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AN ALTERNATIVE ESTIMATION PROCEDURE FOR PARTIAL
LEAST SQUARES PATH MODELING

Heungsun Hwang*, Yoshio Takane**, and Arthur Tenenhaus***

Since its inception, partial least squares path modeling has suffered from the absence
of a single optimization criterion for estimating component weights. A new estimation
procedure is proposed to address this enduring issue. The proposed procedure aims
to minimize a single least squares criterion for estimating component weights under
both Mode A and Mode B. An alternating least squares algorithm is developed to
minimize the criterion. This procedure provides quite similar or identical solutions to
those obtained from existing Lohmbller’s algorithm in real and simulated data analy-
ses. The proposed procedure can serve as an alternative to the existing one in that it
is well-grounded in theory as well as performs comparably in practice.

1. Introduction

Partial least squares path modeling (PLSPM) (Wold, 1966, 1973, 1982; Lohmoller
1989) is a long-standing approach to structural equation modeling. In parameter
estimation, this approach adopts a strategy of estimating a latent variable as a com-
ponent or weighted composite of indicators. In this regard, PLSPM can be considered
a component-based approach to structural equation modeling (Tenenhaus, 2008). It
carries out two main stages sequentially to estimate parameters. The first stage es-
timates latent variables as components, which requires the estimation of component
weights. This stage uses an iterative algorithm to estimate the component weights.
The second stage estimates remaining parameters in measurement and structural
models (i.e., path coeffi cients and/ or loadings) by means of ordinary linear regression.
That is, path coeffi cients are estimated by regressing each dependent latent variable
on its explanatory latent variables, whereas loadings are estimated by regressing indi-
cators on their corresponding latent variables. The second stage is thus non-iterative,
which is based on the latent variables obtained from the first stage. Accordingly, the
first stage is the most crucial estimation procedure in PLSPM (Hanafi, 2007).

Lohmbller’s (1989) algorithm is best known for the first stage and implemented into
most software programs for PLSPM, including LVPLS (Lohmbller, 1984), PLS Graph
(Chin, 2001), SmartPLS (Ringle et al., 2005), and XLSTAT (Addinsoft, 2009). As
will be explained in more detail in Section 2, this algorithm repeats two steps, called
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internal and external estimation. In the internal estimation step, a so-called inner es-
timate or inner component is obtained for each latent variable under different schemes
such as centroid, factorial, and path weighting. In the external estimation step, com-
ponent weights for each block of indicators are estimated in two different ways called
Mode A and Mode B.

It is not known which criterion the Lohmbller algorithm aims to optimize by re-
peating the two steps (e.g., Coolen & de Leeuw, 1987; Joreskog & Wold, 1982). A few
attempts have been made to address this issue. For example, Hanafi (2007) presented
association-maximization criteria for the centroid and factorial schemes under Mode
B (also see Tenenhaus & Tenenhaus, 2011). To our knowledge, nevertheless, no single
optimization criterion is yet available for the algorithm, which includes both Mode
A and Mode B as special cases. The lack of a single optimization criterion makes it
diffi cult to evaluate the algorithm (McDonald, 1996).

In this paper, we propose an alternative procedure for the first estimation stage of
PLSPM. The proposed procedure aims to minimize a single least squares criterion for
estimating component weights under both Mode A and Mode B. An alternating least
squares (ALS) algorithm is used to minimize the criterion, which repeats the same
two steps used in the Lohmoller algorithm. A major difference is that the ALS algo-
rithm updates the inner estimates and component weights optimally by minimizing
the least squares criterion. Consequently, the proposed procedure is well-defined in a
least squares sense.

The paper is organized as follows. In Section 2, we provide a brief description of
the existing Lohmoller algorithm. In Section 3, we provide a detailed account of the
proposed procedure. In Section 4, we investigate the performance of the proposed
and extant procedures through the analyses of real and simulated data. In the final
section, we discuss implications of the proposed procedure.

2. Existing PLSPM Algorithm

We briefly describe the Lohmoller algorithm. Refer to Tenenhaus et al. (2005) for
a fuller description of the algorithm.

Let n; denote an N by 1 vector of the j th latent variable (j = 1,...,J), where N is
the number of individuals. Let X; denote an N by Pj matrix consisting of a block of
indicators associated with n;. Let w; denote a P; by I vector of component weights
assigned to X;j. In PLSPM, conventionally, both indicators and latent variables are
assumed to be standardized, such that they have zero means and unit variances (e.g.,
r]jh,- = N). However, they are to be normalized here, so that their length is equal to
one (e.g., r]jrr]j = 1). This normalization makes the exposition of equations simpler
while producing identical estimates of weights, path coeff cients, and loadings. The in-
dividual scores of standardiged latent variables can always be obtained by multiplying
their normalized scores by N.

The Lohmoller algorithm begins by choosing arbitrary initial values for w; and
computing N; = X;wj. Then, it repeats the following two steps to estimate w; and
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n;-
Step 1 (internal estimation): Update the inner estimate for n;. The inner estimate,
denoted here by fj, is a weighed composite of the latent variables connected to n; in
a given structural model. Such connected latent variables contain those affecting n;
as well as those being affected by n;. The inner estimate takes the general form as
follows.

(Q

fi= " &qa (D
g=1
where g4 is a scalar value, called the inner weight, which is assigned to each of the Q;
latent variables (ng’s) that are connected to nj. As shown in (1), updating the inner
estimate amounts to updating its inner weights, given latent variables. Three different
ways, so-called schemes, are available for the calculation of the inner weights: cen-
troid (Wold, 1982), factorial (Lohmoller, 1989), and path weighting. In the centroid
scheme, gq’s are the signs of the correlations between ng’s and n;. In the factorial
scheme, g ¢’s are the correlations between Ng’s and nj. In the path weighting scheme,
& ¢’s are the regression coeffi cients of Nj on Ng’s if Nj is a dependent variable, whereas
they are the correlations between ng’s and n; if n; is an explanatory variable. The
path weighting scheme is recommended over the other schemes because it takes into
account both directions and magnitudes of the relationships between latent variables
(Esposito Vinzi et al., 2010).
Figure 1 displays a prototype, structural model to illustrate the first step. This
model consists of four latent variables (J = 4). For the prototype model, the inner
estimate for each of the four latent variables is given as

f1 = e3ns

f2 = exsns )
f3 = e31N1 + €32N2 + €34N4

fs = €43N3

As explained above, the inner weights for these inner estimates are calculated based
on which scheme is chosen. For example, if the path weighting scheme is adopted,
e31 and e3p are the regression coeffi cients of N3 on N1 and nz, because n¢ and N
are explanatory variables for ns, whereas es4 are the correlation between N3 and ng,
because N3 is an explanatory variable for n4. All the other inner weight estimates are
simply correlations between two connected latent variables, because all latent vari-
ables are normalized and the regression coeffi cient of one latent variable on the other
is equivalent to the correlation between them.

Step 2 (external estimation): Update wj. There are two ways of estimating compo-
nent weights on the basis of the nature of the measurement model: Mode A and Mode
B. Mode A is known to be more suitable for reflective indicators, whereas Mode B
is for formative indicators (e.g., Tenenhaus et al., 2005). Specifically, under Mode A,
w; is updated by regressing X; on fj, as follows.

wj = X;f ()" 3)
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(D
)

Figure 1: A prototype structural model that involves four latent variables. No residual terms are
displayed.

Under Mode B, wj is updated by regressing f; on X, as follows.
wi = (XXX . (4)

Subsequently, n; is updated by nj = X;wj, and normalized such that njn; =
wj*XjLKij- = 1. This normalization can be done by multiplying w; by
(wj*XJ-LXjo)_”z, indicating that the effect of (fjf] )™1 in (3) will be cancelled out.
Consequently, under Mode A, wj can be updated simply by

The above steps are repeated until no substantial differences occur between the pre-
vious and current weight estimates for all J blocks of indicators. A summary of this
algorithm is provided in the Appendix.

As stated earlier, it is unknown which optimization criterion the Lohmoller algo-
rithm seeks to maximize or minimize under Mode A and Mode B. In the next section,
we propose a single least squares criterion that is to be consistently minimized for
estimating component weights under both modes.

3. The Proposed Estimation Procedure for PLSPM

Let H = [n4,...,Ny] denote an N by J matrix consisting of all J latent variables.
Let €; denote a J by 1 vector consisting of Q; inner weights for the Q; latent variables
connected to N, and of J — Q; zeros for the remaining unconnected latent variables.
Then, let f; = Hej denote an N by 1 vector of the inner estimate for n;. For example,
in the prototype model depicted in Figure 1, H = [n4,N2,N3,N4), €1 = [0,0, 43, 0],
2= [0,0,€3,0], €3 = [e31,€32,0,€34], and €4 = [0,0, €43, 0]

We propose a least squares criterion for estimating all weights under Mode A, as
follows.

kg
Minimize Qa = SS(Xj = fiwj), (6)
j=1
subject to ﬂjhj = 1, where SS(M) = trace(M M) for any matrix M. This crite-
rion appears similar to a blockwise join loss function for principal component analysis
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(Gifi, 1990, p. 152), where a vector of object scores is replaced by the inner estimate.
We propose a least squares criterion for estimating all weights under Mode B, as
follows.

Minimize Qg = ! SS(fj = Xjwj), (7
j=1
subject to r]jrr]j = 1. Criterion (7) may be viewed as a blockwise meet loss version
(Gifi, 1990, p. 167) of the covariance-maximization criterion for regularized general-
ized canonical correlation analysis (Tenenhaus & Tenenhaus, 2011).

Let a; denote a binary value that indicates which mode is used for updating the
component weights for the j th block of indicators. That is, aj = 1 if Mode A is used,
and a; = 0 if Mode B is used. We then develop a single optimization criterion for the
PLSPM algorithm by combining (6) and (7), as follows.

K. ~

Minimize 9= ojSS(X; = fiw))+ (1= a))SS(fj - Xjw)), (8)
j=1 i=1

subject to r]quj: 1. This criterion subsumes (6) and (7) as special cases by setting
all a;’s to one or zero, respectively. Moreover, it can be used for estimating the
weights for each block of indicators under either Mode A or Mode B by setting the
corresponding Q; to one or zero, respectively.

We develop an ALS algorithm to minimize (8). This algorithm begins by assign-
ing arbitrary initial values to w; and obtaining n; = X;wj. Then, it alternates the
following two steps.

Step 1 (internal estimation): Update fj for fixed w;. This step reduces to updating
the inner weights in €;, given latent variables. It is equivalent to minimizing

(pj = Gj SS(XJ - HEJ‘WJ-’)-F (1 - GJ)SS(HEJ - r]j). (9)

Let ej denote a Q; by 1 vector consisting of non-zero inner weights only. Let I
denote an N by Q; matrix formed by eliminating the columns of H corresponding to
any zero elements in €. Then, minimizing (9) is equivalent to minimizing

@ = a;SS(X; — I'je; WJ-’)+ (1= a;)SS(I'jej = nj)- (10)
1o
By solving 5% = 0, the least squares estimate of ¢; is obtained as
i
O o,
ej = ayw;w;ITj+ (1-aplT; I (11)

Then, fj is updated by f; = Hg;, where g is constructed from the estimate of e;.
Step 2 (external estimation): Update w; for fixed f;. This is equivalent to minimizing

@ = a;SS(Xj - fiw))+ (1= a))SS(f; = X;wj). (12)

Note that in (12), fj does not involve w; because n; is not connected with itself.
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. 1oy . . .
By solving Eai = 0, the least squares estimate of w; is obtained as
Wi

[ L
wi= offl+ (1-a)X;X; X1, (13)

where I is an identity matrix of size P;. Subsequently, n; is updated by n; = X;wj,
and normalized. We repeat the two steps until the difference in the values of (8) be-
tween the previous and current iterations decreases below a pre-determined threshold
(e.g., .00001). A summary of the ALS algorithm is also presented in the Appendix.

A few remarks concerning the ALS algorithm are in order. First, it is easily seen
that if Mode A is used or equivalently a; = 1, (13) reduces to (3) and (5), whereas if
Mode B is used or aj = 0, (13) reduces to (4). This indicates that the algorithm deals
with Mode A and Mode B as special cases. Second, in the first step, the estimates of
the inner weights are obtained in such a way that they minimize a least squares crite-
rion, conditionally upon the estimates of component weights. Thus, we may call the
step the “least squares scheme.” On the other hand, it is uncertain which criterion
the existing schemes seek to optimize except for a few special cases (Hanafi, 2007,
Tenenhaus & Tenenhaus, 2011). Third, the ALS algorithm defines convergence as
the decrease in the value of the optimization criterion (8) beyond a certain threshold,
whereas the Lohmoller algorithm defines convergence as a sort of equilibrium, i.e.,
the point at which no substantial difference occurs between the previous and current
estimates of weights, because it does not involve an optimization criterion. Lastly,
at least in theory, a third type of mode can be considered by taking any value of q;
between 0 and 1. For example, by specifying a; = .1, the second term of the criterion
can have a greater influence on the estimation of component weights. However, in
practice, it is not yet clear what such types of mode connote and whether using them
is sensible substantively.

4. Empirical Comparisons

In this section, we compare the proposed procedure to the extant procedure based
on the Lohmbdller algorithm, using real and simulated data.

4.1 Real Data Analysis

We applied the proposed and extant procedures to fit the American customer satis-
faction index (ACSI) model (Fornell et al., 1996) to a consumer-level dataset collected
in 2002. This dataset consists of the responses of 774 consumers to the service units
(e.g., police, garbage pick-up services, etc.) within the US sector of public adminis-
tration.

The ACSI model specifies the relationships among antecedent and consequent latent
variables of customer satisfaction. As depicted in Figure 2, the ACSI model includes
fourteen indicators: x4 = customer expectations about overall quality, xo = customer
expectations about reliability, x3 = customer expectations about customization, X4



AN ALTERNATIVE ESTIMATION PROCEDURE FOR PARTIAL LEAST SQUARES PATH MODELING 69

= overall quality, x5 = reliability, x¢ = customization, X7 = price given quality, xg =
quality given price, xg = overall customer satisfaction, x19 = confirmation of expecta-
tions, X411 = distance to ideal product or service, x12 = formal or informal complaint
behavior, x13 = repurchase intention, and x44 = price tolerance. The measures and
scales of these indicators are available in Fornell et al. (1996). The ACSI model also
involves six latent variables that underlie the fourteen indicators, as follows: CE =
customer expectations, PQ = perceived quality, PV = perceived value, CS = customer
satisfaction, CC = customer complaints, and CL = customer loyalty.

X1

X12
X2
X3

X13
X4

X14
X5
X6

()
[\

X7 X8

Figure 2: The American customer satisfaction index model. No residual terms are displayed.

We used SmartPLS (Ringle et al., 2005) to implement the extant procedure in
combination with the path weighting scheme. As displayed in Figure 2, the ACSI
model assumes that all indicators are reflective. This suggests that Mode A should
be more appropriate for estimating weights.

Tables 1 and 2 present the estimates of weights, loadings, and path coeffi cients
obtained from the proposed and extant procedures under Mode A. As shown in the
tables, both procedures resulted in quite similar parameter estimates, leading to the
same interpretations.

4.2 Simulated Data Analysis

We further compared the performance of the proposed and extant procedures based
on simulated data. In particular, we focused on how similarly the proposed and extant
procedures would perform under two different models.
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Table 1: The estimates of weights and loadings of the ACSI model obtained from the proposed
and extant proceduresfor PLSPM.

. Weight estimates Loading estimates
Latent Indicator

Proposed Extant Proposed Extant
CE X1 4447 4523 .8651 .8679
X2 4375 4310 8772 .8750
X3 3219 .3207 7189 7179
PQ X4 4042 4048 9336 9328
Xs 4114 .4034 .9325 .9303
X6 .2986 .3072 .8004 .8045
PV X7 4251 4229 .8024 .8012
X3 .7060 .7080 9332 .9339
CS X9 .3851 .3855 .9388 .9387
X10 .3480 3414 9232 9216
X11 .3487 .3550 .9097 9113
CcC X12 1.000 1.000 1.000 1.000
CL X13 .5827 .5827 .9507 .9507
X14 4812 4813 .9268 .9268

Table 2: The estimates of path coeffi cients of the ACSI model obtained from the proposed and
extant procedures for PLSPM.

Proposed Extant
CE — PQ .5822 .5819
CE - PV 1220 .1230
CE — CS .0330 .0353
PQ - PV .6469 .6466
PQ — CS .6707 .6668
PV — CS .2656 .2676
CS — CC -.4000 -.4002
CS —- CL .5824 .5831
CC —- CL -.0976 -.0972

4.2.1 Simulation 1

Figure 3 displays the structural equation model considered in the first simulation
study, along with its unstandardized and standardized parameter values. In this
model, three latent variables were specified, each of which underlay three indicators.
Individual-level multivariate normal data were drawn from N (0,X), where X is the
implied population covariance matrix derived based on the unstandardized parameter
values in the framework of covariance structure analysis (e.g., Joreskog, 1970). This
indicates that the latent variables in the model were assumed to be equivalent to
common factors.

We considered three different levels of sample size (N = 25,100,400). Five hun-
dred samples were generated at each sample size. We used the same initial values
per sample for the proposed and extant procedures. In the model, all indicators were
reflective, so that we used Mode A for both procedures. The path weighting scheme
was employed for the extant procedure.



AN ALTERNATIVE ESTIMATION PROCEDURE FOR PARTIAL LEAST SQUARES PATH MODELING 71
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Figure 3: The structural equation model specified for the first simulation study. Standardized
parameters are given in parentheses.

3136

PLSPM provides standardized parameter estimates. Table 3 presents the bias,
standard deviation, and mean square error of each standardized parameter estimate
obtained from the two procedures. As shown in the table, the parameter estimates of
both procedures shared the same properties. In general, their loading estimates were
positively biased, whereas their path coeffi cients were negatively biased. As stated
above, in this study, the simulated data were generated under the assumption that a
latent variable was equivalent to a common factor. Under this assumption, PLSPM
is known to yield biased estimates (e.g., Dijkstra, 2010) because it regards latent
variables as components rather than common factors. The standard deviations of the
loading and path coeffi cient estimates decreased with sample size. The mean square
errors of these estimates became closer to zero with sample size. Notably, all the
parameter estimates obtained from both procedures exhibited quite similar biases,
standard deviations, and mean square errors across all sample sizes. This indicates
that the proposed procedure resulted in virtually identical parameter estimates as
those from the extant one.

As discussed in Section 3, technically, the proposed procedure allows a compro-
mise between Mode A and Mode B by taking the value of a; between 0 and 1. As
a reviewer suggested, we have investigated the effect of adopting such a third type
of mode on parameter estimation. Specifically, we applied the proposed procedure
under a; = .5, so that Mode A and Mode B contributed simultaneously to obtaining
estimates. As shown in Table 3, this case tended to produce less biased estimates
particularly in small samples, whereas it tended to yield larger standard deviations of
the estimates. Consequently, its estimates tended to show larger mean square errors
than those obtained under Mode A. Thus, at least in this study, adopting a; = .5 was
of little benefit over using Mode A in estimating parameters. Although permitting
a compromise between the two conventional modes is a technically novel feature, as
stated earlier, it is unclear what such a compromise indicates substantively, when it
can be useful, and how the value of a; can be chosen.
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Table 3: The bias, standard deviation (SD), and mean square error (MSE) of each parameter
estimate obtained from the proposed and extant procedures for PLSPM in the first sim-

ulation study. PP': Proposed procedure under o; = 1; PP?: Proposed procedure under
aj = .5; EP: Extant procedure.
Parameters | N . Blazs . SD2 . MS]ZE
PP PP EP PP PP EP PP PP EP
Loading 1 | 25 .0842 | .0052 | .0842 | .1590 | .2900 | .1633 | .0324 | .0841 | .0338
7 100 | .1067 | .0957 | .1067 | .0537 | .0970 | .0536 | .0143 | .0186 | .0143

400 | .1120 | .1092 | .1120 | .0250 | .0448 | .0250 | .0132 | .0139 | .0132

Loading2 25 .0977 | —.0110 | .0973 | .1242 | .2959 | .1241 | .0250 | .0877 | .0249
(.7) 100 | .1064 .0930 .1064 | .0519 | .0994 | .0518 | .0140 | .0185 | .0140
400 | .1103 .1078 1103 | .0256 | .0467 | .0256 | .0128 | .0138 | .0128

Loading3 25 .0766 | —.0021 | .0775 | .1573 | .3137 | .1543 | .0306 | .0984 | .0298
.7 100 | .1106 .0869 .1106 | .0490 | .1073 | .0489 | .0146 | .0191 | .0146
400 | .1121 .1068 1121 | .0236 | .0468 | .0236 | .0131 | .0136 | .0131

Loading4 25 .1016 .0672 .1023 | .1164 | .1813 | .1139 | .0239 | .0374 | .0234
(.7) 100 | .1079 .1013 .1079 | .0442 | .0762 | .0440 | .0136 | .0161 | .0136
400 | .1110 .1098 1110 | .0210 | .0326 | .0209 | .0128 | .0131 | .0128

Loading5 25 .1042 .0675 .1039 | .1136 | .1774 | .1139 | .0237 | .0360 | .0238
(.7) 100 | .1092 1112 .1092 | .0461 | .0702 | .0460 | .0141 | .0173 | .0140
400 | .1121 1113 1121 | .0215 | .0315 | .0214 | .0130 | .0134 | .0130

Loading6 25 .0992 .0617 .1006 | .1098 | .1993 | .1039 | .0219 | .0435 | .0209
(.7) 100 | .1077 .1001 1077 | .0464 | .0757 | .0465 | .0138 | .0158 | .0138
400 | .1120 1114 .1120 | .0215 | .0308 | .0215 | .0130 | .0134 | .0131

Loading7 25 .0938 .0013 .0951 | .1569 | .2969 | .1449 | .0334 | .0882 | .0300
(.7) 100 | .1097 .0930 .1097 | .0489 | .1044 | .0489 | .0144 | .0195 | .0144
400 | .1097 1117 .1097 | .0229 | .0453 | .0229 | .0126 | .0145 | .0126

Loading8 25 .0757 | —=.0127 | .0764 | .1837 | .2888 | .1835 | .0395 | .0835 | .0395
.7 100 | .1055 .0844 .1055 | .0540 | .0983 | .0539 | .0140 | .0168 | .0140
400 | .1114 .1048 1114 | .0242 | .0453 | .0242 | .0130 | .0130 | .0130

Loading9 25 .0605 | —.0015 | .0615 | .2162 | .2788 | .2182 | .0504 | .0777 | .0514
(.7) 100 | .1084 | .0966 | .1084 | .0488 | .1066 | .0488 | .0141 | .0207 | .0141
400 | .1125 1068 | L1125 | .0224 | .0464 | .0224 | .0132 | .0135 | .0132

Path 1 25 | —.1024 | —.0664 | —.1021 | .1655 | .1854 | .1635 | .0379 | .0388 | .0372
(.6) 100 | —.1555 | —.1382 | —.1554 | .0801 | .0808 | .0799 | .0306 | .0256 | .0305
400 | —.1531 | —.1451 | —.1531 | .0405 | .0396 | .0405 | .0251 | .0226 | .0251

Path 2 25 | —.1091 | =.0703 | —=.1091 | .1576 | .1769 | .1573 | .0368 | .0362 | .0366
(.6) 100 | —.1461 .1300 | —.1461 | .0812 | .0762 | .0810 | .0279 | .0227 | .0279
400 | —.1500 .1493 | =.1500 | .0396 | .0401 | .0396 | .0241 | .0239 | .0241

4.2.2 Simulation 2

The first simulation study was useful to evaluate how similarly the proposed and
extant procedures performed. Nonetheless, this study may be somewhat too simple
in that it involved only three blocks of reflective indicators and assumed the same
correlations among each block of indicators. Thus, we conducted another simulation
study, which considered both formative and reflective indictors as well as different
correlations among each block of indicators. Specifically, we used the model specified
in Ringle et al. (2009) for the second simulation study. Figure 4 displays the model
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given in Ringle et al. (2009), along with its parameter values. Ringle et al. (2009)
did not provide population residual variances. Instead, they provided the population
correlation matrix of indicators, derived based on the specified model (see Table 5 in
Ringle et al., 2009). We generated multivariate normal data, using the correlation
matrix.

4
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Figure 4: Ringle et al. (2009)’s structural equation model used for the second simulation study.

As in the first simulation study, we considered three different levels of sample size
(N = 25,100,400). Five hundred samples were generated at each sample size. We
used the same initial values per sample for the proposed and extant procedures. Mode
A was applied for estimating the weights for reflective indicators, whereas Mode B
was used for estimating those for formative indicators. The path weighting scheme
was employed for the extant procedure.

Table 4 provides the bias, standard deviation, and mean square error of each stan-
dardized parameter estimate obtained from the two procedures. The parameter es-
timates of both procedures showed the same behaviors, although it was somewhat
diffi cult to characterize them clearly. For example, some weight estimates for forma-
tive indicators were negatively biased, other estimates were positively biased, and the
others were biased in different directions over sample size. Conversely, all loading
estimates were positively biased regardless of sample size. Two estimates of path
coeffi cients were negatively biased, whereas one estimate was positively biased, across
sample sizes. It was diffi cult to explain where these biases came from because Ringle
et al. (2009) did not discuss explicitly whether their population correlation matrix
was generated based on the assumption that the latent variables were equivalent to
common factors as in the first study. The standard deviations and mean square errors
of all parameter estimates decreased with sample size. Importantly, all the parame-
ter estimates obtained from both procedures involved quite similar biases, standard
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Table 4: The bias, standard deviation (SD), and mean square error (MSE) of each parameter
estimate obtained from the proposed and extant procedures for PLSPM in the second
simulation study.

Bias SD MSE

Parameters N
Proposed Extant Proposed Extant Proposed Extant
Weight 1 25 —.1443 -.1442 2812 2811 .0999 .0998
(.1) 100 - .1461 -.1461 .1206 .1206 .0359 .0359
400 -.1577 -.1579 .0575 .0575 .0282 .0282
Weight 2 25 -.0773 -.0771 2355 .2356 .0614 .0615
(.2) 100 -.0772 -.0770 .1149 .1149 .0192 .0191
400 -.0655 -.0654 .0545 .0545 .0073 .0072
Weight 3 25 -.1354 -.1356 2630 2631 .0875 .0876
(.1) 100 -.1391 -.1393 1148 1148 .0325 .0326
400 -.1338 -.1340 .0519 .0519 .0206 .0207
Weight 4 25 .0298 .0297 2252 2252 .0516 .0516
(.6) 100 .0614 .0615 .0763 .0763 .0096 .0096
400 .0687 .0688 .0366 .0366 .0061 .0061
Weight 5 25 .2674 .2675 2026 .2026 1125 1126
(.4) 100 .3090 .3089 .0724 .0724 .1007 .1007
400 .3103 .3102 .0366 .0367 .0976 .0976
Weight6 25 .0294 .0299 4651 4649 2172 2171
(.4) 100 1421 .1426 3178 3176 1212 1212
400 2276 .2280 1591 .1589 .0771 .0772
Weight7 25 -.1872 -.1867 4839 4835 2691 .2686
(.6) 100 .0410 .0410 .3089 .3087 .0971 .0970
400 1298 1295 .1492 1491 .0391 .0390
Weight 8 25 .0705 .0701 .5018 .5017 2568 2566
(.1) 100 -.0989 -.0991 .3496 .3494 .1320 1319
400 -.1255 -.1259 2161 2159 .0625 .0625
Weight9 25 -.2287 -.2288 5146 5149 3171 3175
(.4) 100 -.1280 -.1281 .5045 .5046 .2709 2710
400 1415 1411 4416 4416 2150 2149
Weight 10 25 -.1332 -.1333 .6262 .6261 .4099 .4098
(.3) 100 -.1598 -.1597 .5498 .5498 3278 3278
400 .0085 .0090 4136 4137 1711 1712
Weight 11 25 -.1197 -.1194 .6373 .6371 4204 4202
(.2) 100 -.1571 - .1567 .6042 .6039 .3897 .3893
400 -.3426 —-.3424 4836 4834 3513 .3510
Weight 12 25 -.1170 -.1169 .5816 .5814 .3520 3517
(.2) 100 -.1023 -.1022 5153 5152 .2760 2759
400 -.0963 -.0963 4253 4253 .1902 .1901
Weight 13 25 -.3089 -.3088 .5303 .5302 3767 3765
(.4) 100 -.3531 -.3531 4463 4462 .3238 .3238
400 -.4782 —-.4784 .3686 .3687 .3645 .3648
Loading 1 25 .1596 .1599 .0177 .0174 .0258 .0259
(.8) 100 1623 1623 .0074 .0074 .0264 .0264
400 .1624 .1625 .0036 .0036 .0264 .0264
Loading 2 25 .2347 .2346 .0265 .0268 .0558 .0558
(.7) 100 .2364 2367 .0137 .0136 .0561 .0562
400 .2370 2373 .0062 .0062 .0562 .0563
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Bias SD MSE

Parameters N
Proposed Extant Proposed Extant Proposed Extant
Loading 3 25 1517 1515 .0202 .0205 .0234 .0234
(.8) 100 .1533 1529 .0096 .0098 .0236 .0235
400 .1540 .1536 .0045 .0046 .0237 .0236
Loading 4 25 .1476 .1476 .0266 .0266 .0225 .0225
(.8) 100 .1494 .1494 .0102 .0102 .0224 .0224
400 .1499 .1499 .0052 .0052 .0225 .0225
Loading 5 25 .2337 2337 .0353 .0353 .0559 .0559
7 100 .2385 .2385 .0135 .0135 .0571 .0571
400 .2390 .2390 .0065 .0065 .0572 .0572
Loading 6 25 .1618 1618 .0161 .0161 .0264 .0264
(.8) 100 .1632 .1632 .0070 .0070 .0267 .0267
400 .1630 .1630 .0034 .0034 .0266 .0266
Path 1 25 3332 .3329 .1918 .1917 .1478 .1476
(.4) 100 .3827 .3825 .0408 .0409 .1481 .1480
400 .3981 .3980 .0194 .0194 .1589 .1588
Path 2 25 -.3533 -.3528 1422 1423 .1450 1447
(.5 100 -.3047 -.3044 .0620 .0620 .0967 .0965
400 -.2934 -.2932 .0293 .0292 .0869 .0868
Path 3 25 -.5769 -.5765 .1868 .1865 .3677 3671
(.6) 100 -.5737 -.5736 .0937 .0937 .3379 .3378
400 -.5618 -.5618 .0510 .0509 3182 3182
Path 4 25 .0066 .0075 1375 1371 .0189 .0189
(.6) 100 .0224 .0227 .0612 .0611 .0042 .0042
400 .0167 .0168 .0299 .0299 .0012 .0012

deviations, and mean square errors of all parameter estimates across all sample sizes,
indicating that the two procedures yielded almost identical parameter estimates.

5. Conclusion

We proposed an alternative estimation procedure for estimating component weights
in PLSPM. From technical perspectives, this procedure has several advantages over
the extant one. First, it adopts a single optimization criterion to estimate the weights
under both Mode A and Mode B. Thus, this addresses the enduring issue of lack of
a single optimization criterion in PLSPM. Second, the proposed procedure applies an
ALS algorithm to minimize the single criterion. This algorithm has been proven to
converge (de Leeuw et al., 1976). In contrast, convergence of the extant algorithm
has not been fully proven except for the cases of dealing with only one or two latent
variables (Hanafi, 2007; Henseler, 2010). Third, the proposed procedure estimates the
inner weights optimally in a least squares sense. On the other hand, in the extant
procedure, it is unclear how the existing schemes were derived and in what sense
their estimates of the inner weights are optimal. Lastly, the least squares criterion
(8) can serve as a vehicle for furthering technical extensions of PLSPM. For example,
multicollinearity among a block of indicators can have a negative influence on the es-
timation of component weights under Mode B (Esposito Vinzi et al., 2010; Tenenhaus
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& Tenenhaus, 2011). To address this issue, we may integrate a ridge penalty into (8),
as follows.

K K
o= o;SS(Xj - fiw))+ (1= 0j)(SS(fj = Xjwj)+ AjSS(wj)), (14)
j=1 J=1
where A; is a block wise ridge parameter. Moreover, (8) can be minimized in combi-
nation with optimal scaling (e.g., Gifi, 1990; Young, 1981). This nonlinear extension
can be of use in dealing with discrete indicators.
Besides these technical implications, the proposed procedure was found to provide
quite comparable parameter estimates to those obtained from the extant one in a real

Appendix: A summary of the Lohmbller and ALS algorithms.

The Lohmoller algorithm The ALS algorithm
Step 0 (Initialization) Step 0 (Initialization)
Forj=1,...,J Forj=1,...,J
choose the jth arbitrary weight vector (WJ-O) choose the jth arbitrary weight vector (wjo)
0 _ W} 0_ jwp
g jwo il jwo
I U]
End End
For s= 0,1,2,.... (until convergence) For s= 0,1,2,.... (until convergence)
Step 1 (Internal Estimation) Step 1 (Internal Estimation)
Forj=1,...,J Forj=1,...,J
g aj = 1, if Mode A
£S5 = € qng» C— 0 i
j iallq aj = 0, if Mode B
q=1 @J
where € q is calculated as follows: fs = e qns
For the centroid scheme, ] q=1 197
& q = sign(corr(n?, ng)) where g q is the qth element of
For the factorial scheme, ejs = (q st strjs Fjs+ (1-q )Fjs l—js;)— 11—js r]js
& q = corr(n?, ng) End
For the path weighting scheme,
o - corr(njs,nf‘), if n; affects nq Step 2 (External Estimation)
1a W g, otherwise Forj=1...J
where W) q is the gth element of the aj = 1, if Mode A
regression coeffi cients of nj on ngq’s. aj = 0, if Mode B
+1 _ -
End wit = (g £ 81+ (1- ap)X X)X e,
s+ 1
s+ 1 _ i
Step 2 (External Estimation) 0j jwst
Forj=1...J End !
wf” = XfR(E269)7 !, if Mode A
sz“ = (X;Xj)”'Xf?, if Mode B Check if @3 = ¢3! < .00001. If not, go back to
s+ 1 J'st+1 Step 1.
0j jsz+1 End
End
U & s+ 1
Check if (stp - W ) < .00001. If not,
j=1p=1
go back to Step 1.
End
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data analysis. In addition, it resulted in virtually identical parameter estimates to
those from the extant one in two simulation studies. Although the simulation studies
were not exhaustive, they were of help in evaluating how similarly the proposed and
extant procedures performed under different models at different sample sizes.

In sum, empirically the proposed procedure performs equally to the extant one,
while technically it is well-founded in a least squares sense. Thus, the proposed pro-
cedure can serve as a substitute for the extant estimation procedure for PLSP M.
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