MATRIX METHOD FOR FAR-FIELD CALCULATION USING IRREGULAR NEAR-FIELD SAMPLES FOR CYLINDRICAL AND SPHERICAL SCANNING SURFACES
Résumé
—A matrix method which takes into account the probe positioning errors in cylindrical and spherical near-field (NF) measurement techniques is proposed. The near-field irregularities made impossible the determination of the cylindrical or spherical wave expansion from the measured data using classical techniques based on 2D Discrete Fourier Transformation (2D-DFT) in cylindrical case (CC) and orthogonality properties in spherical case (SC). The irregularities can be randomly distributed but known and the matrix method expresses the linear relation between the measured near-field and the corresponding cylindrical or spherical modal expansion coefficients. Once the coefficients of the cylindrical and the spherical wave expansions are known the far-field of the antenna under test (AUT) is easily determined. Accuracy of the matrix method is numerically studied as a function of the irregularities magnitude and for different noise levels (data Signal to Noise Ratio). Also, experimental results have shown the efficiency of the proposed technique.