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Time domain modeling of soft faults in wiring system by a nodal
Discontinuous Galerkin Method with high-order hexahedral meshes
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A time domain nodal discontinuous Galerkin method is used to solve Maxwell equations and simulate reflectometry responses of
soft faults. In this paper shielding defects of coaxial cables or other shielded lines are considered. Hexahedral high order elements
are used for meshing. They allow to avoid bulky meshes compared to tetrahedral elements. A gaussian pulse is injected on the faulty
line. The reflectogram of the line containing the chafing soft defect is obtained and parameters such as the reflection coefficient or
the characteristic impedance of the fault are computed. These numerical values are compared to those obtained in experimental
investigations. The experimental impedances estimated using a classical transmission matrix method are in very good agreement
with those obtained by three-dimensional modeling.

Index Terms—Maxwell’s equations, Discontinuous Galerkin Method, Hexahedral meshes, Wire fault modeling, Reflectometry
diagnosis.

I. INTRODUCTION

DETECTING and repairing partial and small faults in
electrical wires before they become severe is a crucial

issue in aerospace and automotive industries [1]. The analysis
of electrical wires are performed by reflectometry [2]. This
method consists in determining the characteristics of the wires
from the measurement of the reflection pattern generated
by high frequency electrical signal at each impedance
discontinuities. The hard faults have been well studied and
are efficiently characterized by traditional reflectometry
techniques. Soft faults have been far less studied. They are
defined as very small, not necessary localized, change of
the wire characteristic impedance. The generated reflections
are very small and hard to detect. Suitable methods for the
recognition of soft fault signatures must be developed in order
to characterize their type and prevently repair the defective
harness before facing potentially severe safety issues. As a
matter of fact, a soft fault such as a chafed wire may either
cause dangerous arcing problems or evolve toward a hard
fault causing partial or total malfunctioning of the system.
Numerical modeling of wiring system generally consist
in combining two different approaches. Firstly, the voltage
potential function of the faulty section is computed by solving
a static 2D cross-sectional model based on Poisson equation.
The finite element method or the finite difference method
are widely used to perform calculations. After deducing
electric field, the Gauss theorem allows to determine the
cross section parameters such as, the resistance R, the
inductance L, the capacitance C, the conductance G and the
characteristic impedance Z . The return loss parameter S11 of
the fault is then obtained by introducing these cross section
parameters in a longitudinally model which can be based
on different approaches. The transmission matrix method
uses the impedance Z and consists in computing matrices to

evaluate the linear networks for the simulation of the system’s
impulse response. The telegrapher’s equations use the RLCG
parameters in two coupled equations of unknown the voltage
V and the current I . This one-dimensional system is often
solved by the finite difference method, both in frequency
domain or in time domain, and allows to describe the voltage
and the current at any point along the wire to obtain the
reflectometry response. Unfortunately this modeling approach
do not take into account the three-dimensional aspect of wave
propagating in the wire.

In this paper a three-dimensional model of a coaxial cable
with soft fault is presented. The presented work consists
in solving time domain Maxwell’s equations that describe
the propagation phenomenon, and computes different param-
eters such as the reflection coefficient or the characteris-
tic impedance of the faulty section. A nodal Discontinuous
Galerkin method is adopted for the spatial discretization. This
kind of approach has been recently introduced in the modeling
of electromagnetic compatibility problems. Its discontinuous
aspect allows to easily discretize objects of different sizes or
shapes and provides a better consideration of discontinuous
properties. These kind of methods are well adapted for parallel
computing because the generated matrices are block diagonals.
In this work, we adopt hexahedral spatial elements because
they lead to less bulky meshes than with tetrahedral ones, and
we consider high order elements in order to reduce numerical
dispersion error. The time domain reflectogram obtained is
treated through a fast fourrier transform algorithm to compute
the frequency signature of the fault. The obtained values are
compared to those issued from experimental measurements.
The experimental impedances estimated using a classical
transmission matrix method are then compared to the ones
obtained by three dimensional modeling



II. DISCONTINUOUS GALERKIN METHOD

Let E, H and J , respectively, the electric field and the
magnetic field and the current density. Time domain Maxwell’s
equations form a system (1) of 6 unknowns that are compo-
nents of E and H :{

ε∂tE −∇×H = −J
µ∂tH +∇× E = 0

(1)

where ε is the permittivity of the medium and µ its perme-
ability and J is the current density. In a conductive medium,
J = σE, with σ the conductivity.
The Discontinuous Galerkin methods are introduced for solv-
ing the conservative form of partial differential equations. This
method consists in discretizing the variational formulation of
(1) on each mesh element T of the domain Ω = ∪T .

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∫
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(2)
where φ and ψ are test functions. This approach is based on a
classical finite element method on each T and flux expressions
(n × H)num and (n × E)num are defined at the interfaces
to connect the neighboring elements. The mapping technique
is perfomed to increase the efficiency of the finite element
method [3]. Different formulations of the flux expressions
exist [4]. These following expressions resulting in different
numerical schemes are implemented. For α = 0, centred
fluxes are obtained and numerical schemes are dispersive. For
α = 1, upwind fluxes are obtained and numerical schemes are
dissipative.

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(3)

where [u] =
u+ − u−

2
and {u} =

u+ + u−

2
. The subscript

”-” denotes the values for filds in the current element, while
”+” is for the adjacent element.

III. NUMERICAL EXAMPLE

The chafing soft fault considered in this part is a small
snatching of the dielectric health of length lf = 50mm and
depth hf = 0.9mm as show in Fig.2. This kind of defect is
very observed when a cable is not in its nominal position any-
more and has moved against an edge. It is located in the middle
of a damaged coaxial RG58 cable of length Lc = 25cm.
The woven copper shield is of radius Re = 1.475mm, the
copper core radius is of radius Rin = 0.425mm. The inner
dielectric insulator is of relative permitivity εr = 2.25. Note
that the outer plastic sheath is not modeled. The simulation
consists in injecting an incident gaussian pulse in the cable.
Hexahedral third order elements are used for meshing. The
time integration is performed with a four stages explicit

Runge-Kutta method. The reflected fields are recorded on a
reflectogram. The treatment of this response allow to compute
the parameters such as the characteristic impedance or the
reflection coefficient of the soft fault. In a second time, the
reflection coefficient of the line is experimentally measured
using a Vector Network Analyzer and its impulse response
computed. By adjusting a classical transmission matrix model,
the cross sectionnal impedance of the defect is obtained.
The results obtained by the two methods are in very good
agreement and will be presented in an extended version of
this paper.

Fig. 1. Damaged coaxial cable of type dielectric sheath and its modeling.
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Fig. 2. The simulated reflectometry response of the chafing soft fault.
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