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Résumé

Google Tlanslate says: Un modeéle statistique pour détecter des changements dans les images de télédétection a récem-
ment été proposée dans (Prendes et al., 2014, 2015). Ce modéle est suffisamment général pour étre utilisé pour les
images homogénes acquises par le méme genre de capteurs (par exemple, deux images optiques des satellites Pléiades,
éventuellement avec des conditions d’acquisition différent), et pour les images hétérogénes acquises par différents cap-
teurs (par exemple, une image optique acquis d’'un satellite Pléiades et une image radar a synthése d’ouverture (SAR)
acquise d’'un satellite TerraSAR-X). Ce modéle suppose que chaque pixel est distribué selon une densité mélange suivant
les propriétés de bruit et les réponses d’intensité du détecteur a la sceéne réelle. Les paramétres du modéle statistique
résultant peuvent étre estimés en utilisant I'algorithme espérance-maximisation (EM) classique. Les paramétres estimés
sont finalement utilisés pour apprendre les relations entre les images d’intérét, en utilisant une stratégie d’apprentissage
de varieté. Ces relations sont pertinents pour de nombreuses applications de traitement d'image, en particulier ceux qui
nécessitent une mesure de similarité (par exemple, la détection de changement d'image et I'enregistrement de I'image).
Lobjectif principal de cette étude est d’évaluer la performance d’une méthode de détection de changement basé sur cette
stratégie d’apprentissage de varieté initialement introduite dans (Prendes et al., 2014, 2015). Cette performance est éval-
uée en utilisant les résultats obtenus avec des paires d'images optiques réelles acquises par des satellites et des paires
d’'images optiques et SAR Pléiades.
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Abstract

A statistical model for detecting changes in remote sensing images has recently been proposed in (Prendes et al., 2014,
2015). This model is sufficiently general to be used for homogeneous images acquired by the same kind of sensors
(e.g., two optical images from Pléiades satellites, possibly with different acquisition conditions), and for heterogeneous
images acquired by different sensors (e.g., an optical image acquired from a Pléiades satellite and a synthetic aperture
radar (SAR) image acquired from a TerraSAR-X satellite). This model assumes that each pixel is distributed according to
a mixture of distributions depending on the noise properties and on the sensor intensity responses to the actual scene.
The parameters of the resulting statistical model can be estimated by using the classical expectation-maximization (EM)
algorithm. The estimated parameters are finally used to learn the relationships between the images of interest, via a
manifold learning strategy. These relationships are relevant for many image processing applications, particularly those
requiring a similarity measure (e.g., image change detection and image registration). The main objective of this paper is
to evaluate the performance of a change detection method based on this manifold learning strategy initially introduced in
(Prendes et al., 2014, 2015). This performance is evaluated by using results obtained with pairs of real optical images
acquired from Pléiades satellites and pairs of optical and SAR images.

Keywords : Remote sensing, heterogeneous images, Pléiades, SAR, change detection, similarity measure

1. Introduction (SAR) images can be acquired in the presence of clouds
or even during the night (Schowengerdt, 2006; Curlan-
der and McDonough, 1991; Carrara et al., 1995). Hyper-
spectral images (Schowengerdt, 2006) can acquire hun-
dreds of different spectral bands for material characteri-
zation.

Exploiting the complementary properties of remote
sensing images is important in many practical applica-

Current remote sensing imagery exploits many differ-
ent technologies. Various kinds of sensors with different
pros and cons (spatial resolution, noise properties, ac-
quisition conditions, etc.) provide complementary infor-
mation about the observed scene. In particular, optical
remote sensing imagery provided by Pléiades satellites
offers a high spatial resolution. Synthetic aperture radar



tions. A classical application is the detection of changes
between optical images available in a database and a
newly acquired SAR image. A change detector able to
deal with heterogeneous' images can be particularly use-
ful after natural disasters such as floodings, volcano erup-
tions or earthquakes (Uprety and Yamazaki, 2012). In-
deed, in case of emergency, we may have to compare
quickly available SAR images and optical images con-
tained in a database, detect the affected areas in order
to build an efficient action plan. Change detection be-
tween heterogeneous images is also interesting for other
applications including urban growth tracking (Storie et al.,
2012; Tison et al., 2004), plantation monitoring, and ur-
ban database updating (Poulain et al., 2010).

A new change detection strategy adapted to homo-
geneous as well as heterogeneous images was recently
proposed in (Prendes et al., 2014, 2015). The main goal
of this paper is to evaluate the performance of this strat-
egy for detecting changes between pairs of real homo-
geneous optical Pléiades images and pairs of heteroge-
neous optical and SAR images.

The paper is organized as follows: Sections 2 and
3 review the image model and similarity measure intro-
duced in (Prendes et al., 2014, 2015) for change detec-
tion, with a special emphasis on Pléiades images. Simu-
lation results conducted on different datasets are shown
in Section 4. These results allow the performance of
the change detection method studied in (Prendes et al.,
2014, 2015) to be assessed. Conclusions and future
work are finally presented in Section 5.

2. Joint Statistical Model for Pixel
Intensities

This section summarizes the main elements of the
image generation model in (Prendes et al., 2014, 2015).
A pixel intensity is modeled as a ground truth corrupted
by some measurement noise.

A usual approach for statistical change detection is
based on analyzing the contents of a sliding window,
as opposed to a pixel by pixel comparison. This ap-
proach is illustrated in Fig. 1. To determine whether a
pixel has changed from one image to another, we con-
sider an analysis window in both images centered on that
pixel. A similarity measure is then computed to deter-
mine the similarity between the images within this win-
dow, resulting in a real value d € R. A hypothesis test is
finally constructed for d to determine the presence or ab-
sence of a change in the window of interest. This process
is repeated for each image pixel in the image in order to
build a change mask.

2.1. Homogeneous windows
A window is homogeneous when the ground truth is
constant for all its pixels. It is the case when a single

"Homogeneous images have been acquired by two differ-
ent sensors of the same kind (e.g., two optical images or two
SAR images) contrary to heterogeneous images (e.g., one opti-
cal and one SAR image).

Images -
Sliding Window: W
¥ tl
[ ] |
.
Wope  Wsa
Optical SAR Opt SAR

Decision
v Hy : Absence of change
Similarity Measure i
. ; H, : Presence of change
d= f(Wopt; Wsar) "
o
dzTt
H,
Result
Using several
windows
me -

Figure 1: Change detection strategy using a similarity
measure.
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Figure 2: Spectral bands of the Pléiades sensors.

object is included in the window, such as a red roof, a
field cultivated with a specific plantation, a road, etc.

As explained in (Prendes et al., 2014, 2015), the pixel
intensity of an optical image, Iop, can be modeled as a
ground truth intensity, Gopt , corrupted by additive zero-
mean Gaussian noise voy, i.€.,

IOpt = GOpt + Vopt- (1)
As optical Pléiades image are composed of 4 different
images associated with 4 different spectral bands, Ioy
and Gop are 4-dimensional vectors denoted as Ioy =
[Im, IR, Ig, IB} and Gopt = [Gm, Gr, Gg, GB].

On the other hand, SAR images can be modeled as
a ground truth intensity corrupted with a multiplicative
speckle noise distributed according to a gamma distri-
bution, i.e.,

Ispr = G'sar X Vsar- (@)

From these models, the pixel intensities of optical and
SAR images conditionally on the ground truth intensity
can be expressed as

Iopt|Gopt ~ N(GOphUg)pt)v 3)

Isar|Gsar ~ T'(Lsar, GsarLgar) (4)

where oqy is related to the signal to noise ratio of the

optical sensor, and Lgag is related to the number of looks
of the SAR image.

The ground truth intensities Gopr and Gsar both de-
pend on the object to be imaged. We denote as P the
physical properties of this object, e.g., its reflectivity spec-



trum. Given the spectral response of the Pléiades satel- parameters, namely, the number of components K and

lite sensors (shown in Fig. 2), the corresponding ground their corresponding parameters 6;, with 1 < k < K.
truth intensity for each spectral band can be obtained.
Denote as Ts(-) the operation transforming the object P 3. Similarity Measure
into the ground truth for the sensor S, i.e., such that
Gs = Ts(P). (5) The model presented in Section 2 can be used to

define a similarity measure for change detection (Pren-
des et al., 2014, 2015) . This section recalls the differ-
ent steps required for the construction of this measure
oo for optical and SAR images. We assume that the vec-
Gg =1Tg(P) = / Fg(A)R(P, N)dA (6) tor v(P) = [Topt(P), Tsar(P)] belongs to a manifold in a
- D dimensional space in the absence of change between
the two images (this assumption will be justified later),
describing the link between the different sensors. For in-
stance, in the case of an optical Pléiades image and a
SAR image, the vector v(P) is defined as
U(P) = [ﬂR(P)aTR(P)7TG(P)7TB(P)7TSAR(P)} (11)
and lives in a 5-dimensional space. Of course, the trans-
formations T (-) are unknown or difficult to obtain analyt-
ically in practical applications. The proposed approach
consists of estimating this manifold using unchanged ar-
eas in the the two images as learning data.

Fig. 3 illustrates this manifold learning strategy for
synthetic data, where the manifold is defined by the re-
lationship Tsar(P) = Topt(P) % [1 — Topt(P)]. More pre-
cisely, given an analysis window W, and its correspond-
ing optical and SAR components Wop and Wsar, we
propose to estimate the parameters of the mixture dis-
tribution (10), i.e., the number of components K, the
components weight wy, and the components parameters
6., from training data belonging to unchanged areas of
the two images (supervised learning). These estimated
parameters are then used to estimate K realizations of
v(P) (associated with the ground truth of each image),
denoted ©(P:)|s=, , one for each component of the mix-
ture distribution. Repeating this process for various anal-
ysis windows (associated with unchanged areas), differ-

For instance, considering the Pléiades blue spectral band
filter Fg(\) and the material reflectivity R(P, ), the blue
band ground truth Gg can be expressed as follows

and equivalently for the other spectral bands.

The pixel intensities contained in a homogeneous win-
dow are statistically independent given the ground truth.
As a consequence, their joint distribution conditionally on
P is simply the product of Egs. (3) and (4), yielding

P(Lopts Isar| P) = p(Iopt| Topt(P)) x p(Isar|Tsar(P)). (7)

2.2. Heterogeneous windows

An image generally consists of many heterogeneous
windows containing different objects. It is interesting to
note that these heterogeneous windows are more appro-
priate for statistical change detection. Indeed, the meth-
ods based on a statistical dependency (e.g., based on
the correlation coefficient or the mutual information) fail
when homogeneous areas are considered. This can be
explained by Eq. (7), which states that the pixel intensi-
ties contained in a homogeneous windows are statisti-
cally independent. In (Prendes et al., 2014, 2015) we as-
sumed that different objects contained within the analysis
windows lead to different homogeneous regions. Thus,
a finite number K of objects is supposed to be present
within any analysis window W, each one with its own
physical properties P, with 1 < k < K. The probability
of finding a particular property P in W is related to the
area of the window covered by the object with property

Pi, Le., X ent estimations of v(P) are obtained and can be used to
p(P|W) = Z wis(P — Py) (8) estimate the expected manifold.
=1 On the other hand, a vector ¥(P;) associated with
where §(-) represents the Dirac delta function. From Egs. a changed area is expected to lie outside of the learned
(7) and (8), p(Iopt, Isar|W) can be obtained by integrat- manifold. Using this property, we have introduced in (Pren-
ing out P des et al., 2014, 2015) a similarity measure based on

the estimated distance between ¥ (P;) and the manifold.

Plopt; Isa| W) = /p([Op"ISAR‘P’ Wip(PIW)dP (9) More precisely, we used the estimated density associ-

K ated with the vectors v(P) in unchanged areas resulting
= > wip(lopt, Isar|Pr). (10) from the learning stage as our new similarity measure
k=1 for change detection. This density can be easily learned

Ea. (10) shows. thgt the p.ixellint.ensity within ? het- using different methods, as discussed in (Prendes et al.,
erogeneous analysis window is distributed according to 2014, 2015).

a mixture distribution. The components of this mixture
belong to a family of distributions defined by the sen-

sor type. The parameter vector associated with the kth 4. Simulation Results

component of this mixture, denoted as 6, depends on This section evaluates the performance of the change
the physical properties P, of that component. Using a detection strategy described in Section 3 for different dat-
slightly modified version of the expectation maximization asets involving Pléiades images. The performance is
(EM) algorithm as described in (Figueiredo and Jain, 2002; evaluated by means of the receiver operating character-
Prendes et al., 2014, 2015), we can estimate the mixture istic (ROC) curves (Peterson et al., 1954) that are clas-

sical performance measures for detection problems. Dif-
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Figure 3: Manifold estimation for synthetic data.

ferent datasets are used to assess the detection perfor-
mance in a variety of situations involving homogeneous
and heterogeneous images. A comparison with other
state-of-the-art change detection methods is also per-
formed.

4.1. Optical images from the same sensor

The first test is conducted on a set of two Pléiades
images captured from sensors with the same specifica-
tions. The images presented in Figs. 4(a) and 4(b) show
the test images corresponding to an area located in the
south of the city of Toulouse in France, before and after
a building work. Fig. 4(c) shows the change mask used
as the ground truth for this experiment. Note that this
change mask construction as well as the image regis-
tration procedure were conducted by a photo interpreter.
The multispectral images, with a resolution of 2m, were
pan-sharpened using the panchromatic image with a res-
olution of 50cm. This step is required since all images
have to be co-registered. For simplicity, a projection sub-
stitution pansharpening algorithm (Thomas et al., 2008)
was implemented, where each multi-spectral component
was up-sampled to match the resolution of the panchro-
matic component (50cm). Moreover, its intensity (com-

puted using an L-2 norm) was then replaced by the panchro-

matic component to produce a multi-spectral (4 spectral
bands) image with a 50cm resolution. The change map
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Figure 4: Optical images from homogeneous sensors be-
fore (a) and after (b) a building work, with the correspond-
ing change mask (c) and detector output map (d) (where
red represents high similarity, and blue represents low
similarity). The obtained estimated manifold (e) (where
red represents high density, and blue represents low den-
sity) and detector performance (f).

obtained with the proposed detector is shown in Fig. 4(d).
Red areas represent high similarity between the two im-
ages, while blue areas correspond to low similarity. The
map was obtained with a moving window of size 40 x 40
pixels, covering an area of 20 x 20 m?. The main changes
due to building works can be observed in this map.

Fig. 4(e) shows a 2D projection of the 8-dimensional
estimated manifold. Since both images have been ac-
quired by homogeneous sensors, we expect the manifold
to reveal a linear relationship between the two variables
(Prendes et al., 2014, 2015). However, minor nonlinear
effects can also be observed which can be attributed to
different illumination conditions producing different shadow
patterns, as well as some sensor saturation.

As the threshold used to produce the change detec-
tion map is strongly application dependent, we compute
ROC curves to evaluate the performance of the proposed
detector and to compare it with respect to other state-
of-the-art methods. For the first dataset (two homoge-
neous Pléiades images), Fig. 4(f) shows a comparison
with the correlation coefficient and the mutual informa-
tion, both measuring the statistical dependency between
two random variables. The correlation coefficient mea-
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Figure 5: Heterogeneous optical images before (a) and
after (b) some construction work, with the correspond-
ing change mask (c) and change map (d). The obtained
estimated manifold (e) and detector performance (f).

sures linear dependency, whereas the mutual informa-
tion captures a more general information-based depen-
dency. Since both images correspond to the same kind
of sensors and thus are linearly correlated, it is expected
that the correlation coefficient and the mutual information
perform similarly. This similar performance is observed
in Fig. 4(f). Note that the proposed method is not based
directly on statistical dependency between the pixel in-
tensities. Instead, it is based on the dependency be-
tween the parameters of the image model presented in
Section 2. We have observed that the proposed method
shows good performance for homogeneous areas, con-
trary to the correlation coefficient and the mutual infor-
mation, which explains its better performance.

4.2. Optical images from heterogeneous sensors
The second set of experiments aims at evaluating the
performance of the proposed change detector for hetero-
geneous optical sensors. For this evaluation, we used
a pair of Pléiades and Google Earth images. Both im-
ages are optical but were acquired using sensors with
different specifications, i.e., different resolutions, different
numbers of spectral bands, different central frequencies,
etc. The image presented in Fig. 5(a) is the same as
in Fig. 4(a), while the image in Fig. 5(b) corresponds to a
Google Earth image of the same area after the beginning
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Figure 6: Optical image before (a) and SAR image during
(b) a flooding, with the corresponding change mask (c),
change map (d) and resulting detection performance (e).

of building works. The Google Earth image has 3 spec-
tral bands and was resampled to match the 50cm reso-
lution of the Pléiades image. Fig. 5(c) shows the change
mask between these two images used as a groundtruth.
Finally, Fig. 5(d) shows the detection map obtained with
the proposed change detection map with estimation win-
dows of 40 x 40 pixels. The main changes due to building
works can be observed in this detection map.

Fig. 5(e) shows a 2D projection of the estimated 7-
dimensional (4 dimensions for the Pléiades image and 3
dimensions for the Google Earth image) manifold. Since
both images have been acquired by optical sensors, it
is natural to observe some linear relationship for the two
projected images. However, note that some non-linear
components resulting from the sensor differences can
also be observed.

Fig. 5(f) compares the performance of the proposed
method with the detectors based on the correlation coef-
ficient and the mutual information, which were also com-
puted with windows of 40 x 40 pixels. It can be ob-
served that the correlation coefficient performance de-
creases dramatically when compared to Fig. 4(f). This
reduced performance of the correlation coefficient can
be easily explained by the existence of the non-linear
components in the manifold, revealing the non-linear re-
lationships between the two images. However, the mu-
tual information and the proposed methods remain both
unaffected.

4.3. Heterogeneous optical and SAR images

The third experiments evaluates the performance of
the proposed method for heterogeneous images. More
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Figure 7: Homogeneous optical images before (a) and
after (b) construction works, and its change mask (c).
Computed change map (d), and performance (f).

precisely, we have considered a Google Earth (optical)
image and TerraSAR-X (radar) image. The images pre-
sented in Figs. 6(a) and 6(b) were taken before and dur-
ing the July 2007 flooding of Gloucester. The TerraSAR-
X image presents a pixel resolution of 7.3m, and the
Google Earth image was down-sampled to match this
resolution. Fig. 6(c) shows the change mask between
these images representing the areas affected by the flood-
ing. Fig. 6(d) shows the change detection map obtained
with the proposed method when using a moving window
of 10 x 10 pixels, covering an area of 73 x 73 m?. The
changes due to the flooding can be observed in this map.

The change detection performance obtained with the
proposed method is shown in Fig. 6(e), along with the
performance of other change detectors, including the ap-
proach detailed in (Mercier et al., 2008)2. A window size
of 10 x 10 was used to compute the results obtained
with the correlation coefficient and the mutual informa-
tion. The results obtained with the algorithm based on
conditional copulas was computed with a window size of
9 x 9 pixels. These results show that the performance
of the proposed method is very interesting and that it is
not really sensible to the fact that the images have been
acquired by different kinds of sensors.

4.4. Heterogeneous Pléiades and SAR images

The last experiments are related to heterogeneous
images, namely a set of higher resolution Pléiades and
TerraSAR-X images. The images displayed in Figs. 7(a)

2The authors would like to thank Grégoire Mercier for provid-
ing the results obtained with the conditional copulas.

and 7(b) were taken with an interval of 4 years in the
South of Toulouse in France. The image in Fig. 7(d) was
acquired just after the SAR image and is shown here to
facilitate the visualization of the different changes, where
some new constructions can be observed with respect
to Fig. 7(a). Fig. 7(c) shows the change mask between
these images. As in the previous tests, the image reg-
istration as well as the change mask were provided by
a photo interpreter. Note that the optical image corre-
sponds to the multi-spectral component of the Pléiades
image, with a pixel resolution of 2m. The TerraSAR-X
image was resampled accordingly to match the optical
image. Fig. 7(e) shows the change map of our similarity
measure and with a window size of 40 x 40 pixels.

The performance of the different detectors can be
evaluated by the ROCs displayed in Fig. 7(f). Note that
the same window sizes were used for detectors based
on the correlation coefficient and the mutual information.
This dataset appears to be difficult to be handled by the
correlation coefficient and the mutual information. Con-
versely, the performance of the proposed method remains
mostly unchanged when compared to the results obtained
with the other datasets.

5. Conclusions

This paper investigated the performance of a statisti-
cal model introduced in (Prendes et al., 2014, 2015) for
the detection of changes in co-registered images acquired
by homogeneous or heterogeneous sensors. This model
assumes that the image intensities located within an anal-
ysis windows are distributed according to a mixture of
distributions defined by the noise statistics and the phys-
ical properties of the objects located in this analysis win-
dows. The parameters of this mixture distribution are
used to build a sensor linking vector that belongs to a
manifold when there is no change between the images to
be processed. A similarity measure can then be defined
based on the distance between the sensor linking vector
and the estimated manifold learned from training sam-
ples belonging to unchanged areas of the images. This
similarity measure is finally used to as a test statistics for
change detection. The main objective of this paper was
to assess the performance of this change detection strat-
egy for real optical (Google Earth and Pléiades) and SAR
(TerraSAR-X) images. Based on the results obtained in
this paper, we can conclude that this change detection
strategy is very robust to the nature of the images to be
analyzed. In particular, the detection performance was
shown to be very promising for various scenarios includ-
ing pairs of Pléiades images, Pléiades and Google Earth
images and finally Pléiades and TerraSAR-X images. ltis
worth noting that all the images should be co-registered,
which can be achieved in satellite images through the ge-
olocation metadata provided by the satellite. Modifying
the method in order to account for misregistration errors
is clearly an interesting prospect. Future work also in-
cludes the study of a Bayesian nonparametric algorithm
allowing the number of objects contained in the analysis
windows to be estimated automatically.
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