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On the Near-Field Sampling and Truncation Errors in Planar
Time-Domain Near-Field to Far-Field Transformation

Mohammed Serhir*

Abstract—This paper studies the effect of three important parameters in planar time-domain (TD)
near-field (NF) to far-field (FF) transformation. These parameters are the NF spatial sampling, the
NF measurement distance and the scan surface truncation. The effect of these parameters over the TD
FF accuracy are difficult to predict for Ultra Wide Band antennas. In this paper we aim to choose the
optimum NF measurement parameters guaranteeing accurate calculation of the time-domain far-field.
This allows the optimization of the computation time and memory requirements. Computations using
analytic array of elementary dipoles radiation pattern are used to study the impact of each parameter
in time-domain near-field antenna measurement. The comparison of the far-field results are presented
in time and frequency domains. In particular, it is shown that the choice of the measurement distance
and the size of the scan surface decide predominantly on the frequency band of accurate FF calculation.
The used formalism in this paper for the NF to FF transformation is based on the Green’s function.

1. INTRODUCTION

The Ultra Wide Band (UWB) antennas operating over large frequency bandwidth have attracted a lot
of interest over wide telecommunication applications [1-5]. The measurement of the radiation pattern of
these antennas has to be carried in a wide frequency band, which is time consuming. For these antennas,
the time-domain (TD) techniques seem to be more adapted than frequency-domain (FD) techniques.
Indeed, using a short pulse, one can measure the antenna transient response covering the frequency
band of interest. This measurement is fulfilled using near-field (NF) or far-field (FF) techniques [6].

In TD FF measurements we record the antenna under test (AUT) transient response when it is
excited by a specific pulse. The excitation pulse has to cover the frequency band of interest and supply
the AUT with enough power that allows the measurement with acceptable signal to noise ratio at far-
field distances. In TD NF techniques the tangential components of radiated field are collected in the
antenna vicinity over a scan surface (planar, cylindrical or spherical). Then, the measured data are
transformed to calculate the asymptotic behavior of the antenna far-field. For NF measurement, we use
pulse generators providing a trade-off between the output voltage magnitude and a short pulse rise-time
for wide frequency band characterization.

For accuracy improvement, the post processing tools such as TD gating technique are used to
filter out the multiple reflections occurring during the measurement [7]. The TD techniques allow
the radiation pattern measurement in non-anechoic environment as presented in [8]. These are well
adapted for the parasitic electromagnetic radiation emitted from electronic devices for electromagnetic
compatibility purpose [9]. Also, using TD techniques one can measure the radiation pattern of radar
structures fed by non-sinusoidal excitation signals. Particularly, when the feeding system is integrated
in the radiating antennas for radar applications.

The main difficulty related to the practical use of NF TD techniques concerns the ability to manage
the quantity of measured data. The required computation time and memory storage became problematic
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for large measurement surface and long-time window (long transient response). The quantity of NF
data depends on the used time and spatial sampling criteria. These are determined based on the
AUT excitation signal maximum frequency as presented in [10]. Authors in [11-13] present a different
NF sampling strategy that aims at representing the NF measurement data using plane polar samples
allowing a minimum redundancy in NF sampling. In the FD, Wang in [14] presents a detailed analysis
on the theory and practices for planar near-field measurement. The sampling strategies, the NF probe
characteristics, the filtering of the NF data and the evanescent modes effect have been addressed.
Authors of [15-18] have presented some experimental setups for NF or FF antenna measurement. These
papers did not present the sampling strategies used in the NF or FF measurements.

In planar TD near-field antenna measurement, the sampling approach is based on the assumption
that the time signal is band-limited to a maximum angular frequency ωmax = 2πc/λmin. This leads
to the NF sampling criterion ∆y = ∆z = λmin/2 and the AUT excitation pulse defines approximately
the frequency band of interest (minimum and maximum frequencies). This assumption gives a reduced
view of the reality of TD NF measurement practices. Considering the spatial sampling criterion based
on the highest frequency of the AUT excitation signal (λmin/2), as presented in [10], does not guarantee
the accuracy of the TD far-field calculation. Indeed, the AUT directivity depends on the frequency and
using the same measurement surface for time-domain FF calculation leads to a frequency dependent
truncation error. Also, the NF measurement has to be carried in the radiating NF zone (Fresnel zone).
This Fresnel zone distance depends on the AUT dimensions and the operating frequency. For NF TD
technique, the measurement distance has to be adapted to avoid the reactive NF zone for low frequencies.
These three parameters are responsible of the TD FF errors.

In this paper we propose to determine the AUT TD FF using different sampling criteria and for
several NF measurement distances. By comparing the far-field results, we show that the TD FF errors
are resulting from NF evanescent modes with low measurement distances, under-sampling and scan
surface truncation errors. It is difficult to distinguish between these errors in the TD FF directly. The
frequency-domain (FD) comparisons are presented to make out the effect of each error.

In the NF to FF transformation scheme we use the reconstruction formula to rigorously interpolate
the NF in the time-domain. We propose a simple and rigorous formulation to calculate the E-field
time derivative from the measured E-field as complementary development of the analysis presented in
[10]. The computation scheme for NF to FF field transformation is validated using analytic radiating
array composed of infinitesimal dipoles. The paper is structured as follows. In Section II, the NF
to FF formalism based on the Green’s function is described and the different formulation needed for
our analysis are commented. In Section III, we present the transformation results and a comparison
of the calculated far-field with the actual one in the time and the frequency domains. In Section IV,
recommendations and concluding remarks are presented.

2. TIME-DOMAIN NEAR-FIELD TO FAR-FIELD TRANSFORMATION

In this section, we first recall the equations expressing the NF to FF transformation based on the
Green’s formulation. The detailed developments can be found in [10]. Then, we present how to calculate
rigorously the E-field time derivative using the reconstruction formula. Finally, we present the analytic
expressions of infinitesimal dipole radiated field in the TD when it is excited by modulated Gaussian
pulse. This infinitesimal dipole is used to generate the TD radiation pattern of our AUT composed of
40 infinitesimal dipoles.

2.1. Time-domain near-field to far-field formalism

In this paper we use the time-domain near-field to far-field transformation algorithm based on the
Green’s function representation [10]. The antenna NF tangential components Ey and Ez are collected

over the plane x = xmeas. Equation (1) expresses the antenna far-field ~F (θ, φ, t) in the direction (θ, φ)
(spherical coordinates associated with the Cartesian coordinates) as a function of the time derivative of
the tangential components of the measured NF Emeas.



Running head 3

~F (θ, φ, t) = − 1

2πc

∫ +∞

−∞

∫ +∞

−∞
~er ×

[
~ex ×

∂ ~Emeas
∂t

(~r0, t+ ~er.~r0/c)

]
dy0dz0

with ~F (θ, φ, t) = lim
r→∞

r ~E(~r, t+ r/c) (1)

The measurement surface is defined by −Dmax ≤ y, z ≤ Dmax, and (1) is expressed in a truncated
form as

~F (θ, φ, t) = − 1

2πc

∫ +Dmax

−Dmax

∫ +Dmax

−Dmax

~er ×
[
~ex ×

∂ ~Emeas
∂t

(~r0, t+ ~er.~r0/c)

]
dy0dz0 (2)

The tangential components of the measured field vector ~Emeas are collected at a regular grid
described by ~r0 = xmeas ~ex + y ~ey + z ~ez with −Dmax ≤ y, z ≤ +Dmax. Using the sampling theorem [10],
we transform (2) to the following double summation

~F (θ, φ, t) = − 1

2πc

Ny∑
n=−Ny

Nz∑
m=−Nz

~er ×
[
~ex ×

∂ ~Emeas
∂t

(~r0mn, t+ ~er.~r0mn/c)

]
∆y0∆z0

where ~r0mn = xmeas ~ex +m∆y ~ey + n∆z ~ez, ~er = cos(φ) sin(θ)~ex + sin(φ) sin(θ)~ey + cos(θ)~ez (3)

We have developed a Matlab routine expressing (3) to calculate the FF using NF data calculated at
several measurement distances x = xmeas with different sampling criterion ∆y,∆z. In (3), the first step
in NF to FF transformation is the calculation of the time derivative of the measured NF at the instant
t+ ~er.~r0mn

c . The accuracy of the result depends on the chosen interpolation method. In our analysis,
we will use the reconstruction formula to determine the time derivative of the measured field and to
interpolate the field at the required instants.

2.2. The reconstruction formula

Let us define a function f(t) where fω is its Fourier transform. f(t) is a band limited function if for
ω ≥ ωmax

fω = − 1

2π

∫ +∞

−∞
f(t) exp(jωt)dt = 0 (4)

The reconstruction formula allows the exact interpolation of the band limited function f(t) using
the discrete points f(t0 + l∆t). f(t) is expressed for every t ∈ [t0, t0 + (Nt − 1)∆t] using the cardinal
series as

f(t) =
Nt−1∑
l=0

sinc

(
π

(
t− (t0 + l∆t)

∆t

))
f(t0 + l∆t) (5)

Using the discrete measurement samples ~Emeas(t0 + l∆t)1≤l≤Nt−1, one can express accurately
~Emeas(t) for every t ∈ [t0, t0 + (Nt − 1)∆t]. To do this, the Nyquist sampling criterion ∆t = π/ωmax
has to be respected. The reconstruction formula is used to interpolate the measured E-field as:

~Emeas(~r0mn, t) =
Nt−1∑
l=0

h(t) ~Emeas(~r0mn, t0 + l∆t)

with h(t) =
sin
(
π t−(t0+l∆t)

∆t

)
π t−(t0+l∆t)

∆t

(6)
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For t0 ≤ t ≤ t0 + (Nt − 1)∆t, the time derivative of the E-field is expressed rigorously as

∂ ~Emeas(~r0mn, t)

∂t
=

Nt−1∑
l=0

∂h(t)

∂t
~Emeas(~r0mn, t0 + l∆t)

where
∂h(t)

∂t
=

1

t− (t0 + l∆t)

(
cos(π

t− t0
∆t

− l)− h(t)

)
(7)

If the sampling Nyquist criterion is respected, (6) and (7) interpolate the E-field and its time
derivative. Here, we consider the antenna under test (AUT) composed of infinitesimal dipoles distributed
over the plane x = 0 as shown in Fig. 1. Each dipole is excited by a pulse and the TD NF is collected
over the plane x = xmeas at regularly spaced positions. In the next paragraph, we express the analytical
expression of the field radiated by an elemental dipole.

2.3. Transient radiation of an infinitesimal dipole

Let us consider a z-polarized elemental dipole placed at the origin of the coordinate system. This dipole
is excited by e(t), a sinusoidal current modulated by a Gaussian pulse written as

e(t) = e0 sin(βt) exp(−αt2)

whith α = 2/τ2 (8)

The transient radiated fields Er and Eθ are written in the spherical coordinates system

Er(r, θ, φ, t) =
2η

4πr2
cos(θ)

[
∂e(t− r/c)

∂t
+
c

r
e(t− r/c)

]
Eθ(r, θ, φ, t) =

η

4πr
sin(θ)

[
∂2e(t− r/c)

c∂t2
+
∂e(t− r/c)

r∂t
+
e(t− r/c)

r2

]
(9)

with

∂e(t)

∂t
= e0 [β cos(βt)− 2αt sin(βt)] exp(−αt2)

∂2e(t)

∂t2
= e0

[(
4α2t2 − β2 − 2α

)
sin(βt)− 4αβt cos(βt)

]
exp(−αt2) (10)

We have used (8)-(10) to generate the tangential components Ez and Ey radiated by 40 elementary
dipoles placed at the plane x = 0. The distance between dipoles is 5cm, β = 4π109rad/s and
τ = 0.8.10−9s. The dipole distribution is described in Fig. 1. The measurement surface is limited
by Dmax as shown in Fig. 2 and the TD radiation pattern in the cut planes ymeas = 0 and zmeas = 0
are presented in Fig. 3.
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Figure 1: The time-domain excitation signal (b) applied to each of the 40 dipoles composing the AUT
(a) and the magnitude of the excitation signal spectrum (c). The maximum of the spectrum is at 2GHz.
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(a) (b)

Figure 2: Near-field measurement grid at the distance xmeas from the AUT. The tangential components
Ey and Ez are regularly recorded over a square surface in the zy plane.

3. NUMERICAL RESULTS

In this section we are interested in evaluating the accuracy of the time-domain (TD) FF as a function of
the spatial sampling criterion ∆y and ∆z. The antenna under test (AUT) is composed of 40 elementary
dipoles excited by a sinusoidal current modulated by a Gaussian pulse. The NF measured at the distance
xmeas = 50cm = 5λ3GHz (xmeas = 5λ1GHz/3) is presented in the TD in Fig. 3 and in the FD in Fig. 4.

3.1. The near-field measurement surface truncation and the sampling criterion

3.1.1. The time-domain far-field results comparison

In the planar rectangular frequency-domain measurement technique, the NF is spatially sampled
using the Nyquist rule ∆y = ∆z = λ/2 with λ being the working wavelength. As presented
in [10] the TD NF is spatially sampled based on the AUT excitation signal maximum frequency
∆y = ∆z = λmin/2 = cπ/ωmax. For a short pulse (UWB antenna), the maximum frequency can
be F−3dB, F−10dB, F−20dB, F−30dB. F−XdB is the frequency for which the magnitude of the excitation
pulse spectrum is lower by X value compared with the normalized maximum level (0dB) of the central
frequency. For our case of study, as it is seen in Fig. 1, F−3dB ≈ 2.3GHz , F−6dB ≈ 2.4GHz,
F−10dB ≈ 2.6GHz, F−20dB ≈ 2.8GHz and F−30dB ≈ 3GHz. The maximum magnitude of the excitation
signal spectrum corresponds to the central frequency F0dB = f0 = 2GHz. We propose to express
F−3dB ≈ 1.15f0 , F−6dB ≈ 1.2f0, F−10dB ≈ 1.3f0, F−20dB ≈ 1.4f0, F−30dB = 1.5f0. In order to study
the effect of NF spatial sampling criterion over the calculated FF, we use χ to parameterize the spatial
sampling ∆yχ = ∆zχ = λ0/2χ, where χ = 1.1, 1.2, 1.3, 1.4, 1.5 and λ0 = c/f0. By comparing the
far-field calculated using different χ, we identify the influence of the chosen maximum frequency on the
accuracy of the calculated AUT FF. The NF time-axis is sampled using ∆t = 1

3F−30dB
to prevent the

time-domain aliasing error.
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Figure 3: The Ez (V/m) near-field radiated by the AUT (40 dipoles) as a function of the time. (a) The
Ez(V/m) at the plane cut zmeas = 0. (b) The Ez(V/m) at the plane cut ymeas = 0.
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Figure 4: The normalized Ez(dB V/m) NF measured at (xmeas = 50cm) radiated by the AUT (40
dipoles) as a function of the frequency. (a) The Ez(dB(V/m)) at the plane cut zmeas = 0. (b) The
Ez(dB(V/m)) at the plane cut ymeas = 0.

Over the planar surface at the distance xmeas = 50cm from the AUT, we calculate the near-field
at regularly spaced points with ∆yχ = ∆zχ = λ0/2χ and Dmax = 150cm (10λ0). Then, using (3) and
(7), we calculate the FF at the directions (θ = π/2, φ = 0), (θ = π/3, φ = 0), and (θ = π/2, φ = π/6)
for χ = 1.1, 1.2, 1.3, 1.4, 1.5. The Ez component of the FF is presented in Fig. 5 (a-c-e) and compared
with the reference FF determined directly from (9) and (10) for r going to infinity. This actual far-field
is labeled Ref in Fig. 5. The differences between the calculated FFs and the actual one are quantified
using the error expressed in (11). ENFtoFF (θ, φ, t) is the field calculated using NF to FF transformation
and ERef (θ, φ, t) is the actual far-field.

Error(θ, φ, t) = 100× ENFtoFF (θ, φ, t)− ERef (θ, φ, t)

max(ERef (θ, φ, t))t0≤t≤t0+(Nt−1)∆t
(11)

The errors of the curves in Fig. 5(a) are presented in Fig. 5(b) for different χ. The errors of the
comparisons presented in Fig. 5(c) are plotted in Fig. 5(d). Fig. 5(f) presents the errors of Fig. 5(e).
From Figs. 5 (b-d-f) the early-time far-field introduced in [10] as being the part of the radiated FF
without the truncation error is visually observed in Fig. 5(e). The measurement surface truncation
effect is visible at t = 7ns and 10ns ≤ t ≤ 13ns.
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Figure 5: Comparison of the NF to FF transformation results for different sampling criteria ∆y = ∆z =
λ0/2χ, Dmax = 150cm and xmeas = 50cm. The TD FF Ez component at (a) θ = π/2 and φ = 0, (c)
θ = π/3 and φ = 0 (e) θ = π/2 and φ = π/6. The errors of Figs. (a-c-e) are respectively (b) θ = π/2
and φ = 0, (d) θ = π/3 and φ = 0 (f) θ = π/2 and φ = π/6.

As explained in [10], the effect of the truncation error arrives chronologically after the actual FF
signal. This is presented in [10] for a point source. Nevertheless, in Fig. 5 (b-d-f), we notice quantitative
differences between the calculated far-fields (FFs) and the actual one even in the time portion of the
radiation pattern attributed to early-time far-field (4ns ≤ t ≤ 6ns).

In order to understand the origin of the errors for 4ns ≤ t ≤ 6ns, we have used a larger measurement
surface to calculate the FF (Dmax = 300cm) with the same sampling conditions. The obtained results
have shown the same error level for 4ns ≤ t ≤ 6ns. These errors are not attributed to the size of
the measurement surface. However, we have applied the same analysis (same excitation pulse, same
sampling conditions, same measurement distance) for a smaller antenna (4x4) composed of 16 dipoles
with 5cm between dipoles and Dmax = 150cm, the error level is smaller for 4ns ≤ t ≤ 6ns. Moreover,
this decreasing tendency is confirmed for 4 dipoles (2x2). The errors for 4ns ≤ t ≤ 6ns is directly linked
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to the size of the AUT.
As presented in Fig. 5(b-d-f), the error levels depend on the FF observation point (θ, φ). The

angular FF directions free from truncation error depends on three parameters, namely the measurement
distance (xmeas = 50cm), the AUT size (Ly = 45cm and Lz = 15cm) and the measurement surface
dimensions (Dmax = 150cm). Here, the critical angle is defined by αθ = 70deg and αφ = 68deg as
expressed in Fig. 2. This allows an angular FF area free from truncation errors for 30deg ≤ θ ≤ 150deg
and −68deg ≤ φ ≤ 68deg. This provides an indication and not the exact angular area, especially
when the measured field level in the edge of the measurement surface is of comparable levels with the
maximum measured field.

In Fig. 6 we show the FF errors calculated at the principal plane cuts θ = π/2 with −π/2 ≤ φ ≤ π/2
and φ = 0 with 0 ≤ θ ≤ π. The presented errors are for χ = 1.2, 1.3 and 1.5. It is seen from Figs. 6
(c) and (f) that the NF sampled using χ = 1.2 is under-sampled since the observable oscillations are
due to the aliasing errors. In Figs. 6 (a-b-d-e) we have less oscillations. The errors behavior do not
reveal early-time far-field region where the truncation error happens later in time compared with the
actual FF. The errors level for 4ns ≤ t ≤ 6ns (actual far-field) is of comparable level with the errors
for 7ns ≤ t ≤ 10ns. The errors for 0 ≤ θ ≤ 30deg, 150deg ≤ θ ≤ 180deg, −90deg ≤ φ ≤ −68deg, and
68deg ≤ φ ≤ 90deg are due to the truncation of the measurement surface as predicted by αθ = 70deg
and αφ = 68deg. In addition, the errors for χ = 1.5 and χ = 1.3 have comparable behavior as it is seen
from Figs. 6 (a-b-d-e). Consequently, comparing the TD FF results for this AUT, the weighting factor
χ = 1.3 (F−10dB ≈ 1.3f0) allows a comparable accuracy as χ = 1.5 (F−30dB ≈ 1.5f0).
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Figure 6: The FF Ez component error as a function of time for the plane cut θ = π/2. (a) for χ = 1.5,
(b) for χ = 1.3, (c) for χ = 1.2. The Ez error as a function of time for the plane cut φ = 0, (d) for
χ = 1.5, (e) for χ = 1.3, (f) for χ = 1.2.

3.1.2. The frequency-domain far-field results comparison

Using the NF sampling criterion ∆yχ = ∆zχ = λ0/2χ xmeas = 50cm and Dmax = 150cm we compare
the calculated far-fields in the frequency-domain (FD). These FFs are set by Fourier transforming the
previously calculated TD far-fields. The comparisons are carried out at the principal plane cuts θ = π/2
and φ = 0 at F−10dB (1.4GHz and 2.6GHz), F−20dB (1.2GHz and 2.8GHz), F−30dB (1GHz and 3GHz)
for different χ.
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It is seen in Fig. 4 that the AUT NF truncation level depends on the frequency and the field
truncation is more visible in the plane cut zmeas = 0 than the plane cut ymeas = 0. Hence, the
calculated far-field (from NF to FF transformation) is damaged by the truncation error in the cut plane
θ = π/2 more than the cut plane φ = 0. Let us recall that the angular area of the free error FF is for
30deg ≤ θ ≤ 150deg and −68deg ≤ φ ≤ 68deg.

In Figs. 7, we present the FD FFs comparison at the plane cut φ = 0. The FF for high and low
frequencies of F−XdB fits well the actual far-field when the sampling criterion reaches the Nyquist limit
(λ/2) for 30deg ≤ θ ≤ 150deg. Also, the FF results for 30deg ≤ θ ≤ 150deg are identical using χ = 1.3
and χ = 1.5 even for the frequency 2.8GHz. In Figs. 8, we compare the calculated FFs with the actual
one in the plane cut θ = π/2. As shown, the results are more sensitive to the truncation error compared
with the results of Figs. 7. The FFs for χ = 1.3, 1.4 and 1.5 are similar for −40deg ≤ φ ≤ 40deg.
The measured NF amplitude at the edge of the measurement surface is only −22.6dB lower than the
maximum NF amplitude in the plane cut zmeas = 0. Consequently, the FF for −68deg ≤ φ ≤ −40 and
40deg ≤ φ ≤ 68 presents important errors.
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Figure 7: Comparison of far-field Ez-component at the plane cut φ = 0 with Dmax = 150cm,
xmeas = 50cm and ∆y = ∆z = λ0/2χ for χ = 1.1, 1.2, 1.3, 1.4, 1.5. (a-d) For 1GHz and 3GHz
(F−30dB) respectively. (b-e) For 1.2GHz and 2.8GHz (F−20dB) respectively. (c-f) For 1.4GHz and
2.6GHz (F−10dB) respectively.

When the truncation level of the AUT NF measurement data changes significantly as a function of
the frequency, the measurement surface has to be adapted to satisfy the same truncation level for every
frequency. Otherwise, if the measurement surface stays unchanged, the AUT valuable measurement
frequency band is chosen as a function of the truncation level of the measured field. In particular,
when measuring the NF of the AUT in the time-domain, we can primarily verify by measuring in the
principal cut planes ymeas = 0 and zmeas = 0 the level of the E-field truncation level for every measured
frequency by Fourier transforming the time-domain NF. Then, we calculate the NF truncation level by
determining the level difference between the maximum E-field and the field level at the measurement
surface limit for each frequency. The AUT presents at the cut plane zmeas = 0 the truncation levels of
(22.58dB, 26, 18dB), (33.84dB, 24.40dB), (28.78dB, 33.35dB) and (27dB, 26.45dB) for F−30dB (1GHz
and 3GHz), F−20dB (1.2GHz and 2.8GHz), F−10dB (1.4GHz and 2.6GHz) and F−3dB (1.7GHz and
2.3GHz), respectively as presented in Fig. 9.
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Figure 8: Comparison of far-field Ez-component at the plane cut θ = π/2 with Dmax = 150cm,
xmeas = 50cm and ∆y = ∆z = λ0/2χ for χ = 1.1, 1.2, 1.3, 1.4, 1.5. (a-d) For 1GHz and 3GHz
(F−30dB) respectively. (b-e) For 1.2GHz and 2.8GHz (F−20dB) respectively. (c-f) For 1.4GHz and
2.6GHz (F−10dB) respectively.

The AUT NF measurement data guarantee truncation levels less than −30dB in the plane cut
ymeas = 0. As a consequence, the far-field is accurately calculated at the plane cut φ = 0 for
30deg ≤ θ ≤ 150deg. The NF plane cut ymeas = 0 presented in Fig. 9 (b) shows truncation levels
of −22.5dB for 1GHz (χ = 1.5) and 24.4dB for 2.8GHz (χ = 1.4) which are responsible of the FF
discrepancies in frequency and time domains. From Fig. 9 (b), the frequency 2.6GHz (χ = 1.3) is
the highest frequency allowing the lowest truncation error level. For this reason the errors presented in
the time-domain in Fig. 5-6-7 for χ = 1.3 were equivalent to the error associated with χ = 1.5. For
this AUT and this measurement surface (Dmax = 150cm), the maximum frequency to consider for the
time-domain NF sampling criterion is 2.6GHz (χ = 1.3). The FD FF results confirm these conclusions.
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Figure 9: The normalized Ez NF component for F−30dB (3GHz, 1GHz), F−20dB (2.8GHz, 1.2GHz),
F−10dB (2.6GHz, 1.4GHz), F−3dB (2.3GHz, 1.7GHz). (a) At the plane cut ymeas = 0. (b) At the plane
cut zmeas = 0.
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3.2. The near-field measurement distance and the sampling criterion

3.2.1. The time-domain far-field results comparison

Let us consider the NF measurement surface with Dmax = 150cm = 10λ0. We are interested in
studying the effect of the NF measurement distances xmeas where the TD NF data are collected with
∆yχ = ∆zχ = λ0/3 (χ = 1.5). The actual TD FF is compared with the ones calculated using the
TD NF to FF transformation for different measurement distances xmeas = 10cm (2λ0/3), 20cm(4λ0/3),
30cm(2λ0), 40cm(8λ0/3) and 50cm(10λ0/3). The errors resulting from these comparisons are presented
in Fig. 10 (a) and (b) for the directions (θ = π/2, φ = 0) and (θ = π/3, φ = 0) respectively. As it is
seen in Fig. 10(a-b), the error depends on the measurement distance, especially for 4ns ≤ t ≤ 6ns. The
error values decrease as the measurement distance increases.

Namely, it is difficult to set the limit of the radiating NF zone (Fresnel zone) in the TD NF
measurement. The Fresnel zone is defined based on the AUT size and the operating frequency. In TD
NF measurement we deal with a frequency band and the NF data measured below the Fresnel zone
contain evanescent modes that are probably responsible of the errors for 4ns ≤ t ≤ 6ns. Considering
smaller antennas, the Fresnel zone is rapidly reached and the errors for 4ns ≤ t ≤ 6ns are smaller
because less evanescent NF modes are taken into account. In [10] authors have considered a point
source and the Fresnel zone is rapidly reached (low evanescent mode) for that case. This explains the
early-time far-field free from truncation error as presented in [10].
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Figure 10: The Ez error as a function of time and as a function of the NF measurement distance (xmeas)
for the FF observation points (a) θ = π/2 and φ = 0, (b) θ = π/3 and φ = 0.

In addition, from Fig. 10(a), we can isolate the effect of the measurement distance error
(4ns ≤ t ≤ 6ns) since the truncation error happens later in time and the same error level is observed for
every measurement distance for 7ns ≤ t ≤ 11ns. If the measurement distance is larger than 2λ0 (30cm),
the error values for xmeas = 2λ0 are equivalent to the error values for xmeas = 50cm. In contrast with
Fig. 10(b), it is difficult to distinguish between the measurement distance error and the truncation
error.

3.2.2. The frequency-domain far-field results comparison

We are interested in studying in frequency-domain the effect of the measurement distance xmeas. The
FF results presented in Fig. 11 are determined by Fourier transforming the time-domain results of
the NF to FF transformation of NF data collected at xmeas = 10cm, 20cm, 30cm, 40cm and 50cm
with the sampling criterion ∆yχ = ∆yχ = λ0/3 (χ = 1.5). The comparisons presented in Fig. 10
show that TD FF errors decrease as the measurement distance increases. The time-domain errors are
helpless to identify which frequency is mostly sensitive to the measurement distance. In contrast, the FD
comparisons presented in Fig. 11 (a-d) show that the frequency (1GHz) is sensitive to the measurement
distance with a maximum difference of 1.47dB at φ = 0 and 1.45dB at θ = π/2. The frequency 1.2GHz
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presented in Fig. 11 (b-e) shows a maximum difference of 0.4dB. The other frequencies (greater
than 1.4GHz) stay unchanged (error ≤ 0.2dB) since the NF measurement distance is greater than a
wavelength.

As a conclusion, using Dmax = 150cm and xmeas ≥ 2λ0 the error values are of the same order for
χ = 1.3 and χ = 1.5. Hence, F−10dB ≈ 1.3f0 can be considered as the maximum frequency for NF
sampling of this AUT. We have tried to isolate the effect of three important measurement parameters
in the planar TD NF technique. These parameters are : the measurement distance (reactive NF), the
surface truncation (truncation error) and the NF sampling criterion (aliasing error). As it is presented
in Figs. 5-6-7 it is difficult to predict from TD FF errors the consequences over the AUT radiation
pattern in the frequency-domain. For this reason, the frequency-domain (FD) comparisons have been
presented to make out the effect of each parameter over the AUT FD FF.
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Figure 11: Comparison of the FF radiation pattern for xmeas = 10cm, 20cm, 30cm, 40cm and 50cm at
the plane cut θ = π/2, (a) at 1GHz, (b) at 1.2GHz, (c) at 1.4GHz. Comparison of the FF radiation
pattern at the plane cut φ = 0, (d) at 1GHz, (e) at 1.2GHz, (f) at 1.4GHz.

4. CONCLUSION

The effect of three parameters in planar time-domain near-field to far-field transformation have been
presented. The followed approach aims to optimize the computation time and memory requirements
by studying the near-field sampling measurement criterion. For antennas characterization using the
time-domain near-field technique, we have shown that multiple conditions have to be met to correctly
calculate the far-field. The size of the measurement surface decides predominantly on the frequency
band to consider. The NF spatial truncation is responsible for the frequency limitation. The maximum
frequency taken into account depends on the antenna excitation pulse and the behaviour of the AUT
near-field directivity as a function of the frequency. Once the maximum frequency is defined, the
sampling criterion is based on the Nyquist rate. Specific care has to be applied in choosing the
measurement distance which determine the minimum frequency to be considered. Comparisons in
TD and FD have been carried out to confirm these assumptions.
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