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On the convergence of Maronna's M -estimators of scatter

 for N vector observations y1, . . . , yN ∈ R m under a mild constraint of linear independence of any subset of m of these vectors. This entails in particular almost sure uniqueness for random vectors yi with a density as long as N > m. This approach allows to establish further relations that demonstrate that a properly normalized Tyler's Mestimator of scatter [2] can be considered as a limit of Maronna's M -estimator. More precisely, the contribution is to show that each M -estimator, verifying some mild conditions, converges towards a particular Tyler's M -estimator. These results find important implications in recent works on the large dimensional (random matrix) regime of robust M -estimation.

I. INTRODUCTION

Subsequent to Huber's introduction of robust statistics in [START_REF] Huber | Robust estimation of a location parameter[END_REF], Maronna proposed in [START_REF] Maronna | Robust M -estimators of multivariate location and scatter[END_REF] a class of robust estimates for scatter matrices defined as the solution of an implicit equation. In [START_REF] Maronna | Robust M -estimators of multivariate location and scatter[END_REF], the existence and uniqueness of such a solution are proved, under conditions involving both the ratio c N := m/N of the population dimension m and the sample size N , and the parametrization of the estimate. This constraint was largely relaxed in [START_REF] Kent | Redescending M -estimates of multivariate location and scatter[END_REF], [START_REF] Zhang | Multivariate generalized gaussian distribution: Convexity and graphical models[END_REF]. With the recent renewed interest in robust M -estimation under the random matrix regime N, m → ∞ with c N → c ∞ ∈ (0, 1) [6]- [START_REF] Soloveychik | Non-asymptotic Error Analysis of Tyler's Scatter Estimator[END_REF], alternative proofs of existence and uniqueness have appeared motivated by this assumption of large m. While Maronna's original results are valid for any (well-behaved) set of samples satisfying the condition on c N , the results in e.g. [START_REF] Couillet | Robust M-Estimation for Array Processing: A Random Matrix Approach[END_REF] are expressed in probabilistic terms and are only valid for all large m, N .

Based on the ideas from [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis[END_REF]- [START_REF] Pascal | Generalized robust shrinkage estimator and its application to STAP detection problem[END_REF], the present article proposes an alternative proof to [START_REF] Kent | Redescending M -estimates of multivariate location and scatter[END_REF] to show existence and uniqueness for all well-behaved set of samples with a known location parameter and for any c N ∈ (0, 1). More importantly, by a proper parametrization of the weight function appearing in Maronna's estimator, we prove that some sequences of Maronna's M -estimators converge to Chitour is with Laboratoire des Signaux et Systèmes at Supélec, 91192 Gif s/Yvette, France and Université Paris Sud, Orsay, France yacine.chitour@lss.supelec.fr. Couillet is with the Telecommunications Department at Supélec romain.couillet@supelec.fr. Pascal is with the SONDRA laboratory at Supélec frederic.pascal@supelec.fr. Chitour and Pascal's works were partially supported by the iCODE institute, research project of the Idex Paris-Saclay, while Couillet's work is funded by ERC-MORE EC-120133. a unique Tyler's distribution-free M -estimator of scatter [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF]. This result is a novel property of the Tyler's Mestimators, rigorously proved in this work. This completes the recent result (Theorem 1 of [START_REF] Ollila | Distribution-free detection under complex elliptically symmetric clutter distribution[END_REF]) stating that the Tyler's M -estimator is the Maximum Likelihood estimator (MLE) of the scatter for various complex elliptically symmetric (CES) distributions as well as for the angular central Gaussian (ACG) distributions [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF].

The paper is organized as follows: Section II presents our main results as well as Monte-Carlo simulations that corroborate our theoretical claims, the proofs of which are provided in Section III. Section IV draws some conclusions and perspectives of this work.

II. NOTATIONS AND STATEMENT OF THE RESULTS

Let R + (resp. R * + ) be the (resp. strictly) positive real line. We use M m (R) and Sym m to denote the vector space of m × m matrices with real entries and the linear subspace of M m (R) made of the symmetric matrices, respectively. We also use Sym + m and PSD m to denote the non trivial cones in M m (R) of the non negative symmetric matrices and of the symmetric positive definite matrices, respectively. Also, (•) T stands for the transpose, Tr(•) and det(•) for the trace and the determinant. On M m (R), we use the inner product defined by the Frobenius norm A = Tr(AA T ). We also use ≤ to denote the partial order on Sym m and I m the m × m identity matrix. Functions of two non negative real variables (t, x) will be considered. If f is such a function, we use f t , f x , f tx , . . . to denote (when defined) the partial derivatives of f with respect to t and/or x.

Definition II.1 A family (y i ) 1≤i≤N of vectors in R m is admissible if (C1) for 1 ≤ i ≤ N , y i = 1; (C2) the vectors in any subset of size m of {y 1 , • • • , y N } are linearly independent
This definition straightforwardly implies that if (y i ) 1≤i≤N is an admissible family of vectors in R m and if m vectors (say) y 1 , • • • , y m which are then linearly independent by (C2) are fixed, for m + 1 ≤ l ≤ N , we can write y l = n j=1 γ lj y j . Then, γ lj = 0 for every 1 ≤ j ≤ m and m + 1 ≤ l ≤ N .

Let us now consider maps u :

(R * + ) 2 → R + of class C 1 satisfying: (U 1) u(t, •) is strictly decreasing; (U 2) for every t > 0, v(t, x) := x → xu(t, x
) is increasing on R + and l t := sup x≥0 v(t, x) > m; We furthermore define, for every x > 0, u(0, x) = m

x . Note that, by continuity of u, ∀x > 0, lim t→0 + v(t, x) = m. Also, according to (U 1) and (U 2), for each t, x > 0,

v(t, x) = m + tv 1 (x) + tw(t, x), (1) 
with v 1 (•) := v t (0, •) and ∀x > 0, lim t→0 w(t, x) = 0. By a simple computation, one has that v 1 is a nondecreasing function on R * + . For further use, we introduce the following additional notation. Let x t > 0 be the unique positive number such that, ∀t > 0, v(t, x t ) = x t u(t, x t ) = m.

We further consider the following assumption

(U 3)    v x := dv/dx > 0 v 1 is increasing 0 < lim inf t→0 x t ≤ lim sup t→0 x t < ∞.
If the latter occurs and u is of class

C 2 , then w(t, x) = tw 1 (x) + o(t), with w 1 (•) := w t (0, •) continuous on (R * + ) 2 , the convergence in (U 2) is uniform in x on any compact of R *
+ and x t converges to the unique solution

x 0 of v 1 (x) = 0.
We use ū(t, x) to denote the particular function

ū(t, x) = m(1 + t) x + t (2) 
which is analytic on every compact of (R + ) 2 \ {(0, 0)}.

Moreover, lt = m(1+t), v1 (x) = m(1-1 x ) and w(t, x) = -mt t+x .
The objective of the work is to study the solutions of the equation given, for all t > 0, by

(Eq) t M = 1 N N i=1 u(t, y T i M -1 y i )y i y T i .
and to characterize them in the limit where t → 0. Taking into account our definitions, if a solution to (Eq) t exists, it must belong to PSD m . Remark that the condition M of [4] also imposes a "strictly" increasing v which excludes e.g. the Huber Mestimator.

To state our results, we need to consider the set of solutions of the equation (Eq) 0 (that defines the Tyler's M -estimator) given by

(Eq) 0 M = m N N i=1 1 y T i M -1 y i y i y T i .
Recall from [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis[END_REF] that the set of solutions of (Eq) 0 is the half-line R * + P in PSD m , where P is the unique solution of (Eq) 0 with Tr(P) = m.

Our main result is the following theorem.

Theorem II.2 Let (y i ) 1≤i≤N be an admissible family of vectors in R m and u : (R + ) 2 \ {(0, 0)} → R + be a C1 function verifying (U 1)-(U 2). Then, (A) ∀t > 0, (Eq) t admits a unique solution, M(t).

(B) If, furthermore, u is C 2 and satisfies (U 3), then the mapping t → M(t) is continuous and lim t→0 M(t) = M 0 the solution of (Eq) 0 given by M 0 = ξ u P with ξ u > 0 unique solution to

N i=1 v 1 y T i P -1 y i ξ = 0. (3) 
In particular, for u = ū, M 0 = P, i.e., ξ ū = 1.

Proof of Theorem II.2. The proof is postponed in the next section.

Remark II.3

1) The interest of Theorem II.2, in addition to providing an alternative proof for the existence and uniqueness, lies in the convergence of all M -estimators to a Tyler's M -estimator. This limit can be different (by a scale factor) from one M -estimator to another. While this result was expected, this paper rigorously proves it.

2) Moreover, the theorem provides a way of understanding why the Tyler's estimator is the outmost robust 1 M -estimator. Indeed, considering a ML approach, the weight function u(t, x) is derived from the observations probability density function (PDF) and in such a case, t → 0 means that the underlying distribution becomes more and more heavy-tailed. For instance, considering t as the exponent parameter of a Generalized Gaussian distribution or of a W-distribution, the smaller the value of t > 0 is, the heavier-tailed is the distribution. This is also the case for the degree of freedom of a Student-t distribution or the shape parameters of a K-distribution or of a Compound-Gaussian with inverse Gaussian texture (see [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] for more details). In all these cases, the MLEs satisfy the assumptions of Theorem II.2 (at least for small values of t) and should be more robust when the distribution is heavier-tailed. To summarize, this result theoretically motivates the use of the Tyler's estimator, since it will perform similarly as MLEs in heavy-tailed distribution contexts. 

C(t) = E M (t) -M 0 2 F .
To illustrate Theorem II.2, Figure 1 presents the mean square error C(t) E[ M(t) -M 0 2 F ] between Tyler's M -estimator and the Student-t MLE versus the parameter t, called the degree of freedom of the multivariate Student-t distribution [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], defined through the weight function u(t, x) = m+t t+x . We take here N = m + 1 = 51. The data are zero-mean Gaussian distributed with Toeplitz covariance matrix, the (i, j) entry of which is equal to ρ |i-j| , for some ρ ∈ (0, 1). As proved in Theorem II.2, Item (A) is illustrated in the case where N = m+1 while Item (B) is illustrated for the Student-t MLE for different population covariance matrices.

III. PROOF OF THEOREM II.2

The strategy of the proof is as follows: for every t > 0, we first build a positive functional H(t, •) over PSD m whose critical points (if any) are exactly the solutions of (Eq) t . To establish the existence of such critical points, we show that H(t, •) is uniformly bounded and tends to zero at the boundary of PSD m . To obtain uniqueness, we show that solutions of (Eq) t are all local strict maxima of H(t, •) and conclude by applying the mountain pass theorem (cf. [START_REF] Struwe | Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]). This gives Item (A). Item (B) is then obtained using the implicit function theorem and some limiting arguments.

For t > 0, we define the function

h : R * + × R + → R * + (t, x) → e -1 m x x t u(t,y)dy . (4) 
Then -hx h = u m and h(t, x t ) = 1. Set h(0, x) = 1 x for x > 0 and g : R * + × R + → R * + with g(t, x) = xh(t, x).

In the case where u = ū, ∀(t, x) ∈ (R + ) 2 \ {(0, 0)},

x t ≡ 1, h(t, x) = 1 + t x + t 1+t , ḡ(t, x) = x 1 + t x + t 1+t .
Then, define the functional H(t, •) as

H : R * + × PSD n → R * + (t, M) → N i=1 h(t, y T i M -1 y i ) m (det M) N (5) 
as well as the functional considered in [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis[END_REF] B

: PSD n → R * + M → N i=1 h(0, y T i M -1 y i ) m (det M) N . ( 6 
) Lemma III.1 For t > 0 and M ∈ PSD m , one has -MH x (t, M)M/N H(t, M) = M - 1 N N i=1 u(t, y T i M -1 y i ), with H x (t, M) the gradient of H(t, •). In particular, M is a solution of (Eq) t if and only if M is a critical point of H(t, •). Lemma III.2 ∀t > 0, M ∈ PSD m , H(t, M) ≤ B(M).
As a consequence, lim M→∂PSDm H(t, M) = 0, so that H(t, •) admits critical points.

Proof of Lemma III.2. An immediate calculus yields that x → g(t, x) reaches its maximum

1 at x = x t . As a consequence, for t > 0, M ∈ PSD m , H(t, M) ≤ B(M). Moreover, lim x→0,∞ g(t, x) = lim x→0,∞ xh(t, x) = 0.
For the limit at x = 0, this is obvious. For x → ∞, note that ln(g(t, x)) = 1 m x xt m-yu(t,y) y dy and, since m -l t < 0, it is equivalent to (m -l t ) ln(x) as x → ∞. Consider now a sequence (M k ) k≥0 in PSD m converging to ∂PSD m . For k ≥ 0, set M k = ρ k N k with ρ k = M k and N k = M k ρ k . Note that ∂PSD m is made of matrices either non invertible or with norm going to infinity. Therefore, up to subsequences, either (i) (N k ) k≥0 converges itself to ∂PSD m or (b) the sequence (ρ k ) k≥0 converges to zero or infinity and there exists ∃α > 0, ∀k ≥ 0, N k ≥ αI m . If Case (i) occurs, then ∀k ≥ 0, H(t, M k ) ≤ B(N k ), which tends to zero as k → ∞ (cf. [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis[END_REF]). In Case (ii),

H(t, M k ) = N i=1 h (t, x i,k ) m ρ N k det(N k ) N = B(N k ) N i=1 g(t, x i,k ) m
where x i,k = y T i N -1 k y i /ρ k . As k → ∞, x i,k tends either to zero or infinity and we conclude. For t > 0, H(t, •) is uniformly bounded over PSD m since B(•) is. So H(t, •) has a global maximum which must belong to PSD m since H(t, M) → 0 as M tends to the boundary of PSD m . So H(t, •) admits critical points.

Lemma III.3 Let t > 0. Then all critical points of H(t, •) are local strict maxima.

Fig. 1 .

 1 Fig. 1. Convergence of M (t) towards M 0 when t → 0 for N = m + 1 = 51. The criterion used is the MSE:C(t) = E M (t) -M 0 2F .

Here the robustness has to be understood as the classical property considered in the robust estimation theory literature, see e.g.[START_REF] Hampel | Robust statistics: the approach based on influence functions[END_REF] 

Proof of Lemma III. [START_REF] Huber | Robust estimation of a location parameter[END_REF]. We show that, if M is a critical point then the Hessian of H(t, •) at M is a negative definite quadratic form implying that M is a local strict maximum of H(t, •). Let M ∈ PSD m be a critical point of H(t, •). Then, one gets that for every

Let R := M -1/2 QM -1/2 and d i := M -1/2 y i , one has

Recall that M is a critical point of H(t, •) and thus a solution of (Eq) t , i.e.,

Multiplying ( 8) by R on both left and right, taking the trace and plugging the result into [START_REF] Couillet | The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples[END_REF] gives

where

Using 0 ≤ r i ≤ 1 (by Cauchy-Schwarz's inequality) and u x ≤ 0 (since u is of class C 1 and verifies (U 1)), we have

Hess M is negative definite, concluding the proof.

Lemma III.4 Let t > 0. Then (Eq) t admits a unique solution, M(t), the unique strict maximum of H(t, •).

Proof of Lemma III.4. We reason by contradiction assuming H(t, •) admits at least two local strict maxima. Applying the mountain-pass theorem [START_REF] Struwe | Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems[END_REF] to the functional 1/H(t, •) which tends to infinity in the vicinity of ∂PSD m , we obtain the existence of a saddle point of F in PSD m which is contradictory to Lemma III.3.

We next prove that M(t) is uniformly bounded in PSD m as t → 0, i.e.

Lemma III.5 There exists 0 < a ≤ b and t 0 > 0 such that, for every t ∈ (0, t 0 ), aI m ≤ M(t) ≤ bI m .

Proof of Lemma III.5. Let P be the unique matrix of PSD m satisfying B(P) = max M∈PSDm B(M) and Tr(M) = m. Then, for every t > 0, H(t, P) ≤ H(t, M(t)) and B(M(t)) ≤ B(P). Multiplying both inequalities, after simplifications, we get

So there exists t 0 > 0 such that, for every t ∈ (0, t 0 ) and 1 ≤ i ≤ N , 1/2 ≤ g(t, y T i M(t) -1 y i ), and, since (U 3) holds true, there exists 0 < a ≤ b s.t. for every t ∈ (0, t 0 ) and

This implies that, for every t ∈ (0, t 0 ) and

One concludes easily.

Lemma III.6 Under the conditions of Theorem II.2, lim t→0 M(t) = M 0 solution of (Eq) 0 given by M 0 = ξ u P, where ξ u > 0 is the unique solution of (3).

Proof of Lemma III.6. Since M(•) is uniformly bounded in PSD m as t → 0, its accumulation points still belong to PSD m and are necessarily of the form µP where µ > 0 and P is the solution of (Eq) 0 with trace m. Taking the trace in [START_REF] Zhang | Marchenko-Pastur Law for Tyler's and Maronna's M-estimators[END_REF], one gets m = 1

, where d i (t) = M(t) -1/2 y i for 1 ≤ i ≤ N . Using (1) and (U 3), one deduces that, for every t > 0,

Consider an accumulation point µP of M(•) as t → 0. Then, up to a subsequence, lim t→0 M(t) = µP and, for 1 ≤ i ≤ N , lim t→0 d i (t) = P -1/2 y i / √ µ. According to (U 3), the second sum in the previous equation tends to zero as t → 0 and we are left with N i=1 v 1 (y T i P -1 y i /µ) = 0. Since the left-hand side of the latter defines a decreasing function of µ, it has a unique solution denoted ξ u > 0, which concludes the proof since M(•) admits a unique accumulation point as t → 0.

IV. CONCLUSIONS

In this paper, an alternative proof for existence and uniqueness for the Maronna's M -estimators is provided. More importantly, using this particular approach leads to draw some connections between Maronna's and Tyler's estimators by expressing (properly scaled) Tyler's estimator in terms of a limit of a class of Maronna's estimators. This result may also find interest in studies of Tyler's M -estimator in the large random matrix regime.