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Discriminant Analysisfor Multiway Data

Lechuga G., Le Brusquet L., Perlbarg V., Puybasset L., GaldiD. and
Tenenhaus A.

Abstract A multiway Fisher Discriminant Analysis (MFDA) formulatiois pre-

sented in this paper. The core of MFDA relies on the struttoastraint imposed
to the discriminant vectors in order to account for the mndt structure of the
data. This results in a more parsimonious model than thaisbfelF Discriminant
Analysis (FDA) performed on the unfolded data table. Mosrpeomputational
and overfitting issues that occur with high dimensional da&abetter controlled.
MFDA is applied to predict the long term recovery of patieatft®r traumatic brain
injury from multi-modal brain Magnetic Resonance ImagiAg.compared to FDA,
MFDA clearly tracks down the discrimination areas withie tluhite matter region
of the brain and provides a ranking of the contribution ofrieeroimaging modali-
ties. Based on cross validation, the accuracy of MFDA is Euia7% against 75%
for FDA.
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1 Introduction

In standard multivariate data analysis, an individualgariables data table is usu-
ally considered. However, from a practical viewpoint thimgle data structure ap-
pears to be somehow restricted. An example is found in mudtital brain Magnetic
Resonance Imaging (MRI) whek€ neuroimaging modalities (each characterized
by J voxels), are collected on a set lopatients. In that context, an individuais
voxels x modalities data table can be considered and yields a thegedataset (or
tensor). A three-way dataset can be considered in terms tfci of matrices as
illustrated in Figure 1. Most data analysis methods in tpeimary definition do
not take into account this natural three-way structureeéut] such structure is lost
by considering & x JK unfolded version leading potentially (i) to a procedurd tha
destroys the integrity of the structure of the data and giia tvery large parameter
vector to estimate. These two aspects can yield a lack ofaeténterpretations of
the resulting model and additional structural constraanésrequired.

individuals
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I:r-l:fdc»i P /
——

Fig. 1 Structure of the three-way dataset

Many two-way data analysis methods have been extended tadlievay con-
figuration. For instance PARAFAC proposed by Harshman [4 generalization
of Principal Component Analysis. PARAFAC relies on the nmaiziation of a vari-
ance criterion but explicitly takes into account the mudtimstructure of the input
data by imposing a special Kronecker structure on the weightors. A second
approach is the Multi-linear Partial Least Squares Regregbl-PLS) proposed by
Bro [1] which is a generalization of the classic PLS regmssnethod to multiway
data. N-PLS relies on the maximization of a covariance Goitebut has the same
PARAFAC structural constraint on the weight vectors. N-P&lges on SVD decom-
position and is particularly well suited to the high dimemsil setting. In this paper,
a multiway formulation of Fisher Discriminant Analysis (NdR) is presented. The
structural constraint that is imposed to N-PLS and PARAFA€ight vectors con-
stitutes the starting point of MFDA.

This paper is organized as follows: Fisher Discriminant lixsia (FDA) and its
multiway counterpart (MFDA) are presented in section 2.daoti®n 3, MFDA is
illustrated on a multi-modal Magnetic Resonance Brain limggdMRI) dataset in
order to predict the long-term recovery, of patients théfesed from traumatic brain
injury. A comparison between MFDA and FDA is discussed irtisads.
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2 Multiway Fisher Discriminant Analysis

Let X be the individuals< variablesx modalities tensor an#" the associated un-
folded matrix where all thé x J two-way matrices are collected next to each other
in anl x JK matrix. In addition, lety be the qualitative variable that encodes the
class membership of each individual. débe the matrix of dummy variables indi-
cating the group memberships.

Regularized Fisher Discriminant Analysis. FDA consists in finding a projection
vectorw such that the between class variance is maximized relativeet within-
class variance. Regularized FDA is defined by the optimargtiroblem:

w' Sgw
wStw+AwWTRw’

w" = argmax (1)
where Sg = (X")TY(YTY) " 2YTXU = (X4)T HgX! is the between covariance
matrix andSy = (X!)' XY is the total covariance matrix. A regularization term
Aw'Rw is added to improve the numerical stability when computimg inverse
of St in high dimensional settind & JK). R is usually equal to the identity.

w* is obtained as the first eigenvector(& + AR)~1Sg.

Additional structural constraints should be added to théngpation problem (1)
in order to account for the three-way structure of the data.

MFDA criterion. Structural constraints are imposed in such way that the hteig
vectorw will be decomposed in two vectors as= wk ® Wj. Wy is a weight vec-
tor associated with th& modalities whilew; is the weight vector related to thie
variables. This structural constraint results in a morssipasnious modelJ+ K
instead of] x K parameters to estimate), and allows to study separatelyfibets

of the variables and the modalities. A possible reformatatif FDA that takes into
account the three-way structure of the data is introducesliih the optimization
problem:

5 (Wi @Wwy) " Sg(Wk @ W)
argwma,\(WK QW) TSr(Wk @Wj) + A (wk @w3) TR(Wk @wy) @

where the matribR = Rk ® Ry is introduced to avoid numerical issues as in Ry.
is of dimensiorK x K andRj is of dimension] x J. The choices oR andA are
illustrated in section 3.

MFDA algorithm. The optimization problem (2) is solved by considering thle fo
lowing identities:
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K T K
w'Sgw = wj <Z (WK)kX..k> Hs (Z (WK)kX..k> W3 3)

k=1 k=1

; T J
ZWE< (WJ)jx.j.> HB< (WJ)jX.j.> Wi (4)
j j

K T/
(WK)kX..k> ( (WK)kX..k>WJ (5)

T/
(W), X.j.) (Zl(WJ)J-X.j.> WK (6)
j=

and
(Wi @Wy) TR(Wk @W;) = (W5 Rywy) (Wi Rcwg ) (7)

Solving the optimization problem (2) with respect¥gwhile maintainingwvg fixed,
is achieved with a joint use of equations (3) and (5). SiyiJaolving the optimiza-
tion problem (2) with respect tarx while maintainingw; fixed, is achieved with
a joint use of equations (4) and (6). The MFDA algorithm tr@vss optimization
problem (2) is described in Algorithm 1. This algorithm stasy assigning random

Algorithm 1 Computation of the first Multi-way FDA axis

Require: € >0, W|(<O)

g« o0
repeat

Xk =Tt (W&q))kx..k, Ak = (Wl(g))-r RKW|(<q)

1 w] X HpXkw.
WSqu : < argmanTXT;( v}\</ B}\ 'i/vTJR w
wy gy =119 P AKNIFAWG Raw

Xo= 330 (W57Y) X020 = (W) Ryl

1 X THBX
W|<<Q+><— argmax ———Kk=3 TB7IK
WK;HWKH:]-WKXJ X Wk +Agwy R wi
q«+q+1
. 1
until [wd ™ —w| < ¢

return (W, wi?)

< FDA(y, Xk, Ak)

+ FDA(y, X3,A3)

initial values forw; or wx and then iterates a sequence of FDA problems. More
specifically, each update boils down to perform FDA on eithes EE:l (Wi ) Xk
or Xk = 23:1 (WJ)J- X.j.. From the expressions &f; andXk, it becomes clear that



Discriminant Analysis for Multiway Data 5

(wy); reflects the influence of the the jth variable whilex )i the influence of the
kth modality. Notice thaX; (resp.Xk) is al x J (resp.l x K) matrix as compared
to thel x JK unfolded matrixX.

Algorithm 1 yieldsw! = wi @ w} corresponding to the first discriminant axis. Sub-
sequent discriminant axes can be determined by imposihg@ohality constraints
as detailed hereinafter.

Additional constraints. At the end of Algorithm 1, one discriminant vectatt =
wi @ wl is obtained. The following — 1 axes (wher€ is the number of classes):
w3, Wy, s=2,...,C—1, are obtained subject to orthogonality constraints esque
as follows:

W) Wt w1 =0 = WmiewS) wEaowsi) =0 Yce[l,...,s—1]
W wg)(ws'w§)=0 veel,...,s—1  (8)

- - - i i TWE —
From equation (8), orthog_onallty can be optal_ne_d by elmrqzrqsmgwsK wg =0or
wSTw§ = 0. The construction of the next discriminant axes is dertveldw for the
constrainv'w§ = 0.

Second discriminant axis. ConsideringH = span{w}} and P, the projection

matrix overH-. The orthogonality condition is equivalent to say that ¢hexists

PHJ_V
H

a non uniquev € RY such thaw?3 = The orthogonality constraint om3

. o 1PV
yields the optimization problem:

i (Wk ® (Py1V)) " Sa(Wk @ (Py1V))
WiV (Wi ® (P 1v)) TSt (Wi @ (Py1v)) +A (Wk ® (Pyy1v)) TR(Wk @ (Py1v))
9)
subject tg|wk || = 1 and||v|| = 1 which is also a MFDA problem due to the follow-
ing identities:

w'Sew = (Wi ® (Py1v)) "X T HeX (Wi @ (PyLv))

K T K
(Z (W%)k(x“kPHL)V> He (kz (W%)k(x..kPHL)V>

k=1 =1

K T
(Z(wﬁ)j (x.j_PHL)v> Hg (
1= J

We emphasize thd, . is of rankJ — 1 but does not pose any computational issues
becauseP,. = | — Py with Py = H(HTH)"*HT = w}(w})T. It comes that the
projection is now advantageously replaced by a deflation:

M-

(8), 06,72 v)

X kPhs = X — (X wi)(w)) "
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Subsequent discriminant axis. Thes" discriminant axis is obtained using the same
deflation strategy considering the vectorial spce span{wﬁ,wﬁ, . ,Wﬁ’l}. Let
X' be the three-way data obtained from the previous step. Sihgéas already

been projected over spéw},wﬁ,...7w§*2}l. The vectorwﬁfl is thus obtained

using Algorithm 1 on the deflated versionXfwhich is obtained from the following
deflation:
X' (=X kPs) = X o= (X s Hws )"

3 Application to traumatic brain injury

Traumatic brain injury is one of the leading causes of death disability in the
industrialized world, generally requiring prolonged rbifigation [3].

In the scope of this paper MFDA is applied to a multi-modalibMRI data set
in order to predict, in the long term, the recovery of pateghat suffered from trau-
matic brain injury. Thed horizontal slices characterize the patieintsi,...,I, theJ
lateral slices are related to the vox¢ls 1, ..., J and theK frontal slices correspond
to the different modalitiek = 1, ..., K. From this the data can be structured into the
tensorX = {Xiik}lgigl,lgng,lgkgK of order 3. Due to the high dimensionality of
the dataset, a kernel version of FDA is used [5]. The optirhle for the regular-
ization parametek is tailored through a leave-one-out cross-validation pdoce.
TheR matrix is set to be the identity.

Datadescription. The multi-modal MRI diffusion images are acquired on indivi
als divided into 3 classes: 39 controls, 65 coma patientsavftositive outcome and
39 coma patients with a negative outcorhe-(143). Four diffusion image¥(= 4),
namely fractional anisotropy (FA), mean diffusivity (M@xial diffusivity (L1) and
radial diffusivity (Lt), images were acquired from the eatbrain of both patients
and controls. Each volumetric image has 91x109x91 voxeistvdre then reshaped
into a 1 x 902629 vectorJ(= 902629). The resulting tens&r considered as input
for MFDA is of dimension 143 902629x 4, whereas the resulting unfolded tensor
X' is of dimension 14% 3610516.

FDA applied to the entire brain. A linear kernel version of FDA [5] applied to
XY results in 8 weight matrices (4 for each eigenvector). A éeame-out cross-
validation yields the optimal regularization parametebénr = 400 with an accu-
racy of 76%. Moreover, the resulting FA weights matrix obéal by considering the
segment of the eigenvectors corresponding to FA are showigure 2. These im-
ages are difficult to interpret since there is no focalizegme used for the discrim-
ination. We mention that other modalities (i.e. other segtis)ecould be visualized
but do not give additional discriminative information (néts not shown).
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(a) FDA analysis FA, 1st eigenvector. (b) FDA analysis FA, 2nd eigenvector.

Fig. 2 Entire brain. FA segment of the FDA weights vectorgf, w2,) for A = 400.

MFDA applied to the entire brain. MFDA applied toX results in 2 weight matri-
ces associated withi} andw? which integrate all the modalities. This yields a single
volumetric image that integrate the 4 modalities insteaohaf for each modality in
FDA. After performing a leave-one-out cross-validatidre bptimal regularization
parameter for MFDA is found to b= 10* with an accuracy of 71%. Table 1 shows
the contribution of each modality for the construction cé #ingle volumetric im-
age. FA has the highest weight in the discriminationvigr Forwz, all modalities
but FA have been taken into account in the same proportion.

Table 1 Entire brain. MFDA weights vectorsv, wg)

Modality| wg — wg
FA 0.9887 -0.0066
MD |0.0036 0.5703
L1 [0.0046 0.6094
Lt 0.0031 0.5508

Figure 3 shows an example of MFDA weight$ andw? obtained on the entire brain
(same plane as for FDA). Contrary to FDA, MFDA clearly locstee discriminative
voxels in the white matter (in red). Since specific and smoegfions are selected,
MFDA model is easier to interpret. In addition? is reported in Table 1 and shows
that all the modalities participate in the same proport@mthe construction of the
MFDA model. These results are consistent with the ones bty Sidarost al.

[6] and Galanaudt al. [2] regarding the importance of FA when assessing long-
term recovery.

MFDA exhibits that the discriminating voxels are locatedthim the main white
matter bundles, more specifically in the posterior limb & thternal capsule. In-
deed, traumatic brain injury is characterized by the presefidiffuse axonal injury
mainly located within deep and axial white matter bundle@amfl by Galanaud
et al. [2]. For this reason, a second analysis based only on thewtdtter region
is applied giving a 14% 20764x 4 tensor to analyze.
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(@) wj. (b) W2.

Fig. 3 Entire brain. MFDA weights vectorsw, w3) for A = 10,000.

FDA and MFDA applied to the white matter. In Figure 4, training and testing
accuracies for FDA are reported for different values\ofThe optimal regulariza-
tion parameter for FDA is equal o= 400 with an accuracy of 75%. The associated
confusion matrix is shown in Table 2. We note that the mosjufemt error is done
between the positive and negative outcome, and that theatienh between patients
and controls is very accurate. In Figure 5, training andrigstccuracies for MFDA
are reported. The optimal regularization parametar is 100 with an accuracy of
77%. The associated confusion matrix is shown in Table 3.

—o— Testing set accuracy
e

1001 a — & —Training set accuracy 1005 o —6— Testing set accuracy

sl W c — 5 — Training set accuracy
% S 90F Mo N

. = Yo enge o
80 S~
ECEN

B MS\% g

Correctly classified percentage

107 10° 10 10° 10 10° 10°

10° 10°
Lambda Lambda

Fig. 4 FDA Leave-one-out cross validation. Fig.5 MFDA Leave-one-out cross validation.

Table2 FDA confusion matrix witth = 400. Table3 MFDA confusion matrix withA = 100.

FDA Predicted MFDA Predicted

Observed|Controls Positive Negative Observed|Controls Positive Negative
outcomesoutcomes outcomesoutcomes

Controls |39 0 0 Controls |37 2 0

Positive Positive

outcomeq 49 10 outcomeq 49 16

Negative Negative

out%omes 0 20 19 outcomes 0 15 24
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The resulting weights obtained when analyzing the whitéenatre presented in
Figure 6, together with the corresponding values in Table 4. These results are
consistent with the ones obtained using the entire braierg/imodality FA serves
as the most discriminant modality.

10 0.1 10 01
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% wh 1 vl 005
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"‘I -0.05 1 o
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(a) FDA analysis FA, 1st eigenvector. (b) MFDA analysisw?.
o1
20 y 20
30 an' hl.l;'. iy 008 30 FI?\I 4: oy 0.05
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. I s 0.05 . Wt e nt 005
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(c) FDA analysis FA, 2nd eigenvector. (d) MFDA analysisw3.

Fig.6 White matter. MFDA weights vectorsv§, w3) for A = 100. FA segment of the FDA weights
vectors Wi, WZ,) for A = 400.

Table4 White matter. MFDA weights vectorsvf , w2 )

Modality] wg — wg
FA 10.8017 -0.0681
MD |-0.2224 -0.5327
L1 0.2319 -0.8072
Lt -0.5040 -0.2448

4 Discussion

In this paper, we propose a multiway formulation of FDA thamsiders the intrin-
sic tensor structure of the data. MFDA was applied to mulbtidisd MRI diffusion
images to predict the long term recovery of patients withrratic brain injury, for
which good accuracy rates were obtained, from 71% for MFDAG®&o for FDA,
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when using the entire brain. This loss in accuracy for MFDAdmpensated by an
improvement in the interpretability of the obtained cléissi This improvement is
due to the introduced a priori structure that has been takersiccount during the
modelisation process. When analyzing the white matter waimla 75% accuracy
for FDA and 77% for MFDA. MFDA separates the influence of sglgpiositions
and the influence of the different modalities.

Another observation is that the FDA weights give higher imi@oce to the borders
of the brain, when the majority of the discriminant inforinatshould be found in
the white matter since there is evidence that damage in ¢ism is a distinctive
feature of traumatic brain injury [2] as shown in the MFDA ults. The MFDA
weight matrices seem to supply more information on the lonatf the discrimi-
nation regions, as shown in Figure 3. Moreover, FDA result8 weight matrices
(J x K classifier), complicating the interpretability, as oppbgeonly 2 weight ma-
trices g+ K classifier) obtained with MFDA which integrate all the maties.
Future perspectives include an improvement of the accuihe classification of
the positive and negative outcomes. In order to further an@ithe interpretability
of the classifier a sparse MFDA algorithm is under developgrf@nreducing the
number of active variables in the MFDA model.
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