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Abstract—In this paper, the state-space model of a VSC-MTDC
system is derived from individual components and a modified PI
section model for cables is proposed which considers both core
and screen conductors as well as their coupling. A modal analysis
performed on the complete system reveals the influence of each
component on the system modes and permits the identification
of a dominant DC voltage mode. This mode has proved to be
largely affected by the energy storage level of the DC grid, and
to be predominantly influenced by the voltage-droop parameters
of the converters, meaning that the DC voltage dynamic of the
MTDC system can be imposed thanks to a judicious choice of
the voltage-droop parameters.

Index Terms—HVDC, modal analysis, MTDC, state-space
model.

I. INTRODUCTION

The ever increasing offshore wind energy installed capacity
is pushing coastal nations to develop the HVDC technology
which is the only feasible solution to transiting large amount
of bulk power over long distances. In fact, due to the large
capacitance of shielded cables, the capacitive current of an
HVAC cable becomes so significant that no power can be
delivered above 75 km [1]. The proliferation of offshore wind
farms will most probably give rise to several DC links located
in the same geographical zone. DC reinforcements, extensions
and AC zone interconnections may lead to a Multi-Terminal
HVDC (MTDC) grid in the future. According to recent
publications, the Voltage Source Converter (VSC) is currently
the most appropriate and mature technology to interconnect the
wind farms and the mainland grids [2]. However, several issues
remain to be tackled before meshed HVDC grids become a
reality, such as DC fault current extinction (DC breakers),
power flow dispatch and DC voltage control. On this last topic,
the master-slave control technique used to operate the existing
HVDC links is not suitable for meshed HVDC grids [3]. The
voltage-droop control technique, described in [4]–[6], seems
to be the best solution to safely and efficiently controlling
MTDC systems.

Classical small-signal stability analysis, used for modal
analysis, is a powerful tool to acquire a better understanding
of an MTDC system. This paper first presents the small-
signal modeling of a VSC-HVDC converter and its state-
space representation with a similar approach to the one in

[7]. The choice of a model for the DC cables is investigated
as well. Then, by associating the multiple state-space models
of individual components, the state-space representation of a
5-terminal MTDC system is obtained and studied. In particu-
lar, a dominant mode which drives the DC voltage dynamics of
the DC grid is identified and traced. The participation factor of
each eigenvector is computed in order to study the sensitivity
of this DC voltage mode with regards to the other elements of
the MTDC system. This mode is linked to the energy storage
level of the system and is largely influenced by the value of
the voltage-droop parameter of the converters.

The paper is organized as follows. In Section II, the small-
signal modeling of a VSC-HVDC converter is presented and
the state-space representations of its elements are obtained. In
Section III, the choice of the DC cable model is explained
and the state-space representation of the 5-terminal HVDC
grid is obtained. Finally, in Section IV, the modal analysis of
the MTDC system is performed and the participation factor of
each element on the system modes is analyzed.

II. STATE-SPACE MODELING OF A VSC-HVDC
CONVERTER

This section aims at obtaining the state-space model of
each part of a VSC-HVDC converter and combining them
to generate the model of a full VSC-HVDC converter of the
form: 

d

dt
x = A.x+B.u

y = C.x+D.u

(1)

A. Control strategy of a VSC-HVDC converter

The global control of the VSC-HVDC converter is depicted
in Figure 1. Some of the converters are equipped with a
voltage-droop controller in order to participate in the DC
voltage control. In fact, a converter equipped with a voltage-
droop controller modifies its power reference according to the
DC voltage by moving its operating point (P ,Udc) along the
characteristic line with a slope of 1

kv
, where kv is the voltage-

droop parameter. The converters connected to offshore wind
farms are usually not equipped with a voltage-droop controller



since they inject into the DC grid all the available power
regardless of the DC voltage.
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Fig. 1. Control Strategy of a VSC-HVDC converter.

B. Model of the physical system and the current-control loop

The VSC-HVDC converter, modeled with its current control
loop, is the base structure for any VSC model. As shown in
Figure 1, the current control is carried out in the dq0 rotating
frame. If the switching losses are neglected, the active power
on the AC side of the converter matches the power on the DC
side of the converter, i.e.

vmd
isd + vmq

isq = usim (2)

This non-linear equation is linearized by using the first order
Taylor series. With each quantity composed of an operating
point (denoted by the capital letter and the subscript 0) and a
small variation (denoted by the Greek letter ∆), Equation (2)
can be linearized as:

∆vmd
Isd0 +∆isdVmd0

+∆vmq
Isq0 +∆isqVmq0

= ∆usIm0
+∆imUs0 (3)

The linearized current loop, the physical system on the AC
side of the converter as well as the physical system on the DC
side of the converter are depicted in Figure 2 (more details in
[6], [8], [9]), where xid and xiq are the outputs of the integral
part of the controllers corresponding respectively to the d-axis
and q-axis projection of the dq0 frame.

From Figure 2, the state-space model of the current-
controlled VSC is obtained, whose inputs are the current
references in the dq0 frame, the DC voltage and the d-axis
projection of the AC grid voltage, and whose outputs are the
AC currents in the dq0 frame and the DC current.

C. Outer loop model

1) Active and reactive power loops: If the dq0 frame is
chosen such that vgq = 0, the active power injected or
extracted from the AC grid is:

pg = vgdisd (4)

where a positive pg corresponds to power extracted from
the DC grid and injected into the AC grid. The outer loop
giving the d-axis current reference of a VSC is the active
power controller potentially combined with a voltage-droop
controller.

Equation (4) can be linearized as:

∆pg = ∆vgdIsd0 +∆isdVgd0
(5)

The block diagram of the active power loop is depicted in
Figure 3, where xp is the output of the integral controller. For
more information about the feed-forward choice, see [10].
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Fig. 3. Linearized active power loop.

The state-space model of the active power loop can be
obtained from Figure 3.

It is assumed that the q-axis current reference is provided by
a reactive power controller. Since the reactive power loop has
the same structure as the active power loop with the exception
of a negative sign (since qg = −vgdisq ), the reactive power
loop state-space model is similar to that of the active power
loop and is not further detailed here.

2) Voltage-droop controller: Some converters are also
equipped with the voltage-droop controller [4], [11] depicted
in Figure 4. This controller modifies the active power reference
∆p∗g of the active power loop of Figure 3.

This additional loop slightly alters the state-space model
of the d-axis outer loop of the converter since it adds two
additional inputs, ∆u∗

s and ∆us, such that the new active
power reference ∆p∗gv of the active power loop obeys:

∆p∗gv = ∆pgv +
1

kv
(∆us −∆u∗

s) (6)

III. STATE-SPACE MODELING OF THE 5-TERMINAL HVDC
GRID

A. DC cable model

Each DC line consists of two unipolar shielded cables (a
positive and a negative pole), as shown in Figure 5, where
cable screens are grounded at each end.

Initially, the DC cables were modeled by a classical PI
equivalent, without taking into account the cable shields.
However, replacing the classical PI equivalent model with the
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Fig. 5. DC lines layout.

more complicated but much more accurate wide-band model
[12] noticeably impacts the DC voltage dynamics. This is
illustrated in Figure 6, where the DC cable model’s impacts
on the DC voltage dynamics are compared in EMTP-RV.
It appears that the classical PI equivalent model produces
undesirable oscillations, which do not exist with the wide-
band model.

In-depth investigations revealed that the current flowing
through the screen conductor is actually an important source of
damping of the DC voltage. Therefore, a modified PI section
model including both core and screen conductors as well as
their coupling (modeled by a mutual inductance between these
two conductors, as depicted in Figure 7 for the positive pole
of the DC cable), have to be considered in order to acquire a
more accurate model of the DC cable yet much simpler than
the wide-band model.

Figure 6 shows that the response of this new model (called
coupled PI equivalent model) is very close to the wide-band
model reference. This validates the use of this DC cable model.
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Fig. 6. EMTP-RV simulation showing the impact of a power decrease on the
DC voltage dynamics of different DC cable models.
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According to Figure 7, the Kirchhoff current law gives:

ic1 = −i1 − il1 − g1
u1

2
ic2 = −i2 + il1 − g2

u2

2

the Kirchhoff voltage law gives:

ul1 =
u1

2
− u2

2
− r1il1 ul2 = −r2il2

and the evolution of the inductance currents and capacitor
voltages obeys:

duc1

dt
=

1

c1
ic1

duc2

dt
=

1

c2
ic2

Φ1 = l1il1 +m12il2 Φ2 = l2il2 +m12il1

ul1 =
dΦ1

dt
= l1

dil1
dt

+m12
dil2
dt

ul2 =
dΦ2

dt
= l2

dil2
dt

+m12
dil1
dt



which yields:

dil1
dt

=
l2ul1

l1l2 −m2
12

− m12ul2

l1l2 −m2
12

(7)

dil2
dt

=
l1ul2

l1l2 −m2
12

− m12ul1

l1l2 −m2
12

(8)

These equations give the state-space model of a DC line
where the output voltage of Figure 7 is simply multiplied
by 2 since each pole has the same length and the same
characteristics.

B. 5-Terminal HVDC grid model

The studied system is a 5-terminal HVDC grid intercon-
necting two offshore wind farms and three asynchronous AC
grids as depicted in Figure 8. The parameters of the MTDC
system are listed in Appendix.
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Fig. 8. Topology of the HVDC grid.

Converters 1, 2 and 3 are equipped with voltage-droop
controllers whereas converters 4 and 5 are equipped with
regular active-power loops since they are connected to offshore
wind-farms and inject all the power harvested by the wind-
farms into the DC grid. The initial power operating point
of each VSC-HVDC converter as well as their voltage-droop
coefficients1 are shown in Table I.

TABLE I
POWER REFERENCE VALUES AND VOLTAGE-DROOP COEFFICIENTS OF THE

VSC-HVDC CONVERTERS

Converter 1 2 3 4 5
P ∗
g (MW) 200 200 -50 -162 -200
kv (p.u.) -0.4834 -0.4834 -0.4834 -∞ -∞

The global state-space model of the full MTDC system is
obtained by summing the cable and station capacitors at the
connection nodes and by combining the multiple state-space
models [14], as shown in Figure 9. The final state-space model
of the complete MTDC system consists of a 60x1 input vector,
a 42x1 output vector, a 47x1 state vector, a 47x47 A matrix,
a 47x60 B matrix, a 42x47 C matrix and a 42x60 D matrix.

1The voltage-droop parameter values were computed to achieve a time
response of 100 ms, see [13] for more information.
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Fig. 9. System association scheme used for the state-space representation of
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IV. MODAL ANALYSIS OF THE 5-TERMINAL HVDC GRID

A modal analysis can now be performed on the final state-
space model of the 5-terminal HVDC grid presented in Figure
8. Table II summarizes its eigenvalues and indicates the rela-
tive participation of the state variables to the different modes
(corresponding to their respective eigenvalues), quantified by
the state variables participation factors [15].

The 47 modes (size of the state vector) are divided into
two distinct groups. The first group is associated to the DC
grid (λdc1,...,16 ) while the second group corresponds to those
associated to the VSCs (λc1,...,31 ):

• Modes associated to the eigenvalues from λdc1 to λdc8

are mostly affected by the elements of the DC grid but
are also influenced by the parameters of the active power
loops (state variable xp) of the three converters equipped
with a voltage-droop controller.

• Modes associated to the eigenvalues from λdc9 to λdc16

depend on the topology of the HVDC grid and are
exclusively affected by the elements of the DC cables.
These modes can be identified in the state-matrix of the
HVDC grid alone (without the converters).

• Modes associated to the eigenvalues from λc1 to λc14

correspond to those inner current loops (state variable xiq

for the q-axis, xid for the d-axis) of the converters whose
outer loops (state variable xq for the reactive power loop,
xp for the active power loop) are not impacted by the



TABLE II
MODAL ANALYSIS OF THE 5-TERMINAL HVDC GRID

Eigenvalues Freq.
(Hz)

Damp.
ratio Dominant states

λdc1,2 −56.7± j1028 164 0.055 xp1 , xp2 , xp3 ,
λdc2,3 −56.9± j995 158 0.057 ∆us1 , ∆us2 , ∆us3
λdc5,6 −57.1± j724 115 0.079 ∆us4 , ∆us5

λdc7,8 −57.7± j635 101 0.090

il11
, il21 , il14 ,

il24
, il15 , il25 ,

∆us1 , ∆us2 ,
∆us3 , ∆us4 , ∆us5

λdc9,10 −117.1 – – il11
, il21 , il12 ,

λdc11,12 −4.47 – – il22
, il13 , il23 ,

λdc13 −4.45 – – il14
, il24 , il15 ,

λdc14 −4.49 – – il14
, il24 , il15 ,

D
C

G
ri

d

λdc15,16 −0.604 – – il25
, il16 , il26 ,

λc1...14 −195.2± j230 37 0.650
xq1...5 , xiq1...5

,
xp4 , xp5 ,
xid4

, xid5

λc15...18 −193.8± j226 36 0.650
∆us1 , ∆us2 ,

∆us3 , ∆us4 , ∆us5 ,
xid1

, xid2
, xid3

,

λc19,20 −184.0± j238 38 0.611
xid4

, xid5
,

il11
, il21 , il12 ,

il22
, il13 , il23 ,

λc21 −22.6 – –
il14

, il24 , il15 ,
il14

, il24 , il15 ,
il25

, il16 , il26
λc22 −28.8 – – ∆isd1...3

C
on

ve
rt

er
s

λc23...31 −29.7 – – ∆isd1...5 , ∆isq1...5

behavior of the MTDC system. In fact, the reactive power
loops of all five converters, as well as the active power
loops of converters 4 and 5, are independent of the MTDC
system since their output remains invariably constant. As
anticipated, the eigenvalues of these modes correspond
to the dynamics of the inner current loops (tuned for a
response time of 15ms).

• Contrary to the eigenvalues from λc1 to λc14 , modes
associated to the eigenvalues from λc15 to λc20 corre-
spond to the inner current loops (d and q-axis) of the
three converters whose active power loops are highly
impacted by the behavior of the MTDC system through
the DC voltage droop. In particular, the modes associated
to the conjugate eigenvalue pair λc19 and λc20 correspond
to complex interactions between the voltage-droop con-
trollers of converters 1 to 3, the converters’ inner current
loops and the DC grid. Those two modes describe the
dynamic of the DC current in the whole MTDC system.
While the eigenvalues λc15 to λc18 coincide with the
dynamics of the inner current loops (tuned for a response
time of 15ms), the modes associated to the conjugate
eigenvalue pair λc19 and λc20 are coupled to the DC
voltage dynamics and are highly volatile with regards
to the voltage-droop parameter, as shown in Figure 10,
where the root locus of the state matrix A are shown for
different voltage-droop gains ranging from 0 to 0.5 p.u.

• Similar to the modes associated to λc19 and λc20 , the
mode associated to the eigenvalue λc21 corresponds to
complex interactions between the voltage-droop con-
trollers of converters 1 to 3, the converters’ inner current
loops and the DC grid. However, contrary to the DC
current modes (associated to the conjugate eigenvalue
pair λc19 and λc20 ), this single mode describes the dy-

namic of the DC voltage in the whole MTDC system.
Despite the fact that the voltage-droop parameters were
originally tuned to achieve a DC voltage response time
of 100ms (tuning which does not take into account the
energy storage level of the DC grid, see [10] for more
details), the interaction between the DC cables capacitors
and the VSCs modifies the overall dynamics of this mode
to give a response time of 130ms, which shows that the
DC voltage dynamic is impacted by the energy storage
level of the DC grid. As shown in Figure 10, because of
the coupling between the DC current modes (associated to
the conjugate eigenvalue pair λc19 and λc20 ) and the DC
voltage mode, the eigenvalue pair λc19 and λc20 moves
to the left with higher values of the droop gain while the
eigenvalue λc21 moves to the right with higher values of
the droop gain.

• Modes associated to the eigenvalues from λc22 to λc31

correspond to the converters’ outer loops used to compute
the current references of the inner current loops. As
expected, the modes associated to these eigenvalues have
dynamics corresponding to the outer loops (tuned for a
100ms response time). In particular, the mode associated
to the eigenvalue λc22 corresponds to the additional active
power injected or withdrawn from the DC grid by the
converters equipped with a voltage-droop controller.

The root locus of Figure 10 indicates that the DC voltage
response time can range from 15ms (corresponding to voltage-
droop parameters close to 0.001 p.u.) to 150ms (corresponding
to voltage-droop parameters close to 0.5 p.u.) since the eigen-
value λc21 ranges from −225 to −20. This shows that the
DC voltage mode is largely influenced by the voltage-droop
parameters of the converters, and more importantly, that a fine-
tuning of the voltage-droop parameters enables the selection of
any desired response time for the DC voltage dynamic between
15 to 150 ms, as long as the storage level of the DC grid
remains unchanged.
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Fig. 10. Root locus of the state matrix A for voltage-droop parameters ranging
from 0 to 0.5 p.u.

Figure 11 displays the results of an EMTP simulation of
the DC voltage of the 5-terminal MTDC system for three



different voltage-droop parameters, in the case of a wind-farm
production loss. The figure shows that the time response of
the DC voltage corresponds to the time response of the mode
associated to the eigenvalue λc21 as depicted in Figure 10. This
demonstrates that the DC voltage dynamic is highly influenced
by the voltage-droop parameters and that a judicious tuning
of the voltage-droop parameters can make the DC voltage
response time attain a desired value.
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Fig. 11. DC voltage at the converter 1 terminal for different values of the
voltage-droop parameter, for the same wind farm production loss.

V. CONCLUSION

In this paper, a methodology for small-signal analysis of
multi-terminal HVDC systems has been proposed, involving
the computation of the state-space model of each element of
the HVDC grid separately and then combining them all into a
global state-space representation for the entire MTDC system.

A comparison of time-domain simulations between a sim-
plified and a more detailed model of a DC cable revealed that
the shielded conductor damps the cable natural frequencies.
A new cable model taking into account the coupling between
the core and the screen of the cable has been proposed and
validated. The state-space representation of this new model
has been presented.

Finally, a modal analysis has been performed on the global
state-space model of the MTDC system. The eigenvalue
analysis together with a participation factor study of the
eigenvectors enabled the identification of the MTDC system’s
modes. In particular, the existence of a single mode corre-
sponding to the DC voltage dynamics of the system has been
established. This mode has proved to be largely affected by the
energy storage level of the DC grid, and to be predominantly
influenced by the voltage-droop parameters of the converters,
meaning that the DC voltage dynamic of the MTDC system

can be imposed thanks to a judicious choice of the voltage-
droop parameters.

APPENDIX
VSCs data:
Sn = 375 MVA Usn = 640 kV Vmn

= 230 kV
Ls = 0.3 p.u. Rs = 1.22E-4 p.u. Cs = 30 µF

DC lines specifications:
DC line 1 2 3 4 5 6

Length (km) 150 150 175 150 125 200

DC cables data:
r = 5.347 mΩ/km l = 3.740 mH/km c = 0.247 µF/km
g = 6.207E-8 S/km imax = 2265 A
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