt imizat ion crit erion t he Lohmöller algorit hm seeks t o maximize or minimize under Mode A and Mode B. In t he next sect ion, we propose a single least squares crit erion t hat is t o be consist ent ly minimized for est imat ing component weight s under bot h modes.

T h e P r op osed E st im a t ion P r oced u r e for P LSP M

Let H = [η 1 , . . . , η J ] denot e an N by J matrix consisting of all J lat ent variables. Let ε j denot e a J by 1 vect or consist ing of Q j inner weight s for t he Q j lat ent variables connect ed t o η j , and of J -Q j zeros for t he remaining unconnect ed lat ent variables. T hen, let f j = H ε j denot e an N by 1 vect or of t he inner est imat e for η j . For example, in t he prot otype model depicted in Figure 1 e 32 , 0, e 34 ] , andε 4 = [0, 0, e 43 , 0] .

, H = [η 1 , η 2 , η 3 , η 4 ], ε 1 = [0, 0, e 13 , 0] , ε 2 = [0, 0, e 23 , 0] , ε 3 = [e 31 ,
We propose a least squares crit erion for est imat ing all weight s under Mode A, as follows.

Minimize

φ A = J j = 1 SS(X j -f j w j ), (6) 
sub ject t o η j η j = 1, where SS(M ) = trace(M M ) for any mat rix M . T his crit erion appears similar t o a blockwise join loss funct ion for principal component analysis (Gifi, 1990, p. 152), where a vect or of ob ject scores is replaced by t he inner est imat e. We propose a least squares crit erion for est imat ing all weight s under Mode B, as follows.

Minimize

φ B = J j = 1 SS(f j -X j w j ), (7) 
sub ject t o η j η j = 1. Crit erion (7) may be viewed as a blockwise meet loss version (Gifi, 1990, p. 167) of t he covariance-maximizat ion crit erion for regularized generalized canonical correlat ion analysis [START_REF] Tenenhaus | Regularized generalized canonical correlat ion analysis[END_REF]. Let α j denot e a binary value t hat indicat es which mode is used for updat ing t he component weight s for t he j t h block of indicat ors. T hat is, α j = 1 if Mode A is used, and α j = 0 if Mode B is used. We t hen develop a single opt imizat ion crit erion for t he P LSP M algorit hm by combining ( 6) and ( 7), as follows.

Minimize φ = J j = 1 α j SS(X j -f j w j ) + J j = 1 (1 -α j )SS(f j -X j w j ), (8) 
sub ject t o η j η j = 1. T his crit erion subsumes ( 6) and ( 7) as special cases by set t ing all α j 's t o one or zero, respect ively. Moreover, it can be used for est imat ing t he weight s for each block of indicat ors under eit her Mode A or Mode B by set t ing t he corresponding α j t o one or zero, respect ively.

We develop an ALS algorit hm t o minimize (8). T his algorit hm begins by assigning arbit rary init ial values t o w j and obt aining η j = X j w j . T hen, it alt ernat es t he following two st eps. St ep 1 (int ernal est imat ion): Updat e f j for fixed w j . T his st ep reduces t o updat ing t he inner weight s in ε j , given lat ent variables. It is equivalent t o minimizing

φ j = α j SS(X j -H ε j w j ) + (1 -α j )SS(H ε j -η j ). ( 9 
)
Let e j denot e a Q j by 1 vect or consist ing of non-zero inner weight s only. Let Γ j denot e an N by Q j mat rix formed by eliminat ing t he columns of H corresponding t o any zero element s in ε j . T hen, minimizing (9) is equivalent t o minimizing

φ j = α j SS(X j -Γ j e j w j ) + (1 -α j )SS(Γ j e j -η j ). ( 10 
)
By solving 1 2 ∂φ j ∂e j = 0, the least squares estimate of e j is obt ained as

e j = α j w j w j Γ j Γ j + (1 -α j )Γ j Γ j -1 Γ j η j . (11) 
T hen, f j is updat ed by f j = H ε j , where ε j is const ruct ed from t he est imat e of e j . St ep 2 (ext ernal est imat ion): Updat e w j for fixed f j . T his is equivalent t o minimizing

φ j = α j SS(X j -f j w j ) + (1 -α j )SS(f j -X j w j ). ( 12 
)
Not e t hat in (12), f j does not involve w j because η j is not connect ed wit h it self.

By solving 1 2 ∂φ j ∂w j = 0, the least squares estimate of w j is obt ained as

w j = α j f j f j I + (1 -α j )X j X j -1 X j f j , (13) 
where I is an ident ity mat rix of size P j . Subsequent ly, η j is updat ed by η j = X j w j , and normalized. We repeat t he two st eps unt il t he diff erence in t he values of (8) between t he previous and current it erat ions decreases below a pre-det ermined t hreshold (e.g., .00001). A summary of t he ALS algorit hm is also present ed in t he Appendix.

A few remarks concerning t he ALS algorit hm are in order. First , it is easily seen t hat if Mode A is used or equivalent ly α j = 1, (13) reduces t o (3) and ( 5), whereas if Mode B is used or α j = 0, (13) reduces t o (4). T his indicat es t hat t he algorit hm deals wit h Mode A and Mode B as special cases. Second, in t he first step, the estimat es of t he inner weight s are obt ained in such a way t hat t hey minimize a least squares crit erion, condit ionally upon t he est imat es of component weight s. T hus, we may call t he st ep t he "least squares scheme." On t he ot her hand, it is uncert ain which crit erion t he exist ing schemes seek t o opt imize except for a few special cases [START_REF] Hanafi | P LS pat h modeling: comput at ion of lat ent variables wit h t he est imat ion mode B[END_REF][START_REF] Tenenhaus | Regularized generalized canonical correlat ion analysis[END_REF]. T hird, t he ALS algorit hm defines convergence as t he decrease in t he value of t he opt imizat ion crit erion (8) beyond a cert ain t hreshold, whereas t he Lohmöller algorit hm defines convergence as a sort of equilibrium, i.e., t he point at which no subst ant ial diff erence occurs between t he previous and current est imat es of weight s, because it does not involve an opt imizat ion crit erion. Last ly, at least in t heory, a t hird type of mode can be considered by t aking any value of α j between 0 and 1. For example, by specifying α j = .1, t he second t erm of t he crit erion can have a great er influence on t he est imat ion of component weight s. However, in pract ice, it is not yet clear what such types of mode connot e and whet her using t hem is sensible subst ant ively.

E m p ir ica l C om p ar ison s

In t his sect ion, we compare t he proposed procedure t o t he ext ant procedure based on t he Lohmöller algorit hm, using real and simulat ed dat a.

Real Data Analysis

We applied t he proposed and ext ant procedures t o fit t he American cust omer sat isfact ion index (ACSI) model [START_REF] Fornell | T he American cust omer sat isfact ion index: Nat ure, purp ose, and findings[END_REF] t o a consumer-level dat aset collect ed in 2002. T his dat aset consist s of t he responses of 774 consumers t o t he service unit s (e.g., police, garbage pick-up services, et c.) wit hin t he US sect or of public administ ration.

T he ACSI model specifies t he relat ionships among ant ecedent and consequent lat ent variables of cust omer sat isfact ion. As depict ed in Figure 2, t he ACSI model includes fourt een indicat ors: x 1 = cust omer expect at ions about overall quality, x 2 = customer expect at ions about reliability, x 3 = cust omer expect at ions about cust omizat ion, x 4 = overall quality, x 5 = reliability, x 6 = cust omizat ion, x 7 = price given quality, x 8 = quality given price, x 9 = overall cust omer sat isfact ion, x 10 = confirmat ion of expect at ions, x 11 = dist ance t o ideal product or service, x 12 = formal or informal complaint behavior, x 13 = repurchase int ent ion, and x 14 = price t olerance. T he measures and scales of t hese indicat ors are available in [START_REF] Fornell | T he American cust omer sat isfact ion index: Nat ure, purp ose, and findings[END_REF]. T he ACSI model also involves six lat ent variables t hat underlie t he fourt een indicat ors, as follows: CE = cust omer expect at ions, P Q = perceived quality, P V = perceived value, CS = cust omer sat isfact ion, CC = cust omer complaint s, and CL = cust omer loyalty. x 8
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F igure 2: T he American cust omer sat isfact ion index model. No residual t erms are displayed.

We used Smart P LS [START_REF] Ringle | SmartP LS 2.0 (beta)[END_REF] t o implement t he ext ant procedure in combinat ion wit h t he pat h weight ing scheme. As displayed in Figure 2, t he ACSI model assumes t hat all indicat ors are reflect ive. T his suggest s t hat Mode A should be more appropriat e for est imat ing weight s.

Tables 1 and2 present t he est imat es of weight s, loadings, and pat h coeffi cient s obt ained from t he proposed and ext ant procedures under Mode A. As shown in t he t ables, bot h procedures result ed in quit e similar paramet er est imat es, leading t o t he same int erpret at ions.

Simulated Data Analysis

We furt her compared t he performance of t he proposed and ext ant procedures based on simulat ed dat a. In part icular, we focused on how similarly t he proposed and ext ant procedures would perform under two diff erent models. 

Simulation 1

Figure 3 displays t he st ruct ural equat ion model considered in t he first simulat ion st udy, along wit h it s unst andardized and st andardized paramet er values. In t his model, t hree lat ent variables were specified, each of which underlay t hree indicat ors. Individual-level mult ivariat e normal dat a were drawn from N (0, Σ ), where Σ is t he implied populat ion covariance mat rix derived based on t he unst andardized paramet er values in t he framework of covariance st ruct ure analysis (e.g., J öreskog, 1970). T his indicat es t hat t he lat ent variables in t he model were assumed t o be equivalent t o common fact ors.

We considered t hree diff erent levels of sample size (N = 25, 100, 400). Five hundred samples were generat ed at each sample size. We used t he same init ial values per sample for t he proposed and ext ant procedures. In t he model, all indicat ors were reflect ive, so t hat we used Mode A for bot h procedures. T he pat h weight ing scheme was employed for t he ext ant procedure. P LSP M provides st andardized paramet er est imat es. Table 3 present s t he bias, st andard deviat ion, and mean square error of each st andardized paramet er est imat e obt ained from t he two procedures. As shown in t he t able, t he paramet er est imat es of bot h procedures shared t he same propert ies. In general, t heir loading est imat es were posit ively biased, whereas t heir pat h coeffi cient s were negat ively biased. As st at ed above, in t his st udy, t he simulat ed dat a were generat ed under t he assumpt ion t hat a lat ent variable was equivalent t o a common fact or. Under t his assumpt ion, P LSP M is known t o yield biased est imat es (e.g., Dijkst ra, 2010) because it regards lat ent variables as component s rat her t han common fact ors. T he st andard deviat ions of t he loading and pat h coeffi cient est imat es decreased wit h sample size. T he mean square errors of t hese est imat es became closer t o zero wit h sample size. Not ably, all t he paramet er est imat es obt ained from bot h procedures exhibit ed quit e similar biases, st andard deviat ions, and mean square errors across all sample sizes. T his indicat es t hat t he proposed procedure result ed in virt ually ident ical paramet er est imat es as t hose from t he ext ant one.

As discussed in Sect ion 3, t echnically, t he proposed procedure allows a compromise between Mode A and Mode B by t aking t he value of α j between 0 and 1. As a reviewer suggest ed, we have invest igat ed t he eff ect of adopt ing such a t hird type of mode on paramet er est imat ion. Specifically, we applied t he proposed procedure under α j = .5, so t hat Mode A and Mode B cont ribut ed simult aneously t o obt aining est imat es. As shown in Table 3, t his case t ended t o produce less biased est imat es part icularly in small samples, whereas it t ended t o yield larger st andard deviat ions of t he est imat es. Consequent ly, it s est imat es t ended t o show larger mean square errors t han t hose obt ained under Mode A. T hus, at least in t his st udy, adopt ing α j = .5 was of lit t le benefit over using Mode A in est imat ing paramet ers. Alt hough permit t ing a compromise between t he two convent ional modes is a t echnically novel feat ure, as st at ed earlier, it is unclear what such a compromise indicat es subst ant ively, when it can be useful, and how the value of α j can be chosen. T he first simulat ion st udy was useful t o evaluat e how similarly t he proposed and ext ant procedures performed. Nonet heless, t his st udy may be somewhat t oo simple in t hat it involved only t hree blocks of reflect ive indicat ors and assumed t he same correlat ions among each block of indicat ors. T hus, we conduct ed anot her simulat ion st udy, which considered bot h format ive and reflect ive indict ors as well as diff erent correlat ions among each block of indicat ors. Specifically, we used t he model specified in [START_REF] Ringle | On t he use of format ive measurement sp ecificat ions in st ruct ural equat ion modeling: A Mont e Carlo simulat ion st udy t o compare covariance-based and part ial least squares model est imat ion met hodologies[END_REF] for t he second simulat ion st udy. Figure 4 displays t he model given in [START_REF] Ringle | On t he use of format ive measurement sp ecificat ions in st ruct ural equat ion modeling: A Mont e Carlo simulat ion st udy t o compare covariance-based and part ial least squares model est imat ion met hodologies[END_REF], along wit h it s paramet er values. [START_REF] Ringle | On t he use of format ive measurement sp ecificat ions in st ruct ural equat ion modeling: A Mont e Carlo simulat ion st udy t o compare covariance-based and part ial least squares model est imat ion met hodologies[END_REF] did not provide populat ion residual variances. Inst ead, t hey provided t he populat ion correlat ion mat rix of indicat ors, derived based on t he specified model (see Table 5 in [START_REF] Ringle | On t he use of format ive measurement sp ecificat ions in st ruct ural equat ion modeling: A Mont e Carlo simulat ion st udy t o compare covariance-based and part ial least squares model est imat ion met hodologies[END_REF]. We generat ed mult ivariat e normal dat a, using t he correlat ion mat rix.
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. As in t he first simulat ion st udy, we considered t hree diff erent levels of sample size (N = 25, 100, 400). Five hundred samples were generat ed at each sample size. We used t he same init ial values per sample for t he proposed and ext ant procedures. Mode A was applied for est imat ing t he weight s for reflect ive indicat ors, whereas Mode B was used for est imat ing t hose for format ive indicat ors. T he pat h weight ing scheme was employed for t he ext ant procedure.

Table 4 provides t he bias, st andard deviat ion, and mean square error of each st andardized paramet er est imat e obt ained from t he two procedures. T he paramet er est imat es of bot h procedures showed t he same behaviors, alt hough it was somewhat diffi cult t o charact erize t hem clearly. For example, some weight est imat es for format ive indicat ors were negat ively biased, ot her est imat es were posit ively biased, and t he ot hers were biased in diff erent direct ions over sample size. Conversely, all loading est imat es were posit ively biased regardless of sample size. T wo est imat es of pat h coeffi cient s were negat ively biased, whereas one est imat e was posit ively biased, across sample sizes. It was diffi cult t o explain where t hese biases came from because [START_REF] Ringle | On t he use of format ive measurement sp ecificat ions in st ruct ural equat ion modeling: A Mont e Carlo simulat ion st udy t o compare covariance-based and part ial least squares model est imat ion met hodologies[END_REF] did not discuss explicit ly whet her t heir populat ion correlat ion mat rix was generat ed based on t he assumpt ion t hat t he lat ent variables were equivalent t o common fact ors as in t he first st udy. T he st andard deviat ions and mean square errors of all paramet er est imat es decreased wit h sample size. Import ant ly, all t he paramet er est imat es obt ained from bot h procedures involved quit e similar biases, st andard 

C on clu sion

We proposed an alt ernat ive est imat ion procedure for est imat ing component weight s in P LSP M. From t echnical perspect ives, t his procedure has several advant ages over t he ext ant one. First , it adopt s a single opt imizat ion crit erion t o est imat e t he weight s under bot h Mode A and Mode B. T hus, t his addresses t he enduring issue of lack of a single opt imizat ion crit erion in P LSP M. Second, t he proposed procedure applies an ALS algorit hm t o minimize t he single crit erion. T his algorit hm has been proven t o converge [START_REF] De Leeuw | Addit ive st ruct ure in qualit at ive dat a: An alt ernat ing least squares met hod wit h opt imal scaling feat ures[END_REF]. In cont rast , convergence of t he ext ant algorit hm has not been fully proven except for t he cases of dealing wit h only one or two lat ent variables [START_REF] Hanafi | P LS pat h modeling: comput at ion of lat ent variables wit h t he est imat ion mode B[END_REF][START_REF] Henseler | On t he convergence of t he part ial least squares pat h modeling algorit hm[END_REF]. T hird, t he proposed procedure est imat es t he inner weight s opt imally in a least squares sense. On t he ot her hand, in t he ext ant procedure, it is unclear how t he exist ing schemes were derived and in what sense t heir est imat es of t he inner weight s are opt imal. Last ly, t he least squares criterion (8) can serve as a vehicle for furt hering t echnical ext ensions of P LSP M. For example, mult icollinearity among a block of indicat ors can have a negat ive influence on t he est imat ion of component weight s under Mode B [START_REF] Esposit O Vinzi | P LS pat h modeling: from foundat ions t o recent development s and op en issues for model assessment and improvement[END_REF][START_REF] Tenenhaus | Regularized generalized canonical correlat ion analysis[END_REF]. To address t his issue, we may int egrat e a ridge penalty int o (8), as follows. φ = J j = 1 α j SS(X jf j w j ) + J J = 1

(1 -α j ) (SS(f j -X j w j ) + λ j SS(w j )), ( 14) where λ j is a block wise ridge paramet er. Moreover, (8) can be minimized in combinat ion wit h opt imal scaling (e.g., [START_REF] Gifi | Nonlinear multivariate analysis[END_REF][START_REF] Young | Quant it at ive analysis of qualit at ive dat a[END_REF]. T his nonlinear ext ension can be of use in dealing wit h discret e indicat ors. Besides t hese t echnical implicat ions, t he proposed procedure was found t o provide quite comparable paramet er est imat es t o t hose obt ained from t he ext ant one in a real Appendix: A summary of t he Lohmöller and ALS algorit hms.

T he Lohmöller algorit hm T he ALS algorit hm S t e p 0 ( I n it ia liza t io n ) For j = 1, . . . , J choose t he j t h arbit rary weight vect or (w 0 j ) η 0 j = X j w 0 j X j w 0 j E nd For s = 0, 1, 2, . . . . (unt il convergence)

St ep 1 ( I n t er n a l E st im a t ion ) For j = 1, . . . , J

f s j = Q j
q= 1 e j q η s q , where e j q is calculat ed as follows: For t he cent roid scheme, e j q = sign(corr(η s j , η s q )) For t he fact orial schem e, e j q = corr(η s j , η s q ) For t he pat h weight ing scheme, e j q = corr(η s j , η s q ), if η j aff ect s η q ω j q , ot herwise where ω j q is t he qt h element of t he regression coeffi cient s of η j on ηq 's. End St ep 2 ( E x t er n a l E st im a t ion ) For j = 1 . . . J w s+ 1 j = X j f s j (f s j f s j ) -1 , if Mode A w s+ 1 j = (X j X j ) -1 X j f s j , if Mode B η s+ 1 j = X j w s + 1 j X j w s + 1 j End Check if

J j = 1 P j p= 1
(w s j p -w s+ 1 j p ) < .00001. If not , go back t o St ep 1. E nd S t e p 0 ( I n it ia liza t io n ) For j = 1, . . . , J choose t he j t h arbit rary weight vect or (w 0 j ) η 0 j = X j w 0 j X j w 0 j E nd For s = 0, 1, 2, . . . . (unt il convergence)

St ep 1 ( I n t er n a l E st im a t ion ) For j = 1, . . . , J

α j = 1, if Mode A α j = 0, if Mode B f s j = Q j
q= 1 e j q η s q , where e j q is t he qt h elem ent of e s j = (α j w s j w s j Γ s j Γ s j + (1-α j )Γ s j Γ s j ) -1 Γ s j η s j

End

St ep 2 ( E x t er n a l E st im a t ion ) For j = 1 . . . J α j = 1, if Mode A α j = 0, if Mode B w s+ 1 j = (α j f s j f s j I + (1 -α j )X j X j ) -1 X j f s j , η s+ 1 j = X j w s + 1 j X j w 
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Table 1 :

 1 T he est imat es of weight s and loadings of t he ACSI model obt ained from t he proposed and ext ant proceduresfor P LSP M.

	Lat ent	Indicat or	Weight est imat es P rop osed Ext ant	Loading est imat es P rop osed Ext ant
	CE	x 1	.4447	.4523	.8651	.8679
		x2	.4375	.4310	.8772	.8750
		x3	.3219	.3207	.7189	.7179
	P Q	x4	.4042	.4048	.9336	.9328
		x 5 x 6	.4114 .2986	.4034 .3072	.9325 .8004	.9303 .8045
	P V	x 7	.4251	.4229	.8024	.8012
		x8	.7060	.7080	.9332	.9339
	CS	x9	.3851	.3855	.9388	.9387
		x10	.3480	.3414	.9232	.9216
		x 11	.3487	.3550	.9097	.9113
	CC	x 12	1.000	1.000	1.000	1.000
	CL	x 13 x 14	.5827 .4812	.5827 .4813	.9507 .9268	.9507 .9268

Table 2 :

 2 T he est imat es of pat h coeffi cient s of t he ACSI model obt ained from t he prop osed and ext ant procedures for P LSP M.

		P rop osed	Ext ant
	CE → P Q	.5822	.5819
	CE → P V	.1220	.1230
	CE → CS	.0330	.0353
	P Q → P V	.6469	.6466
	P Q → CS	.6707	.6668
	P V → CS	.2656	.2676
	CS → CC	-.4000	-.4002
	CS → CL	.5824	.5831
	CC → CL	-.0976	-.0972

  T he st ruct ural equat ion model sp ecified for t he first simulat ion st udy. St andardized paramet ers are given in parent heses.

	.51	.51	.51	.51	.51		.51	.51	.51	.51
	x 1	x 2	x 3	x 4	x 5		x 6	x 7	x 8	x 9
	1 (.7)	1 (.7)	1 (.7)	1 (.7)	1 (.7)	(.7)	1	1 (.7)	1 (.7)	1 (.7)
		1	.6 (.6)		2		.6 (.6)		3	
	.49									
				.3136				.3136		
	F igure 3:									

Table 3 :

 3 T he bias, st andard deviat ion (SD), and mean square error (MSE) of each paramet er est imat e obt ained from t he proposed and ext ant procedures for P LSP M in t he first simulat ion st udy. P P 1 : P rop osed procedure under αj = 1; PP 2 : P rop osed procedure under α j = .5; EP : Ext ant procedure.

	P aramet ers N	P P 1	Bias P P 2	EP	P P 1	SD P P 2	EP	P P 1	MSE P P 2	EP
	Loading 1	25	.0842	.0052	.0842	.1590	.2900	.1633	.0324	.0841	.0338
	(.7)	100	.1067	.0957	.1067	.0537	.0970	.0536	.0143	.0186	.0143
		400	.1120	.1092	.1120	.0250	.0448	.0250	.0132	.0139	.0132
	Loading2	25	.0977	-.0110	.0973	.1242	.2959	.1241	.0250	.0877	.0249
	(.7)	100	.1064	.0930	.1064	.0519	.0994	.0518	.0140	.0185	.0140
		400	.1103	.1078	.1103	.0256	.0467	.0256	.0128	.0138	.0128
	Loading3	25	.0766	-.0021	.0775	.1573	.3137	.1543	.0306	.0984	.0298
	(.7)	100	.1106	.0869	.1106	.0490	.1073	.0489	.0146	.0191	.0146
		400	.1121	.1068	.1121	.0236	.0468	.0236	.0131	.0136	.0131
	Loading4	25	.1016	.0672	.1023	.1164	.1813	.1139	.0239	.0374	.0234
	(.7)	100	.1079	.1013	.1079	.0442	.0762	.0440	.0136	.0161	.0136
		400	.1110	.1098	.1110	.0210	.0326	.0209	.0128	.0131	.0128
	Loading5	25	.1042	.0675	.1039	.1136	.1774	.1139	.0237	.0360	.0238
	(.7)	100	.1092	.1112	.1092	.0461	.0702	.0460	.0141	.0173	.0140
		400	.1121	.1113	.1121	.0215	.0315	.0214	.0130	.0134	.0130
	Loading6	25	.0992	.0617	.1006	.1098	.1993	.1039	.0219	.0435	.0209
	(.7)	100	.1077	.1001	.1077	.0464	.0757	.0465	.0138	.0158	.0138
		400	.1120	.1114	.1120	.0215	.0308	.0215	.0130	.0134	.0131
	Loading7	25	.0938	.0013	.0951	.1569	.2969	.1449	.0334	.0882	.0300
	(.7)	100	.1097	.0930	.1097	.0489	.1044	.0489	.0144	.0195	.0144
		400	.1097	.1117	.1097	.0229	.0453	.0229	.0126	.0145	.0126
	Loading8	25	.0757	-.0127	.0764	.1837	.2888	.1835	.0395	.0835	.0395
	(.7)	100	.1055	.0844	.1055	.0540	.0983	.0539	.0140	.0168	.0140
		400	.1114	.1048	.1114	.0242	.0453	.0242	.0130	.0130	.0130
	Loading9	25	.0605	-.0015	.0615	.2162	.2788	.2182	.0504	.0777	.0514
	(.7)	100	.1084	.0966	.1084	.0488	.1066	.0488	.0141	.0207	.0141
		400	.1125	.1068	.1125	.0224	.0464	.0224	.0132	.0135	.0132
	P at h 1	25	-.1024	-.0664	-.1021	.1655	.1854	.1635	.0379	.0388	.0372
	(.6)	100	-.1555	-.1382	-.1554	.0801	.0808	.0799	.0306	.0256	.0305
		400	-.1531	-.1451	-.1531	.0405	.0396	.0405	.0251	.0226	.0251
	P at h 2	25	-.1091	-.0703	-.1091	.1576	.1769	.1573	.0368	.0362	.0366
	(.6)	100	-.1461	-.1300	-.1461	.0812	.0762	.0810	.0279	.0227	.0279
		400	-.1500	-.1493	-.1500	.0396	.0401	.0396	.0241	.0239	.0241
	4.2.2 Simulation 2									

Table 4 :

 4 T he bias, st andard deviat ion (SD), and mean square error (MSE) of each paramet er est imat e obt ained from t he proposed and ext ant procedures for P LSP M in t he second simulat ion st udy.

	P aramet ers	N	Bias P rop osed	Ext ant	P rop osed	SD	Ext ant	MSE P rop osed	Ext ant
	Weight 1	25	-.1443	-.1442	.2812		.2811	.0999	.0998
	(.1)	100	-.1461	-.1461	.1206		.1206	.0359	.0359
		400	-.1577	-.1579	.0575		.0575	.0282	.0282
	Weight 2	25	-.0773	-.0771	.2355		.2356	.0614	.0615
	(.2)	100	-.0772	-.0770	.1149		.1149	.0192	.0191
		400	-.0655	-.0654	.0545		.0545	.0073	.0072
	Weight 3	25	-.1354	-.1356	.2630		.2631	.0875	.0876
	(.1)	100	-.1391	-.1393	.1148		.1148	.0325	.0326
		400	-.1338	-.1340	.0519		.0519	.0206	.0207
	Weight 4	25	.0298	.0297	.2252		.2252	.0516	.0516
	(.6)	100	.0614	.0615	.0763		.0763	.0096	.0096
		400	.0687	.0688	.0366		.0366	.0061	.0061
	Weight 5	25	.2674	.2675	.2026		.2026	.1125	.1126
	(.4)	100	.3090	.3089	.0724		.0724	.1007	.1007
		400	.3103	.3102	.0366		.0367	.0976	.0976
	Weight 6	25	.0294	.0299	.4651		.4649	.2172	.2171
	(.4)	100	.1421	.1426	.3178		.3176	.1212	.1212
		400	.2276	.2280	.1591		.1589	.0771	.0772
	Weight 7	25	-.1872	-.1867	.4839		.4835	.2691	.2686
	(.6)	100	.0410	.0410	.3089		.3087	.0971	.0970
		400	.1298	.1295	.1492		.1491	.0391	.0390
	Weight 8	25	.0705	.0701	.5018		.5017	.2568	.2566
	(.1)	100	-.0989	-.0991	.3496		.3494	.1320	.1319
		400	-.1255	-.1259	.2161		.2159	.0625	.0625
	Weight 9	25	-.2287	-.2288	.5146		.5149	.3171	.3175
	(.4)	100	-.1280	-.1281	.5045		.5046	.2709	.2710
		400	.1415	.1411	.4416		.4416	.2150	.2149
	Weight 10	25	-.1332	-.1333	.6262		.6261	.4099	.4098
	(.3)	100	-.1598	-.1597	.5498		.5498	.3278	.3278
		400	.0085	.0090	.4136		.4137	.1711	.1712
	Weight 11	25	-.1197	-.1194	.6373		.6371	.4204	.4202
	(.2)	100	-.1571	-.1567	.6042		.6039	.3897	.3893
		400	-.3426	-.3424	.4836		.4834	.3513	.3510
	Weight 12	25	-.1170	-.1169	.5816		.5814	.3520	.3517
	(.2)	100	-.1023	-.1022	.5153		.5152	.2760	.2759
		400	-.0963	-.0963	.4253		.4253	.1902	.1901
	Weight 13	25	-.3089	-.3088	.5303		.5302	.3767	.3765
	(.4)	100	-.3531	-.3531	.4463		.4462	.3238	.3238
		400	-.4782	-.4784	.3686		.3687	.3645	.3648
	Loading 1	25	.1596	.1599	.0177		.0174	.0258	.0259
	(.8)	100	.1623	.1623	.0074		.0074	.0264	.0264
		400	.1624	.1625	.0036		.0036	.0264	.0264
	Loading 2	25	.2347	.2346	.0265		.0268	.0558	.0558
	(.7)	100	.2364	.2367	.0137		.0136	.0561	.0562
		400	.2370	.2373	.0062		.0062	.0562	.0563

deviat ions, and mean square errors of all paramet er est imat es across all sample sizes, indicat ing t hat t he two procedures yielded almost ident ical paramet er est imat es.

  End Check if φ s -φ s+ 1 < .00001. If not , go back t o St ep 1. E nd

s + 1 j