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Discriminant Analysis for Multiway Data

Lechuga G., Le Brusquet L., Perlbarg V., Puybasset L., Galanaud D. and
Tenenhaus A.

Abstract A multiway Fisher Discriminant Analysis (MFDA) formulation is pre-
sented in this paper. The core of MFDA relies on the structural constraint imposed
to the discriminant vectors in order to account for the multiway structure of the
data. This results in a more parsimonious model than that of Fisher Discriminant
Analysis (FDA) performed on the unfolded data table. Moreover, computational
and overfitting issues that occur with high dimensional dataare better controlled.
MFDA is applied to predict the long term recovery of patientsafter traumatic brain
injury from multi-modal brain Magnetic Resonance Imaging.As compared to FDA,
MFDA clearly tracks down the discrimination areas within the white matter region
of the brain and provides a ranking of the contribution of theneuroimaging modali-
ties. Based on cross validation, the accuracy of MFDA is equal to 77% against 75%
for FDA.
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1 Introduction

In standard multivariate data analysis, an individuals× variables data table is usu-
ally considered. However, from a practical viewpoint this simple data structure ap-
pears to be somehow restricted. An example is found in multi-modal brain Magnetic
Resonance Imaging (MRI) whereK neuroimaging modalities (each characterized
by J voxels), are collected on a set ofI patients. In that context, an individuals×
voxels×modalities data table can be considered and yields a three-way dataset (or
tensor). A three-way dataset can be considered in terms of a stack of matrices as
illustrated in Figure 1. Most data analysis methods in theirprimary definition do
not take into account this natural three-way structure. Indeed, such structure is lost
by considering aI× JK unfolded version leading potentially (i) to a procedure that
destroys the integrity of the structure of the data and (ii) to a very large parameter
vector to estimate. These two aspects can yield a lack of relevant interpretations of
the resulting model and additional structural constraintsare required.

Fig. 1 Structure of the three-way dataset

Many two-way data analysis methods have been extended to themultiway con-
figuration. For instance PARAFAC proposed by Harshman [4] isa generalization
of Principal Component Analysis. PARAFAC relies on the maximization of a vari-
ance criterion but explicitly takes into account the multiway structure of the input
data by imposing a special Kronecker structure on the weightvectors. A second
approach is the Multi-linear Partial Least Squares Regression (N-PLS) proposed by
Bro [1] which is a generalization of the classic PLS regression method to multiway
data. N-PLS relies on the maximization of a covariance criterion but has the same
PARAFAC structural constraint on the weight vectors. N-PLSrelies on SVD decom-
position and is particularly well suited to the high dimensional setting. In this paper,
a multiway formulation of Fisher Discriminant Analysis (MFDA) is presented. The
structural constraint that is imposed to N-PLS and PARAFAC weight vectors con-
stitutes the starting point of MFDA.

This paper is organized as follows: Fisher Discriminant Analysis (FDA) and its
multiway counterpart (MFDA) are presented in section 2. In section 3, MFDA is
illustrated on a multi-modal Magnetic Resonance Brain Imaging (MRI) dataset in
order to predict the long-term recovery, of patients that suffered from traumatic brain
injury. A comparison between MFDA and FDA is discussed in section 4.
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2 Multiway Fisher Discriminant Analysis

Let X be the individuals× variables× modalities tensor andXu the associated un-
folded matrix where all theI× J two-way matrices are collected next to each other
in an I× JK matrix. In addition, lety be the qualitative variable that encodes the
class membership of each individual. LetY be the matrix of dummy variables indi-
cating the group memberships.

Regularized Fisher Discriminant Analysis. FDA consists in finding a projection
vectorw such that the between class variance is maximized relative to the within-
class variance. Regularized FDA is defined by the optimization problem:

w∗ = argmax
w

w⊤SBw
w⊤ST w+λ w⊤Rw

, (1)

where SB = (Xu)⊤Y(Y⊤Y)−1Y⊤Xu = (Xu)⊤HBXu is the between covariance
matrix andST = (Xu)⊤Xu is the total covariance matrix. A regularization term
λ w⊤Rw is added to improve the numerical stability when computing the inverse
of ST in high dimensional setting (I≪ JK). R is usually equal to the identity.
w∗ is obtained as the first eigenvector of(ST +λ R)−1SB.

Additional structural constraints should be added to the optimization problem (1)
in order to account for the three-way structure of the data.

MFDA criterion. Structural constraints are imposed in such way that the weight
vectorw will be decomposed in two vectors asw = wK ⊗wJ. wK is a weight vec-
tor associated with theK modalities whilewJ is the weight vector related to theJ
variables. This structural constraint results in a more parsimonious model (J +K
instead ofJ×K parameters to estimate), and allows to study separately theeffects
of the variables and the modalities. A possible reformulation of FDA that takes into
account the three-way structure of the data is introduced through the optimization
problem:

argmax
w

(wK⊗wJ)
⊤SB(wK⊗wJ)

(wK⊗wJ)⊤ST (wK⊗wJ)+λ (wK⊗wJ)⊤R(wK⊗wJ)
. (2)

where the matrixR = RK⊗RJ is introduced to avoid numerical issues as in (1).RK

is of dimensionK×K andRJ is of dimensionJ× J. The choices ofR andλ are
illustrated in section 3.

MFDA algorithm. The optimization problem (2) is solved by considering the fol-
lowing identities:
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w⊤SBw = w⊤J

(

K

∑
k=1

(wK)k X..k

)⊤

HB

(

K

∑
k=1

(wK)k X..k

)

wJ (3)

= w⊤K

(

J

∑
j=1

(wJ) j X. j.

)⊤

HB

(

J

∑
j=1

(wJ) j X. j.

)

wK (4)

w⊤STw = w⊤J

(

K

∑
k=1

(wK)k X..k

)⊤( K

∑
k=1

(wK)k X..k

)

wJ (5)

= w⊤K

(

J

∑
j=1

(wJ) j X. j.

)⊤( J

∑
j=1

(wJ) j X. j.

)

wK (6)

and
(wK⊗wJ)

⊤R(wK⊗wJ) = (w⊤J RJwJ)(w⊤K RKwK) (7)

Solving the optimization problem (2) with respect towJ while maintainingwK fixed,
is achieved with a joint use of equations (3) and (5). Similarly, solving the optimiza-
tion problem (2) with respect towK while maintainingwJ fixed, is achieved with
a joint use of equations (4) and (6). The MFDA algorithm that solves optimization
problem (2) is described in Algorithm 1. This algorithm starts by assigning random

Algorithm 1 Computation of the first Multi-way FDA axis

Require: ε > 0, w(0)
K

q← 0
repeat

XK = ∑K
k=1

(

w(q)
K

)

k
X..k, λK =

(

w(q)
K

)⊤
RKw(q)

K

w(q+1)
J ← argmax

wJ ,‖wJ‖=1

w⊤J X⊤K HBXK wJ

w⊤J X⊤K XKwJ+λKw⊤J RJwJ
← FDA(y,XK ,λK)

XJ = ∑J
j=1

(

w(q+1)
J

)

j
X. j., λJ =

(

w(q+1)
J

)⊤
RJw(q+1)

J

w(q+1)
K ← argmax

wK ,‖wK‖=1

w⊤K X⊤J HBXJwK

w⊤K X⊤J XJwK+λJw⊤K RK wK
← FDA(y,XJ,λJ)

q← q+1

until ‖w(q−1)
K −w(q)

K ‖< ε
return (w(q)

K , w(q)
J )

initial values forwJ or wK and then iterates a sequence of FDA problems. More
specifically, each update boils down to perform FDA on eitherXJ =∑K

k=1 (wK)k X..k

or XK = ∑J
J=1 (wJ) j X. j.. From the expressions ofXJ andXK , it becomes clear that



Discriminant Analysis for Multiway Data 5

(wJ) j reflects the influence of the the jth variable while(wK)k the influence of the
kth modality. Notice thatXJ (resp.XK) is a I× J (resp.I×K) matrix as compared
to theI× JK unfolded matrixXu.
Algorithm 1 yieldsw1 = w1

K⊗w1
J corresponding to the first discriminant axis. Sub-

sequent discriminant axes can be determined by imposing orthogonality constraints
as detailed hereinafter.

Additional constraints. At the end of Algorithm 1, one discriminant vectorw1 =
w1

K⊗w1
J is obtained. The followingC−1 axes (whereC is the number of classes):

ws
J, ws

K , s=2, . . . ,C−1, are obtained subject to orthogonality constraints expressed
as follows:

(ws)⊤[w1
. . .ws−1] = 0 ⇐⇒ (ws

K⊗ws
J)
⊤(wc

K⊗wc
J) = 0 ∀c ∈ [1, . . . ,s−1]

(ws⊤
K wc

K)(w
s⊤
J wc

J) = 0 ∀c ∈ [1, . . . ,s−1] (8)

From equation (8), orthogonality can be obtained by either imposingws⊤
K wc

K = 0 or
ws⊤

J wc
J = 0. The construction of the next discriminant axes is derivedbelow for the

constraintws⊤
J wc

J = 0.

Second discriminant axis. ConsideringH = span
{

w1
J

}

and PH⊥ the projection
matrix overH⊥. The orthogonality condition is equivalent to say that there exists

a non uniquev ∈ R
J such thatw2

J =
PH⊥v
‖PH⊥v‖

. The orthogonality constraint onw2
J

yields the optimization problem:

max
wK ,v

(wK⊗ (PH⊥v))⊤SB(wK⊗ (PH⊥v))
(wK ⊗ (PH⊥v))⊤ST (wK ⊗ (PH⊥v))+λ (wK⊗ (PH⊥v))⊤R(wK⊗ (PH⊥v))

,

(9)
subject to‖wK‖= 1 and‖v‖= 1 which is also a MFDA problem due to the follow-
ing identities:

w⊤SBw = (wK⊗ (PH⊥v))⊤X⊤HBX(wK ⊗ (PH⊥v))

=

(

K

∑
k=1

(

w2
K

)

k (X..kPH⊥)v

)⊤

HB

(

K

∑
k=1

(

w2
K

)

k (X..kPH⊥)v

)

=

(

K

∑
j=1

(

w2
J

)

j (X. j.PH⊥)v

)⊤

HB

(

J

∑
j=1

(

w2
J

)

j (X. j.PH⊥)v

)

We emphasize thatPH⊥ is of rankJ−1 but does not pose any computational issues
becausePH⊥ = I−PH with PH = H(H⊤H)−1H⊤ = w1

J(w
1
J)
⊤. It comes that the

projection is now advantageously replaced by a deflation:

X..kPH⊥ = X.k− (X..kw1
J)(w

1
J)
⊤
.
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Subsequent discriminant axis. Thesth discriminant axis is obtained using the same
deflation strategy considering the vectorial spaceH = span

{

w1
J ,w

2
J , . . . ,w

s−1
J

}

. Let
X′ be the three-way data obtained from the previous step. SinceX′

..k has already

been projected over span
{

w1
J,w

2
J , . . . ,w

s−2
J

}⊥
. The vectorws−1

J is thus obtained
using Algorithm 1 on the deflated version ofX′ which is obtained from the following
deflation:

X′..k (= X..kPH⊥)← X′..k− (X′..kws−1
J )(ws−1

J )⊤.

3 Application to traumatic brain injury

Traumatic brain injury is one of the leading causes of death and disability in the
industrialized world, generally requiring prolonged rehabilitation [3].

In the scope of this paper MFDA is applied to a multi-modal brain MRI data set
in order to predict, in the long term, the recovery of patients that suffered from trau-
matic brain injury. TheI horizontal slices characterize the patientsi = 1, ..., I, theJ
lateral slices are related to the voxelsj = 1, ...,J and theK frontal slices correspond
to the different modalitiesk = 1, ...,K. From this the data can be structured into the
tensorX =

{

Xi jk
}

1≤i≤I,1≤ j≤J,1≤k≤K of order 3. Due to the high dimensionality of
the dataset, a kernel version of FDA is used [5]. The optimal value for the regular-
ization parameterλ is tailored through a leave-one-out cross-validation procedure.
TheR matrix is set to be the identity.

Data description. The multi-modal MRI diffusion images are acquired on individu-
als divided into 3 classes: 39 controls, 65 coma patients with a positive outcome and
39 coma patients with a negative outcome (I = 143). Four diffusion images (K = 4),
namely fractional anisotropy (FA), mean diffusivity (MD),axial diffusivity (L1) and
radial diffusivity (Lt), images were acquired from the entire brain of both patients
and controls. Each volumetric image has 91x109x91 voxels which are then reshaped
into a 1 x 902629 vector (J = 902629). The resulting tensorX considered as input
for MFDA is of dimension 143×902629×4, whereas the resulting unfolded tensor
Xu is of dimension 143×3610516.

FDA applied to the entire brain. A linear kernel version of FDA [5] applied to
Xu results in 8 weight matrices (4 for each eigenvector). A leave-one-out cross-
validation yields the optimal regularization parameter tobeλ = 400 with an accu-
racy of 76%. Moreover, the resulting FA weights matrix obtained by considering the
segment of the eigenvectors corresponding to FA are shown inFigure 2. These im-
ages are difficult to interpret since there is no focalized region used for the discrim-
ination. We mention that other modalities (i.e. other segments) could be visualized
but do not give additional discriminative information (results not shown).
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(b) FDA analysis FA, 2nd eigenvector.

Fig. 2 Entire brain. FA segment of the FDA weights vectors (w1
FA, w2

FA) for λ = 400.

MFDA applied to the entire brain. MFDA applied toX results in 2 weight matri-
ces associated withw1

J andw2
J which integrate all the modalities. This yields a single

volumetric image that integrate the 4 modalities instead ofone for each modality in
FDA. After performing a leave-one-out cross-validation, the optimal regularization
parameter for MFDA is found to beλ = 104 with an accuracy of 71%. Table 1 shows
the contribution of each modality for the construction of the single volumetric im-
age. FA has the highest weight in the discrimination forw1

K . Forw2
K , all modalities

but FA have been taken into account in the same proportion.

Table 1 Entire brain. MFDA weights vectors (w1
K , w2

K)

Modality w1
K w2

K

FA 0.9887 -0.0066

MD 0.0036 0.5703

L1 0.0046 0.6094

Lt 0.0031 0.5508

Figure 3 shows an example of MFDA weightsw1
J andw1

J obtained on the entire brain
(same plane as for FDA). Contrary to FDA, MFDA clearly locates the discriminative
voxels in the white matter (in red). Since specific and smoothregions are selected,
MFDA model is easier to interpret. In addition,w2

J is reported in Table 1 and shows
that all the modalities participate in the same proportion to the construction of the
MFDA model. These results are consistent with the ones obtained by Sidaroset al.
[6] and Galanaudet al. [2] regarding the importance of FA when assessing long-
term recovery.

MFDA exhibits that the discriminating voxels are located, within the main white
matter bundles, more specifically in the posterior limb of the internal capsule. In-
deed, traumatic brain injury is characterized by the presence of diffuse axonal injury
mainly located within deep and axial white matter bundle as found by Galanaud
et al. [2]. For this reason, a second analysis based only on the white matter region
is applied giving a 143×20764×4 tensor to analyze.
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Fig. 3 Entire brain. MFDA weights vectors (w1
J , w2

J) for λ = 10,000.

FDA and MFDA applied to the white matter. In Figure 4, training and testing
accuracies for FDA are reported for different values ofλ . The optimal regulariza-
tion parameter for FDA is equal toλ = 400 with an accuracy of 75%. The associated
confusion matrix is shown in Table 2. We note that the most frequent error is done
between the positive and negative outcome, and that the distinction between patients
and controls is very accurate. In Figure 5, training and testing accuracies for MFDA
are reported. The optimal regularization parameter isλ = 100 with an accuracy of
77%. The associated confusion matrix is shown in Table 3.
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Fig. 5 MFDA Leave-one-out cross validation.

Table 2 FDA confusion matrix withλ = 400.

FDA Predicted

Observed Controls
Positive
outcomes

Negative
outcomes

Controls 39 0 0

Positive
outcomes

6 49 10

Negative
outcomes

0 20 19

Table 3 MFDA confusion matrix withλ = 100.

MFDA Predicted

Observed Controls
Positive
outcomes

Negative
outcomes

Controls 37 2 0

Positive
outcomes

0 49 16

Negative
outcomes

0 15 24



Discriminant Analysis for Multiway Data 9

The resulting weights obtained when analyzing the white matter are presented in
Figure 6, together with the correspondingwK values in Table 4. These results are
consistent with the ones obtained using the entire brain, where modality FA serves
as the most discriminant modality.
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Fig. 6 White matter. MFDA weights vectors (w1
J , w2

J) for λ = 100. FA segment of the FDA weights
vectors (w1

FA, w2
FA) for λ = 400.

Table 4 White matter. MFDA weights vectors (w1
K , w2

K )

Modality w1
K w2

K

FA 0.8017 -0.0681

MD -0.2224 -0.5327

L1 0.2319 -0.8072

Lt -0.5040 -0.2448

4 Discussion

In this paper, we propose a multiway formulation of FDA that considers the intrin-
sic tensor structure of the data. MFDA was applied to multi-modal MRI diffusion
images to predict the long term recovery of patients with traumatic brain injury, for
which good accuracy rates were obtained, from 71% for MFDA to76% for FDA,
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when using the entire brain. This loss in accuracy for MFDA iscompensated by an
improvement in the interpretability of the obtained classifier. This improvement is
due to the introduced a priori structure that has been taken into account during the
modelisation process. When analyzing the white matter we obtain a 75% accuracy
for FDA and 77% for MFDA. MFDA separates the influence of spatial positions
and the influence of the different modalities.
Another observation is that the FDA weights give higher importance to the borders
of the brain, when the majority of the discriminant information should be found in
the white matter since there is evidence that damage in this region is a distinctive
feature of traumatic brain injury [2] as shown in the MFDA results. The MFDA
weight matrices seem to supply more information on the location of the discrimi-
nation regions, as shown in Figure 3. Moreover, FDA results in 8 weight matrices
(J×K classifier), complicating the interpretability, as opposed to only 2 weight ma-
trices (J+K classifier) obtained with MFDA which integrate all the modalities.
Future perspectives include an improvement of the accuracyof the classification of
the positive and negative outcomes. In order to further improve the interpretability
of the classifier a sparse MFDA algorithm is under development for reducing the
number of active variables in the MFDA model.
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