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Letters

A Possible Minimum Relevance Requirement for a Statistical Approach
in a Reverberation Chamber

Florian Monsef, Member, IEEE, and Andrea Cozza, Senior Member, IEEE

Abstract—Modal overlap in a reverberation chamber (RC) in-
volves, strictly speaking, an infinite number of modes in the field
statistics. The degree of overmodedness of an RC is often assessed
by introducing an arbitrary reference bandwidth in which a num-
ber of overlapping modes is computed. We introduce a statistical
model of the field in which the number of modes is rigorously finite.
The model is chosen such that the number of degrees of freedom
(DOF) of the field can be assessed. The number of DOF is assessed
by considering the degree of homogeneity of the average power
received by a linearly polarized antenna. It is considered that a
statistical approach requires at least a single degree of freedom.
Based on this criterion, the minimum frequency at which a statis-
tical approach would make sense is evaluated and compared to the
lowest useable frequency (LUF) commonly considered in EMC.

Index Terms—Cavity resonators, electromagnetic compatibil-
ity (EMC), modal analysis, parametric statistics, reverberation
chamber (RC).

I. INTRODUCTION

IN order to deal with the complexity of the electromagnetic
(EM) field inside reverberation chambers (RCs), a statistical

approach is commonly used to estimate the degree of homogene-
ity of the mean and maximum power level that can be expected
[1]–[3]. The power, referred to as P , is meant as being measured
on a given rectangular field component by a linearly polarized
antenna.

Due to wall losses and other loss mechanisms, the EM field
results from the superposition of modes regarded as random
normal modes. As soon as a certain number of modes is effi-
ciently excited, the field can be assumed to follow a Gaussian
law, a direct result from the central-limit theorem [4]. If the
number of excited modes happened to raise, fluctuations of P
about its mean value, i.e., its relative variance (or variability),
would remain steady. It corresponds to an overmoded regime for
which an infinite number of modes is ideally and theoretically
assumed. The relative variance of the measured mean power
tends to unity, as P follows a χ2

2 law. A recent study [5] has
highlighted the rate at which power variability tends toward its
asymptotic value.
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Each contributing mode could be thought of acting as a
degree of freedom (DOF). The larger the number of DOF,
the more Gaussian the field will be. Although intuitive, the
correspondence between the number of excited mode and the
number of DOF is not straightforward for the following reason.
The frequency response of the modes are of Lorentzian shape.
This means that the number of overlapping modes is rigorously
infinite. One could bound the number of overlapping modes
by setting a bandwidth of reference. In [6] for instance, the
−3 dB modal bandwidth was chosen. This choice can be a
metric that provides the degree of modal overlap, but does not
provide the number of modes that contribute to a given level
of field homogeneity [7] . In any case, whatever the chosen
bandwidth, the modal overlap involves theoretically an infinite
number of modes.

This study tackles the problem in another way. It proposes
an equivalent statistical model that, on the one hand, makes not
possible the modal overlap to be infinite, and on the other hand,
provides the same degree of homogeneity in a chamber, i.e.,
leads to the expected power variability. It is essentially a way to
circumvent the problem of the tails of the frequency response of
the modes. As we will see, the bandwidth over which the modal
overlap is regarded is however related to the choice of some
model parameters. Interestingly, this proposed approach allows
us to define properly the concept of DOF and highlights the
results derived in [8]. Finally, the model allows us to propose a
criterion that could be a possible answer to the pending question
dealing with the frequency from which a statistical approach
makes sense in an RC.

After defining what is meant by DOF in Section II, the equiv-
alent statistical model of the electric field will be exposed. The
assessment of the number of DOF will also be presented. Sec-
tion III will focus on the validation of the proposed model by
means of Monte Carlo (MC) simulation. Finally, the frequency
from which a statistical approach makes sense in an RC will be
presented in Section IV.

II. MODAL OVERLAP AND DEGREES OF FREEDOM

A. Degrees of Freedom: Definition

It is important to define what is meant by DOF in order to
understand the interest of the approach presented herein. Let us
consider a random variable Y expressed as follows:

Y =
N∑

i=1

Xi (1)
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where Xi are independent and identically distributed (i.i.d.)
random variables. The number N is defined as the number of
DOF of Y .

A typical example of such definition is met with a χ2
N variable

where the Xi are χ2
1 distributed.

The basic idea of the paper is to introduce a way to express
the electric field on the model given by (1), the interest of it will
become clearer thereafter.

B. Matching a Physical Model to a Statistical Field Model

The first step of the proposed approach consists in recalling
the physics that describes the electric field in an RC. To that aim,
a modal approach is used, and the electric field E at a position
r and at a frequency f can be expressed as follows [8], [9]:

E(r, f) =
∞∑

i=1

γi ψi(f) ei(r) (2)

where ei is the eigenvector of the ith mode, which is assumed
not to have a specific form, ψi is the frequency response of the
ith mode, and γi is the modal weight, i.e., the coupling constant
of the source to the ith eigenmode.

Limiting the analysis to a single position r, the following
factorization for the modal topographies can be used:

ei(r) = ei(r)ξ̂i(r) (3)

where ξ̂i(r) is a unitary polarization vector assumed to be uni-
formly distributed over 4π sr.

As explained in [9], it is convenient to regard the set {γiei(r)}
as a set of a single random variable γ̃i defined as

γ̃i = γiei(r) (4)

referred to as equivalent modal weights [9]. The real and imag-
inary parts of γ̃i are assumed to follow a centered normal law.

As done in [5], [8], and [9], we consider three sets of modal
parameters, i.e., γ̃i , ψi , and ξ̂i as random variables. The main
assumptions required are at two levels. First, the modal param-
eters of different sets are independent, second, the parameters
within the same set are i.i.d.

Now, the electric field described by (2) corresponds to a sum
of weighted random variables, the weight function being ψi (f).
If we want to highlight the number of DOF for the case of the
electric field, a rectangular shaped weight function has to be
considered; the weight function, referred to as ψi,e(f), would
be of width Bw and of height Aeq ∀i.

By doing so, we are introducing fictitious modes that have
rectangular shaped frequency response. So, these modes are,
or totally excited, or not at all. When these are excited, their
contribution is equal to their neighbors.

In other terms, we are introducing an arbitrary electric field
model. Accordingly, an equivalent electric field, referred to as
Ee(r, f) must be considered; it is still expressed as a modal
expansion as follows:

Ee(r, f) =
∞∑

i=1

γ̃i,e ψi,e(f) ξ̂i,e(r) (5)

Fig. 1. Illustration of the overlap using the fictitious-modes model. Given the
shape of their frequency response, only a finite number of those is excited—two
in the illustrated case.

where γ̃i,e , ξ̂i,e(r) and ψi,e(f) refer to equivalent modal quanti-
ties. However, these do not follow necessarily the same statistics
as the modal quantities in (2) as they are related to fictitious
modes.

The infinite modal-overlap issue at given frequency fw is then
circumvented as shown in Fig. 1. The sketch highlights indeed
that only a finite number of fictitious modes intervene in (5). It
follows that Ee(r, f) can be simplified and reads

Ee(r, f) =
N∑

i=1

γ̃i,e ξ̂i,e(r) (6)

where N is the number of DOF, i.e., of fictitious modes, whose
number will be specified in the next section. It is worth noting
that the expression in (6) follows indeed the form given by (1).

Provided that the degree of homogeneity of the average power
is the quantity of interest, its variability, referred to as ς2

P , must
remain the same no matter what model is used. In other terms,
(2) and (6) must lead to the same expression of the variability.
This one was shown to be expressed in [5] as

ς2
P = 1 +

8
5πMM

(7)

where MM stands for the average number of real modes over-
lapping in the −3dB modal bandwidth.

We chose γ̃i,e and ξ̂i,e(r) to share γ̃i and ξ̂i(r) properties,
respectively. This choice is motivated by the fact that the main
issue is only linked to the tails of the frequency responses.
Accordingly, we do not have any reason to consider that γ̃i,e

and ξ̂i,e(r) follow different probability laws than γ̃i and ξ̂i(r).
Now, if (6) is considered, by using the approach used in [5],

it is easy to show that ς2
P reads

ς2
P = 1 +

Γ − 2
N

(8)

where Γ is defined as

Γ =
μ4

μ2
2

ν4

ν2
2

κ4

κ2
2
. (9)

From [5] and [9], μn = Eγ̃ i , e [|γ̃i,e |n ] , κn = Eui , e [|ui,e |n ],
and νn = Eψ [|ψi,e (f) |n ], where Ex [·] is the ensemble average
operator applied to x.
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Given that γ̃i,e and ui,e follow a Gaussian and a uniform law,1

respectively, we can show that Γ reads

Γ =
18
5

ν4

ν2
2
. (10)

Moreover, the frequency responses of the model being of rect-
angular shape, we can easily show that

ν2 = m(fw )A2
eqBw (11a)

ν4 = m(fw )A4
eqBw (11b)

where m(fw ) is the modal density in mode/Hz at working
frequency fw .

If we use the real-modes model, we have ν2 and ν4 such that
[5]

ν2 =
πm(fw )
2BM

(12a)

ν4 =
πm(fw )
4B3

M

. (12b)

In order to match (11) to (12), the frequency responses of the
fictitious modes must be chosen such that

Aeq =
1

BM

√
2

(13)

and

Bw = πBM . (14)

We can make a total analogy with the equivalent noise band-
width, referred to as BN , of a filter; BN is the bandwidth of an
ideal filter (rectangular response) for which the power noise is
the same than the one that we have with a real filter. This concept
has been transposed herein such that the equivalent bandwidth
provides the same statistical moments. This bandwidth may be
referred to as the statistical bandwidth as proposed in [8].

If we had taken the electric energy density W as quantity
of interest, as done in [9] for instance, the related variability,
referred to as ς2

W would be the metric to consider. In order
to match the two first moments of W , we can show that the
conditions needed on Aeq and Bw remain unchanged.

It is worth stressing that other shapes (triangles, etc.) of fre-
quency responses could have led to finite modal overlap, but
those would still have behaved as weighting functions. In a strict
sense, the bandwidth, over which modal overlap is estimated,
depends on the shape of the frequency response. However, the
assessment of the number of DOF would not be possible for
nonrectangular shapes. So the coupling of the DOF constraint
enforces a single bandwidth value, the one given by (14).

C. Number of Degrees of Freedom

Now that the bandwidth Bw is identified as being π times the
modal bandwidth, the sketch of Fig. 1 allows us to assess easily
the number of fictitious modes, or in other words, the number
of DOF.

1See [5, Sec. III].

Fig. 2. Relative variances of the power measured along a given cartesian com-
ponent (upper curve) and of the electric-energy density (lower curve) obtained
by MC simulations using (2) (circles) and (6) (triangles). These are plotted as a
function of the number of degrees of freedom of the field.

The average distance between continuous modes being
1/m (fw ), the number N of DOF is such that

N = m (fw ) Bw = πMM . (15)

This number corresponds to what was called the “effective
number” of excited modes in [8]. The problem is tackled here
from another angle, highlighting that these “modes” correspond
in fact, from a statistical point of view, to a number of DOF.

We emphasize that the number N must not be regarded as
a number of real modes that contribute to the field statistics
otherwise leading to an improper variability level as shown in
[7]. This is especially striking at low modal overlap. For this
case, the modes that contribute to the statistics are poorly excited
due to their Lorentzian-shaped frequency response. This impose
to consider real modes spreading over a wide frequency band
(50BM according to [7] for MM = 1); with the DOF model,
the fictitious modes are entirely excited and the statistics does
not need such a wide frequency band to converge.

III. MODEL VALIDATION

The form obtained in (6) can make one skeptical about the
validity of such a simple equivalent model of the electric field.
In order to raise doubts, we have computed, on the one hand,
ς2
P and ς2

W using MC simulations for the following number of
DOF: 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, and 90. On the other
hand, we have computed MC simulations by using the real-
modes model given by (2). Fig. 2 shows the resulting relative
variances, i.e., those obtained using the physical model (circles)
and the equivalent model (triangles), respectively. In this proce-
dure, 5000 realizations and 500 independent stirrer states were
considered.

When using physical modes, the computation of the moments
of P assumes that a sufficient number of (real) modes is consid-
ered in the simulation as explained in [7]. In a strict manner, the
number of real modes included is always truncated. This does
not happen with the equivalent model, since this one is defined
as being composed of a finite number of DOF as expressed in
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(6). Besides, it is clear that the number of DOF taken into ac-
count in the simulations are integer values since the sum in (6)
is discrete. It allows us not to run into the question of setting a
sufficiently large bandwidth.

Relative variances obtained with the physical model on the
one hand, and with the statistical model on the other hand, are
found to be in good agreement. This allows us to validate the
fact that the relative variance obtained using (6) matches the
“real” one obtained by using classical modal theory.

IV. DOF AND RELEVANCE OF A STATISTICAL APPROACH

The advantage of the statistical model lies in the simple over-
lap model that it provides. If a single DOF is excited would
not it be a reasonable criterion to consider it as the minimum
requirement to consider the relevance of a statistical approach?
We propose to regard the frequency for which a single DOF is
considered as the minimum frequency from which a statistical
modeling of the field makes sense.

We emphasize to distinguish this frequency, referred to as fm ,
from the lowest useable frequency (LUF). This one is indeed
defined over a homogeneity criterion of the maximum stress
[10]. The link between the variabilities considered herein and
the maximum stress being not straightforward, fm and the LUF
are clearly different quantities. Note however that fm is likely
to be lower than the LUF.

In the light of the above, fm is such that

Ee(r, fm ) � Ee(r, f), N = 1. (16)

In order to determine fm , we must solve the following equa-
tion:

N (fm ) = m (fm ) πBM = 1. (17)

Recalling that BM = fm /Q, where Q ≡ Q(fm ) is the compos-
ite quality factor [11], relation (17) can be recast and fm must
satisfy

m (fm ) πfm = Q (fm ) . (18)

The frequency range under consideration corresponds to the
case where the RC is undermoded. Accordingly, we prefer to
adopt the following modal-density expression:

m(f) � 8πV f 2

c3
0

− a + b + c

c0
(19)

valid for the cuboid case, note that the second term is a correcting
term for low frequencies [11] where a, b, and c correspond to
the cuboid edges.

We observed in [8] that the quality factor of the chamber was
quite linear with the frequency. The study was performed for a
minimum frequency of 700 MHz, i.e., for a frequency above the
550 MHz LUF of the chamber. In order to have a more accurate
insight on the value of fm , we processed measurements between
200 MHz and 1 GHz. Note that for these measurements, the RC
was empty. Fig. 3 shows the evolution of the quality factor, the
left-hand term of (18) is superimposed. The intersection point
provides the solution for fm which turns out to be about 250
MHz, i.e., well below the LUF as expected.

Fig. 3. Estimated Q factor (symbols) with the average trend (bold line).
m(f ) ∗ πf (thin solid line) has been superposed. The intersection point high-
lights the frequency for which a single DOF is found.

V. CONCLUSION

A statistical model of the electric field has been presented.
It is based on a square frequency response of the modes which
allows us to highlight the number of DOF of the field. The
interest of this choice lies in the fact that only a strictly fi-
nite number of modes overlap. The number of DOF is defined
over a criterion based on the variability of the power measured
along a linearly polarized antenna and/or of the electric energy
density.

If less than a single DOF is considered, the relevance of a
statistical approach is cut down. Accordingly the frequency at
which a single DOF is excited was proposed to be regarded as
the lower bound from which a statistical approach would make
sense in a reverberation chamber. The frequency is expected to
be smaller than the LUF commonly considered in EMC.

REFERENCES

[1] Reverberation Chamber Test Methods, IEC Standard 61000-4-21, 2003.
[2] T. H. Lehman, “A statistical theory of electromagnetic fields in complex

cavities,” Interaction Notes, USAF Phillips Laboratory, NM, USA, Note
494, May 1993.

[3] J. Kostas and B. Boverie, “Statistical model for a mode-stirred chamber,”
IEEE Trans. Electromagn. Compat., vol. 33, no. 4, pp. 366–370, Nov.
1991.

[4] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
2nd ed. New York, NY, USA: McGraw-Hill, 1984, p. 168.

[5] F. Monsef and A. Cozza, “Variability and confidence intervals of the
power measured in a reverberation chamber,” IEEE Trans. Electromagn.
Compat., vol. 56, no. 5, pp. 1238–1241, Oct. 2014.

[6] L. Arnaut and G. Gradoni, “Probability distribution of the quality fac-
tor of a mode-stirred reverberation chamber,” IEEE Trans. Electromagn.
Compat., vol. 55, no. 1, pp. 35–44, Feb. 2013.

[7] F. Monsef, “Why a reverberation chamber works at low modal overlap,”
IEEE Trans. Electromagn. Compat., vol. 54, no. 6, pp. 1314–1317, Dec.
2012.

[8] F. Monsef and A. Cozza, “Average number of significant modes excited in
a mode-stirred reverberation chamber,” IEEE Trans. Electromagn. Com-
pat., vol. 56, no. 2, pp. 259–265, Apr. 2014.

[9] A. Cozza, “The role of losses in the definition of the overmoded condition
for reverberation chambers and their statistics,” IEEE Trans. Electromagn.
Compat., vol. 53, no. 2, pp. 296–307, May 2011.

[10] Reverberation Chamber Test Methods, IEC Standard 61000-4-21, 2011.
[11] B. Liu, D. Chang, and M. Ma, “Eigenmodes and the composite quality

factor of a reverberating chamber,” U.S. Nat. Bur. Stand., Tech. Rep. 1066,
1983.


