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Abstract

This paper deals with the prediction of the deformation of a multi-layer transformer core made of an assembly
of anisotropic ’E-shaped’ and ’I-shaped’ sheets. This magneto-mechanical coupled problem is solved by a stepping
finite element method sequential approach: magnetic resolution is followed by mechanical resolution. A 3D
Simplified Multi-Scale Model (SMSM) describing both magnetic and magnetostrictive anisotropies is used as
the constitutive law of the material. The transformer core structure is modeled in 2D and an homogenization
technique is implemented to take the anisotropic behavior of each layer into consideration and define an average
behavior at each element of the finite element mesh. A three-layers transformer prototype is fabricated with Hi-B
grain-oriented iron-silicon alloy. Experimental measurements are carried out and compared to the modeling results.
Small discrepancies are observed and discussed.

Index Terms

Magnetostriction, transformers, multiscale modeling, iron-silicon alloys, finite element method.

I. INTRODUCTION

THE Aeronautic world is undergoing deep changes associated with the increase of on-board electrical
equipments. The electrical power supplied by the generators plugged to the turbojet has to be

increased to feed these systems. This power is commonly transformed through power electronic devices
and transformers to adapt voltage, current and frequency to the final on board user. Therefore the increase
of the electrical power leads to an increase of the size and mass of these devices at constant power to
mass ratio.

The use of magnetic materials presenting a higher power density (e.g. iron-cobalt) could be a solution
to reduce this supplementary mass of 3-phases transformers. Such prototypes generate unfortunately a
loud noise in operation caused by the interaction between the transformer’s magnetic stray field and the
current-carrying winding loops [1] and also by periodic deformations of sheets linked with the structure
of the transformer core [2] [3]. This deformation has two origins: i) elastic strain associated to magnetic
forces appearing on the free surface and volume; ii) spontaneous magnetostriction depending on the
local magnetic state of the material [4]. Magnetic forces, calculated by the virtual work method [5],
are induced by the field on a medium with inhomogeneous permeability. They are usually considered
negligible in transformer structures due to small flux leakage (excitation below the magnetization saturation
of sheets and small air gaps). Magnetostrictive strain is associated with the re-organization of magnetic
domains that usually subdivide each grain of a polycrystal. They are characterized by a magnetization
vector ~M whose magnitude equals the saturation magnetization of the material, and free magnetostriction
strain ✏

µ

depending on the magnetostriction constants and magnetization direction. The latter is usually
associated to some specific crystallographic direction depending on the magneto crystalline anisotropy.
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When a magnetic field ~H is applied, magnetization vectors rotate toward the direction of the applied field
leading to a displacement of domain walls separating magnetic domains, increasing the volume fraction
of domains aligned with the field. Thus a deformation appears at the macroscopic scale which is induced
by the free strain ✏µ of the considered domains. The crystallographic texture has a strong impact on
the magnetostrictive behavior [6], which in our case leads to magnetic and magnetostrictive anisotropies
(coupled magneto-mechanical phenomena with isotropic magnetic and magnetostrictive behaviors are
studied in [7] [8]).

In this work, a complete chain from the material and external loading to the prediction of the transformer
deformation is presented. It involves: i) a multiscale constitutive law able to give an accurate prediction
of local magneto-mechanical behavior and fast enough to allow its implementation in a finite element
modeling; ii) an homogenization procedure to reduce the 3D real problem in a 2D finite element modeling;
ii) a finite element modeling indicating the prediction of displacement fields. A comparison to experimental
results using Grain-Oriented (GO) silicon steel sheets is finally proposed. Indeed this material exhibits
a very well known and understood anisotropy and a high level of magnetostriction along the transversal
direction (TD) perpendicular to the rolling direction (RD) [6]. This behavior, the structure geometry and
the boundary conditions generate some specific deformation harmonics measured thanks to a dedicated
benchmark. Modeling results are in accordance with experimental data, but small discrepancies are
observed and discussed

II. THREE-PHASE TRANSFORMER AND STATE OF THE ART

Sheet 'I'

Sheet 'E'

(b)

(c)

cutting plane (a)

Fig. 1. Transformer core structure : ’E-shaped’ sheet (yellow region) + ’I-shaped’ sheet (red region) with indication of RD (white arrows).
RD of the ’E-shaped’ sheet is vertical and RD of the ’I-shaped’ sheet is horizontal.

A three-phase transformer is made of three sets of primary and secondary windings wounded around the
three legs of the transformer. The transformer core is usually made of very soft ferromagnetic materials
for higher efficiency. The transformer core is made of an assembly of hundreds of thin sheets to limit
the eddy current and ensure a homogeneous magnetic field through the thickness. Associated to their
forming process (hot/cold rolling, heat treatments), transformer sheets usually exhibit anisotropic magnetic
behaviors. Classical on-board electrical transformers are for example made of Non-Oriented FeSi or FeCo
alloys that exhibit the highest induction at a given magnetic field level along the rolling direction (RD).
The transformer core is consequently designed to increase the volume of material offering improved



2

magnetic properties (namely permeability) in the direction of magnetic field. Since the transformer core is
the result of an assembly of sheets in form of ’E-shaped’ and ’I-shaped’ for winding facility, ’E-shaped’
and ’I-shaped’ sheets are cut along the rolling direction of the lamination as shown in Fig.1 (white arrows
indicate the RD). They are positioned alternatively on top or on bottom of the transformer in order to
limit the parasitic air-gap [9]. This point is illustrated in figure 1 where red and yellow parts indicate
’I-shaped’ and ’E-shaped’ sheet respectively in case of a three layers transformer. Layers are composed
of two families, family 1 and family 2 hereafter. (Family 1 corresponds to the layers with ’I-shaped’
sheet on top and ’E-shaped’ sheet on bottom. Family 2 corresponds to the layers with ’I-shaped’ sheet on
bottom and ’E-shaped’ sheet on top.) Sectional views in different regions of this transformer are presented
in figure 2. The sectional surface of sheet in regions (a), (b) and (c) are composed of {2/3 RD + 1/3
TD}, {1/1 RD} and {1/3 RD + 2/3 TD} respectively, leading to some variations of the average along the
magnetic circuit.

RD

RD
TD

(a)

RD
RD
RD

(b)

TD
RD
TD

(c)

Fig. 2. Sectional view of the transformer prototype in different regions.

The noise generated by transformers has been studied for several decades and the related literature is
abundant. Transformers generating noise can be separated into load noise [1] [10] and no-load noise. The
former is due to magnetic interactions (especially Lorenz force) between the current carrying windings
and transformer’s magnetic stray field. The latter is caused by core vibrations which are more complex
resulting from many phenomena. Up to now, several factors have been claimed to have relevance to the
flux distribution and core vibrations, such as bolt holes [11], core clamping [12] and core structures [2].
Many works have been done at several levels:

• Electrical steel sheet level: Recently, magnetostriction of these electrical sheets under rotational
magnetization has been characterised in [13] [14] and modeled in [15] , giving better understanding
of the magneto-mechanical behavior in T-joint. Modeling of transformer laminations with hysteresis
loop in direction RD and TD with or without applied stress have been studied in [16] [17]. These
works bring fundamental information for the precise modeling of transformers’ dynamic behavior.

• Laminated structure level: With a set of electrical steel sheets, an early study shows that the magnetic
flux transfers from lamination to lamination during the magnetization process [18]. Recent proposed
homogeneous models, taking account of the laminated structure is able to express the flux density,
force density, displacement distributions of the real laminated core [19] and more precisely the
equivalent permeability of the over-lap joints [20]. But these are limited to an isotropic in-plane
magnetic behaviour. A study of in-plane and out-of-plane vibrations is carried out using a set of
electrical steel sheets [21], which reveals the importance of research on the cross-axis transmission
of vibrations.

• Entier transformer: Those early relevance studies reveal the relevance of magnetostriction and
magnetostatic forces to the vibration and noise of transformer cores [9] [22] [23]. Precise measurement
of the magnetic flux in the transformer core [24] and thourough spectral analysis of magnetostriction
induced forces [26] have also been studied. Although there are various works related to the estimation
of the transformers’ noise emission, rare literature is concerning a complete modeling chain of an
entire transformer with laminated structure, from material characterization to the estimation of core
vibration.
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Besides, several techniques exist to reduce the core vibrations. Step-lap design of the joints [27] in a
transformer core is known to reduce core noise because of the better distribution of magnetic flux. Also,
attempts are made to reduce the air gap between the lamination in order to eliminate the magnetic force
in plan and off plan. This can be done by filling the air gap with nanocrystalline soft magnetic composite
material (NSMC) with high permeability [28].

In this paper, only in-plane core vibration is considered which generates part of the no-load noise.
Modelling is carried out under hypotheses of no statical nor dynamic losses. Magnetostrictive behaviors
under rotational induction are not taken into concern. All these simplification are made to make the
calculation possible to carried out in a personal computer within a reasonable time.

III. CONSTITUTIVE LAW

A. Multi-Scale Model
A constitutive law of the magnetic material is first required for the modeling. A simplified version of a

full multi-scale model (MSM) [29][6] is used. It involves a simplification of the description of a polycrystal
through an equivalent single crystal that will exhibit approximately the same anisotropies, magnetic and
magnetostrictive behaviors as the polycrystal. Using this simplification, the degrees of freedom are reduced,
so that the whole numerical process can be carried out with a personal computer. In this simplified model,
the magnetic material is described as a set of magnetic domains ↵ with saturation magnetization M

s

and
random orientation ~�↵

⇣
~M↵

= M
s

~�↵

⌘
.

The local free energy of a magnetic domain W↵

tot

is expressed as the sum of four contributions (1): the
magneto-static energy W↵

mag

, the magneto-crystalline energy W↵

an

, the configuration energy W↵

conf

and the
magneto-elastic energy W↵

me

.

W ↵

tot

= W ↵

mag

+W ↵

an

+W↵

conf

+W ↵

me

(1)

W↵

mag

(equation (2) - where µ0 is the vacuum permeability) tends to align the local magnetization ~M↵

along the magnetic field ~H considered as homogeneous over the crystal.

W↵

mag

= �µ0
~M↵ · ~H (2)

W↵

an

(equation (3)) tends to align the magnetization along the easy axes, that explains the existence
of domain microstructure. In the form proposed here, K1 is the so-called magneto crystalline energy
constant. P is a 4

th order tensor that describes the magneto-crystalline anisotropy in the crystal frame (CF
- (xyz)). Q is a simple transformation matrix from CF to the sample frame (SF - (XY Z)). tQ denotes
its transposed form. The combination of the transformation matrix with the anisotropy matrix allows the
expression of a large variety of anisotropies at the macroscale. Several definitions of P (using a 6⇥6 Voigt
representation) are given in equation (4) for cubic symmetry (a), uniaxial symmetry of axis x (b) and
isotropy (c).

W↵

an

= K1 (~�
↵ ⌦ ~�↵

) :

�
Q · Q · P · tQ · tQ

�
: (~�↵ ⌦ ~�↵

) (3)
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1
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(4)
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W↵

me

(equation (5)) is the magneto-elastic energy. It is written as a function of the free magnetostriction
strain ✏↵

µ

(given by equation (6) in the CF and equation (7) in the SF) and of the stress tensor � over
the crystal. �

i

are the direction cosines of the magnetization vector in CF and �100 (resp. �111) is the
saturation magnetostriction strain along the direction < 100 > (resp. < 111 >) of the single crystal. A
stronger simplification (regarding for example the definition of a unique magnetostrictive constant �100 =

�111 = �
s

) is possible to describe quasi isotropic polycrystal thanks to the simplified MSM [16]. W ↵

conf

is a configuration term that accounts for the possible non randomness of the initial domain configuration
(in the absence of applied magneto-mechanical loading) due for instance to plastic deformation [30] or to
surface (demagnetizing) effects [6]. C is a constant that defines the maximum level of the configuration
energy. N matrix allows the description of initial dissymmetries in the domains distribution. It is usually
defined as a normalized diagonal matrix in the sample frame (9). In case of macroscopic demagnetizing
effects, N can be considered as a so-called form effect matrix [6]. N

ii

varies from zero to one, in relation
with the sample geometry.

W ↵

me

= �� : ✏↵
µ

(5)

✏↵
µ

CF

=

3

2

0

@
�100(�

2
1 � 1

3) �111�1�2 �111�1�3
�111�1�2 �100(�

2
2 � 1

3) �111�2�3
�111�1�3 �111�2�3 �100(�

2
3 � 1

3)

1

A

CF

(6)

✏↵
µ

= Q · ✏↵
µ

CF

· tQ (7)

W ↵

conf

= C t~�↵ · N · ~�↵ (8)

N =

0

@
N

xx

0 0

0 N
yy

0

0 0 N
zz

1

A

SF

(9)

Once the free energy is known for a given domain ↵ of direction ~�↵, its volume fraction f
↵

is calculated
according to an explicit Boltzmann-type relation (10) [31], [29].

f
↵

=

exp (�A
s

W↵

)Z

↵

exp (�A
s

W ↵

)

(10)

A
s

is an adjusting parameter related to the initial magnetic susceptibility �0 of the material in absence
of external or configuration loading (11).

A
s

=

3�0

µ0 M2
s

(11)

The magnetic and magnetostrictive behaviors of polycrystal are defined as the average values of local
quantities (12)(13).

~M =

Z

↵

f
↵

~M↵ (12)

✏
µ

=

Z

↵

f
↵

✏↵
µ

(13)

The simplified MSM gives finally the average magnetostriction strain and magnetization at a given
magnetic field ~H and stress �.
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B. Magnetic and Mechanical Homogenization of Two Media
The calculation in reasonable time requires to use a 2D description of the transformer structure ((X, Y )

plane). Figure 2 shows clearly that the reduction of the 3D structure into 2D must take the disposition and
behavior of each layer into account. An homogenization strategy of a heterogeneous problem is required
to extract the average behavior from the behavior of each family of layer. The following assumptions are
considered:

• Sheets are normally very thin, allowing to assume a 2D homogeneous magnetic field using the
classical condition of tangential magnetic field continuity. ~H1 and ~H2 denoting the magnetic field in
each family, the following relation is obtained (14).

~H1 =
~H2 =

~H (14)

• Sheets are normally very thin and considered as perfectly stuck together, allowing to assume a
homogeneous displacement field at the interface between two sheets. Homogeneous strain can
consequently be considered in the sheet plane. ✏1 and ✏2 denoting the total deformation in each
family, the homogeneous strain hypothesis within the sheet plane (XY ) leads to:

✏1XY

= ✏2XY

= ✏
XY

(15)

✏ indicates the average deformation.
• The transformer is supposed mechanically unloaded and thin enough to consider stress free conditions

on upper and lower surfaces. This assumption leads to:

�1.~Z = �2.~Z = �.~Z =

~
0 (16)

� indicates the average stress.
• Elastic and magnetostrictive deformations are considered sufficiently small to allow additive descrip-

tion of total deformation:

✏ = ✏
µ

+ ✏
e

(17)

✏
e

indicates the elastic strain tensor.

The magnetic flux � circulating in the transformer through the surface S of normal ~n belonging to the
sheet plane can be expressed as sum of the flux in families 1 and 2 of sections S1 and S2 of normal ~n
(18).

� =

ZZ

S

~B · ~nds =
ZZ

S1

~B1 · ~nds+
ZZ

S2

~B2 · ~nds (18)

At a given point of the 2D problem, induction is homogeneous through the thickness for each family
since magnetic field is homogeneous as well. The flux conservation relation is rewritten in:

~B = f1 ~B1 + f2 ~B2 (19)

with f1 and f2 the section (or volume) fraction of family 1 and 2 respectively (f1 + f2 = 1). This
mixing rule applies to the magnetization as well:

~M = f1 ~M1 + f2 ~M2 (20)
~M is the homogenized magnetization.

The mechanical resultant ~R over a surface S of normal ~n belonging to the sheet plane can be expressed
as sum of the mechanical resultant in families 1 and 2 of sections S1 and S2 of normal ~n as function of
the average stress � and the stress in each medium following:
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~R =

ZZ

S

� · ~nds =
ZZ

S1

�1 · ~nds+
ZZ

S2

�2 · ~nds (21)

At a given point of the 2D problem, the stress is homogeneous through the thickness for each family
since deformation (especially elastic) is homogeneous as well. The resultant conservation relation is
rewritten in:

� = f1�1 + f2�2 (22)

As underlined before, the total strain ✏ is the sum of elastic strain ✏
e

and magnetostrictive strain ✏
µ

.
Applying Hooke’s law to each family the following expressions of local stress tensor are obtained:

�1 = C1 : ✏
e1 = C1 : (✏1 � ✏

µ1) (23)

�2 = C2 : ✏
e2 = C2 : (✏2 � ✏

µ2) (24)

C1 and C2 are the 4th order stiffness tensor of families 1 and 2. The average stress is on the other hand
related to the average elastic strain using the effective stiffness tensor C.

� = C : ✏
e

= C : (✏ � ✏
µ

) (25)

The mixing rule (22) is applied and simplified using the homogeneous deformation hypothesis, leading
to:

C = f1C1 + f2C2 (26)

on the one hand (usual averaging operation over the stiffness tensor - Voigt bound), and:

✏
µ

= f1(C�1C1) : ✏
µ1 + f2(C�1C2) : ✏

µ2 (27)

on the other hand. This new mixing rule over the magnetostriction strain allows the calculation of a ho-
mogenized magnetostriction deformation depending on the stiffness, volume fraction and magnetostriction
strain of each layer.

IV. NUMERICAL IMPLEMENTATION

The coupling between magnetic and mechanical problems is considered through the magnetostriction
that induces a loading of the mechanical problem. For simplicity reasons, the following supplementary
simplifications have been made:

• Airgaps are not considered in the numerical modeling. The effect of magnetic forces is supposed of
second order, and is verified by a numeric calculation (Fig. 12).

• Since magnetostrictive strain is relatively small, the stress level (local and global) is considered as
small enough to have a negligible effect on the behaviors, which means that magnetostrictive strain
only depends on applied magnetic field.

• Stiffness is considered as isotropic depending only on Young’s modulus E and Poisson’s ratio ⌫,
leading to an homogeneous mechanical behavior over the layer families, which strongly simplifies
the the magnetostriction mixing rule:

✏
µ

= f1✏µ1 + f2✏µ2 (28)

• A single phase sinusoidal current excitation is considered in the following. Extension to a three-phases
excitation and imposed flux is discussed in [32].

A sequential resolution of the problem is implemented: the magnetic resolution is followed by the
mechanical resolution leading to a numerical weak coupling. This point is summed up in figure 3 and the
algorithm is given in figure 4.
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Fig. 3. Resolution strategy.
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Fig. 4. Resolution algorithme.

A. First Step: Magnetic Resolution
At first, the magnetic problem is solved under static assumptions. Considering scalar potential

formulation, magnetic field ~H is divided into two parts (32). One is the gradient of magnetic scalar
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potential ⌦. The other is the electrical vector potential ~T , considered as the source term, which helps to
impose excitation current in the coils (30).

~H =

~T +

��!
grad(⌦) (29)

rot(~T ) = ~J (30)

div( ~B) = 0 (31)

~B = µ0(
~H +

~M) (32)

The boundary condition would be ~H
n

= 0, which set to zero the normal magnetic field far from the
transformer. Therefor, the weak form of this problem discretized by finite elements leads to the nonlinear
system given by equation (33). Its resolution gives the magnetic scalar potential ⌦ that leads to the
calculation of magnetic field ~H .

[S][⌦] = [T ] (33)

Fig.5 shows the basic strategy of magnetic problem resolution, considering the previously defined
homogenization technique. Two simplified MSM (one per each layer family) are integrated in the resolution
chain using ~H as input, magnetization ~M1, ~M2 and free strain ✏

µ1, ✏µ2 as output. An iterative resolution
process with a modified fixed-point algorithm [33] is then required, due to the non-linearity of magnetic
behavior. The new homogenized magnetization ~M is introduced as an input of magnetic resolution for
the next iteration until convergence. The free homogenized magnetostrictive strain ✏

µ

is calculated, using
the ✏

µ1 and ✏
µ2 output (eq.20 and 28).

Magnetic Field 
Calculation

Magnetic 
Homogenization

Mechanical 
Homogenization

MSM 
(TD)

MSM 
(RD)�H

�M1

�M2

�M

✏µ1

✏µ2

✏µ

J

Fig. 5. Magnetic resolution.

B. Second Step: Equivalent Force Calculation
The second step consists in the calculation of an equivalent force field ~F

eq

over a current period to
obtain the mechanical loading of a pure vibrational problem. The mechanical constitutive law is written in
the framework of linear elasticity (34), with C the stiffness tensor. The 2D plane stress assumption leads
to a change of stiffness tensor expression comparing to 3D condition. A 3⇥ 3 stiffness tensor expression
as function of E and ⌫ is given in equation (35). Stress �̂ and elastic strain ✏̂

e

associated vectors are given
in (36).

� = C : ✏
e

(34)
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C3⇥3 =

0

@
E

1�⌫

2
⌫E

1�⌫

2 0

⌫E

1�⌫

2
E

1�⌫

2 0

0 0

E

1+⌫

1

A so that: �̂ = C3⇥3.✏̂e (35)

�̂ =

0

@
�
XX

�
Y Yp
2�

XY

1

A ✏̂
e

=

0

@
✏
eXX

✏
eY Yp
2✏

eXY

1

A and ✏
eZZ

= � ⌫

1� ⌫
(✏

eXX

+ ✏
eY Y

) (36)

Considering volume forces ~f
ext

, the balance equation leads to:

�!
div� +

~f
ext

= ⇢
@2~u

@t2
(37)

Using the decomposition of total strain into elastic and magnetostrictive strain, Hooke’s law is expressed
as follows:

� = C : (✏ � ✏
µ

) (38)

Equation (37) then becomes:

�!
div�̃ +

~f
eq

+

~f
ext

= ⇢
@2~u

@t2
(39)

with:

�̃ = C : ✏ and ~f
eq

= �
�!
div(C : ✏

µ

) (40)

The magneto-elastic is transformed into a pure elastic problem with total and elastic deformation the
strain tensor ✏ of a material submitted to a equivalent force density ~f

eq

. In the variational form, these
expressions bring about nodal forces as following [34]:

~F
eq

= �
Z

⌦

(

��!
grad

s

(v) · C : ✏
µ

) d⌦ (41)

Where v is the test function. Nodal forces are used next as loading for the mechanical resolution. A force
profile over the time ~F

eq

(t) is obtained for each node.

C. Third Step: Modal Resolution of the Mechanical Problem and Harmonics
Once the equivalent force over time is calculated, a FFT of equivalent force is performed. The

mechanical problem is solved for each harmonic of pulsation !n (42).
�!
div�̃n

+

~fn

eq

+

~fn

ext

= �⇢(!n

)

2~un (42)

Where ~fn

eq

, the density of the equivalent force of nth harmonic, is obtained by dividing the equivalent
nodal force with the surface associated to the corresponding node (dual cell). ⇢ is the density and ~un the
displacement field of the n

th

harmonic. After finite element discretization, the weak form of equation
(42) can be written as: �

[K]� (!n

)

2
[M ]

�
[Un

] = [F n

eq

] + [F n

ext

] (43)

Where [M ] is the mass matrix, and [K] is an stiffness corresponding matrix. By adding the damping
coefficient of the material �, equation(43) becomes:

�
[K] + 2j�!n

[K]� (!n

)

2
[M ]

�
[Un

] = [F n

eq

] + [F n

ext

] (44)
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Displacement solution of each harmonic is obtained by solving equation (44). The time domain solution
is obtained by the inverse Fourier transform:

u
i

(t) =
NX

n=1

Un

i

exp(j!nt) (45)

The time discretization �t over a period T gives the maximal number of harmonics that are considered
in the calculation: max(N) = T/2�t�1. Moreover it must be underlined that the constitutive behavior of
material leads to an initial homogeneous deformation in the material even without electrical loading. The
actual displacement field is the difference between the displacement with loading and the one without:

u
i

(t)actual = u
i

(t)loaded � u
i

(t)unloaded (46)

Moreover a modal analysis can be implemented by solving the mechanical equation without applied force
and damping:

[K][U ]� !2
[M ][U ] = [0] (47)

[M ] and [K] are respectively the mass and stiffness corresponding matrix. The solving allows the
calculation of the main vibration modes of the transformer structure.

V. APPLICATION TO A GRAIN-ORIENTED SILICON-IRON ALLOY TRANSFORMER

A. Validation of simplified multi-scale model
To validate the multi-scale model and the total chain of estimation of the noise emission, an anisotropic

magnetic material is needed. In certain direction, the magnetostrictive strains are small and in others are
strong. Grain-oriented (GO) silicon-iron alloy is one of the most popular soft ferromagnetic materials,
which exhibits the so-called GOSS texture ({110} < 001 > along rolling direction). In a previous
study [6], it has been shown that GO FeSi carries strong anisotropy behaviors in both magnetic
and magnetostrictive aspects. With the studied material, a 0.27mm thick grain-oriented FeSi sheet,
measurements of magnetization and magnetostrictive strain along RD and TD are compared with our
simplified MSM (physical constants used for simplified MSM are shown in Table I).

TABLE I
PHYSICAL CONSTANTS USED FOR SIMPLIFIED MSM.

Param. M
s

K1 �100;�111 C N
xx

;N
yy

;N
zz

A
s

Value 1.61⇥10

6 38 23.5 ; -4.5 300 0 ; 0 ; 1 20⇥10

�3

Unit A/m kJ.m�3 ppm J.m�3 - -

Definition of specific P matrix associated to the material. We choose P for cubic material as defined
by equation (4). The Q matrix is defined by:

Q
I

=

0

@
1 0 0

0

p
2/2

p
2/2

0 �
p
2/2

p
2/2

1

A Q
E

=

0

@

p
2/2 0

p
2/2

0 1 0

�
p
2/2 0

p
2/2

1

A (48)

Fig.6 shows a strong anisotropic magnetic behavior for GO FeSi. Along RD, the magnetization reached
is about 40% higher than that along TD. This is because of the crystallographic texture of the material,
RD corresponds to a h100i direction (easy axis) and TD to a h110i. Longitudinal and transversal strain
measurements are shown in Fig.7 and Fig.8. When a magnetic field is applied along RD, an ultra-
low magnetostriction is highlighted. And when magnetic field is applied along TD, the longitudinal
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Fig. 6. Reserved for Comparison of simplified MSM to experimental measurement [6] of the anhysteretic magnetization curves along RD
(red) and TD (blue).
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Fig. 7. Reserved for Comparison of simplified MSM to experimental measurement [6] of the anhysteretic longitudinal magnetostriction
along RD (red) and TD (bleu).

magnetostriction strain reaches 18 ⇥ 10

�6. This anisotropy is due to the oriented grain texture, which
increases the presence probability of the magnetic domain in certain direction (RD).

Results obtained with the simplified MSM for the considered material GO FeSi show a good agreement
with the experimental results.
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Fig. 8. Reserved for Comparison of simplified MSM to experimental measurement [6] of the anhysteretic transversal magnetostriction along
RD (red) and TD (blue).

B. Multi-layer transformer modeling in 2D using GO FeSi

Central coils

Current 
injection

Fig. 9. Current injection.

For the purpose of simplification, it is chosen to excite only the central coil (Figure. 9) with a sinusoidal
source expressed by discrete-time (49).

I(n) = I
max

cos

✓
2⇡n

N

◆
(49)

Where I
max

is amplitude of the the current, N is the total number of steps in one period, and n represents
the time index integer sequence 0, 1, 2, etc. Sectional surface fraction (f1 and f2) of different regions are
set the same as in section II to simulate a three-layer transformer. This is in the aim of comparison with the
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measurements carried out on our three-layer transformer prototype (Cf. Section V-C). The reference point
of the transformer is forced fixed using Dirichlet boundary condition, so that relative displacements of the
other parts are calculated (reference point is not at the center to avoid the coils when doing experimental
measurements). The triangular non-uniform mesh is refined in the regions where saturation appears.
For simplification considerations, mechanical behavior is considered elastic, isotropic and homogeneous
(extension to anisotropic elastic behavior is foreseen).

TABLE II
PHYSICAL CONSTANTS AND NUMERICAL SETTINGS USED FOR TRANSFORMER DEFORMATION MODELING IN 2D.

Param. I
max

f � N E ⌫

Value 200 400 0.02 40 210 0.3
Unit Amper-turn Hz - - GPa -

The force profile over the time ~F
eq

(t) obtained at one node of the mesh is illustrated in Figure 10

t (s)
×10-3

0 0.5 1 1.5 2 2.5

F
 (

N
)

-15

-10

-5

0

5

10

15

20

25

Fx
Fy
F

Fig. 10. Profile of equivalent force ~F
eq

components and norm at one node (point 2 in Fig.15) over one period of current.

Fig.11 shows the flux distribution. Fig.12 shows the distribution of the nodal equivalent force of
magnetostriction. Based on virtual work, a calculation of magnetic forces (without magnetostriction) is
also carried out, using exactly the same material properties, homogenisation techniques and calculation
strategy. The latter is aimed to verify its small effect compared to magnetostriction. From Fig.12, it is
clear that the magnetic force is negligible with respect to forces induced by magnetostriction. Fig.13 and
14 show respectively the components of total strain and displacement at the moment when excitation
current reaches its maximum. The area with the strongest strain is exactly where the magnetic field is
aligned with TD, which is in accordance with the anisotropic material behaviors. Related displacements
are created due to these magnetostrictive strains. A scale factor of 10e5 is used for better visibility of the
tiny displacements.

C. Experimental measurements and comparisons with modeling
To measure particular points’ displacements in transformer core, several accelerometers are placed to

record the acceleration over several periods of excitation. Then it’s followed by two integrations to get a
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Fig. 12. Distribution of nodal magnetic force (left) and nodal magnetostrictive equivalent force (right).
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Fig. 13. Core total deformation fields at I = I
max

= 5A with 40 turns.

displacement. Several regions with relatively large displacement, according to the modeling, are chosen
to install accelerometers (Fig.15).



15

4e-8

8e-8

1.2e-7

Displacements (m)

(a)

-4e-8

0

4e-8

Displacements_x (m)

(b)

-4e-8

0

4e-8

8e-8

1.2e-7

Displacements_y (m)

(c)

Fig. 14. Core displacement fields at I = I
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Fig. 15. Displacement measured points.

The center of the transformer is set as a reference point, so as to measure the relative displacement
compared to the center. An average can be made among the measuring points (points 2,4 and 3,5) thanks
to the symmetry of the geometry with y-axis (There is no symmetry with respect to the x-axis because
of the different RD of each sheet).

To measure the acceleration, a three-layer transformer prototype is hung up with two ropes, shown as
Fig.16, for mainly two reasons: -To eliminate the external out-plane stress. -To eliminate the perturbation
of rigid body movement in the post-processing with a low-pass filter. A sinusoidal current, with amplitude
5A, is injected in the central coil at 400Hz. Numerical simulation is carried out with the same condition
as experiment (excitation, geometry, volume fraction and the reference point). Vibration frequency is two
times higher than current frequency, because the positive and negative magnetization create the same
strain. This permits an application of a low-pass filter at 700Hz to purify the measured accelerations and
then displacements. The same test is carried out five times for averaging. Displacement within one period
of the injection current is shown in Fig.17, 18, 19 (notice that the three figures are not in the same scale),
with full line representing measured displacement and dotted line representing simulated displacement.
For better visibility, the displacement along direction X and Y is presented separately in red and blue.

This numerical calculation has successfully predicted the trend of transformer deformation, with a good
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Accelerometers

Excitation

Fig. 16. Experimental set-up for displacement measurement.

accordance between measurements and simulation such as : displacement period, direction and order of
magnitude.
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Fig. 17. Displacement comparison between modeling and measurement at point 1.

The numerical model accurately predicts displacements along direction X, except for point 1 (Fig.17)
with a measured doubled frequency (1600Hz) which should be zero considering the symmetry. This may
be due to the non-perfect symmetry of the transformer. Even slightly unbalanced forces may create large
displacements at the resonance frequency. A modal analysis is carried out for the entire structure (’E+I’)
and also for sheets ’I’ and ’E’ separately. The main vibration modes of the structure are presented in
Table III. Mode 2 corresponding to frequency 1515Hz for sheet ’E’ is plotted in Fig.20. This mode could
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Fig. 18. Displacement comparison between modeling and measurement at point 2.
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Fig. 19. Displacement comparison between modeling and measurement at point 3.

explain the measured amplitude at the point 1.
Measured displacements along direction Y is larger than predicted results. This can be explained by

the existence of air-gap, not considered in model, that weakens the mechanic holdings in direction Y. To
verify this explanation, air-gap has to be added in the model.
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TABLE III
RESONANCE MODE OF STRUCTURE ’E’, ’I’, ’E+I’

mode number E I E+I
1 1007Hz 4839Hz 3717Hz
2 1515Hz 12707Hz 5457Hz
3 2984Hz 13271Hz 5867Hz
4 4406Hz 21264Hz 5928Hz

0.5

Displacement normalized

0

1

Fig. 20. Resonance mode for sheet ’E’ with frequency 1515Hz.

VI. CONCLUSION

The proposed model, taking into account the anisotropy of the material and surface effect, allows
the calculation of the 2D strain field of a multi-layer electrical transformer. The good accordance with
experimental tests confirms the reliability of this model. The model is highly dependent on the experimental
characterization of the material presented in this paper. Such study shows a feasibility of geometrical
optimization of the transformer design in order to reduce the strain level and consequently noise level. A
final coupling between strain field and acoustic noise is still missing at this step. Futher step would be to
achieve an optimization of both material and design to reduce the noise emission.
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