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Abstract—In this paper, the problem of trajectory tracking of a
nonlinear system with unknown but bounded model parameters
uncertainties is addressed. The proposed control strategy com-
bines a robust model predictive control law with a proportional-
integral (PI) regulator. The predictive controller guarantees the
tracking of the reference trajectory, whereas the PI regulator
ensures a good tracking accuracy. The proposed robust predictive
controller considers only the most influential model parameters
(chosen from a sensitivity analysis), and involves the minimization
of a regularized optimization problem. This new formulation of
the predictive controller ensures a good trade-off between track-
ing accuracy and computation time. The developed hierarchical
strategy is applied to a macroscopic continuous photobioreactor
system, for regulating the biomass concentration at a chosen
setpoint. Finally, the proposed strategy is validated in simulation
to assess its efficiency.

Index Terms—Robust predictive control, Min-max optimiza-
tion problem, Sensitivity analysis, Bioprocesses, Uncertain sys-
tems.

I. INTRODUCTION

The microalgae cultivation has an increasing interest due
to the biochemical characteristics of the microalgae. These
micro-organisms are rich in high-value compounds, such as
vitamins, pigments, and biologically active compounds. All
these compounds can be extracted for use by the cosmetics,
pharmaceutical and food industries with more recent applica-
tions in sustainable environment, such as wastewater treatment,
decomposition of different classes of toxic compounds and
carbon capture from industrial flue gases [1]. Biochemical
processes are systems where nonlinear effects are significant
enough to justify the use of nonlinear models. In the literature
of microalgae cultivations, several nonlinear control laws have
been developed [2], [3], [4]. They however do not specifically
focus on robustness features. In fact, the bioprocess model is
uncertain. In addition, the process model is identified and the
uncertain parameters are estimated with evaluated confidence
intervals. This motivates the development of robust control
laws in the presence of modelling uncertainties.

In this work, we propose a robust predictive controller
under model parameter uncertainties. The choice of the Model
Predictive Control law (MPC) [5] allows the determination of
the current control input while taking into account the future
system behavior. If the system is uncertain, then the stabilizing
properties of the MPC decrease. One of the approaches in the
design of robust MPC (RNMPC) [6] controllers is to formulate

the problem as a nonlinear min-max optimization problem,
where the objective function is minimized for the worst
uncertainty realization. The first idea of this study consists
in proposing a robust formulation of the NMPC law implying
a min-max optimization problem by taking into account only
the most influential parameters. The considered parameters are
determined on the basis of a sensitivity analysis as proposed
in [7]. In addition, in order to reduce as much as possible the
computation load, we propose an alternative procedure that
transforms the min-max problem into a robust regularized least
squares problem [8], through a model linearization technique
(first order Taylor series expansion) at each sampling time,
along the nominal trajectory [9] (called hereafter reduced
Linearized Robust NMPC, rLRMPC). The proposed control
strategy is further improved by combining the rLRMPC with
a PI control law, similarly to the control structure proposed
in [10]. This hierarchical control structure allows reducing
the tracking error due to the model approximation through
linearization and to the model uncertainties.

The paper is structured as follows. Section 2 presents the
class of nonlinear systems that will be considered. In Section
3, the proposed control strategy is detailed: rLRMPC law,
based on the linearization technique combined with the PI
controller. An illustrative example (Droop dynamic model of a
continuous photobioreactor) is studied in Section 4. Moreover,
numerical results are provided to compare different predictive
control strategies in case of model mismatch, and highlight
the proposed control strategy performances. Finally, some
concluding remarks and perspectives are drawn in Section 5.

II. PROBLEM STATEMENT

Consider a system described by an uncertain continuous
time nonlinear model:{

ẋ(t) = f (x(t),u(t),θ), x(t0 = 0) = x0
y(t) = Hx(t) (1)

where x ∈ Rnx is the state vector and x0 its initial value, y ∈
Rny is the measured output. f , of class C1 with respect to
all its arguments, is the nonlinear process dynamics. u ∈ U⊂
Rnu represents the control input with U the set of admissible
controls and θ ∈ Rnθ is the vector of uncertain parameters
that are assumed to lie in the admissible region Θ = [θ−,θ+].
The measurement matrix is given by H ∈ Rny×nx . Exogenous



inputs can act on system (1). They are omitted to simplify
notation (but are applied to the system).

The control input u is parametrized using a piecewise-
constant approximation (u(τ) = u(tk), τ ∈ [tk, tk+1[) over a
time interval [tk, tk+1], [kTs,(k+1)Ts] considering a constant
sampling time Ts. Let us define the discrete state trajectory g
as the solution, at time tk+1, of system (1) with initial state x0,
and with utk

t0 the control sequence from the initial time instant
t0 to the time instant tk:{

xk+1 = g(t0, tk+1,x0,u
tk
t0 ,θ)

yk = Hxk
(2)

where xk+1 is the state at tk+1, k is the time index, xk and yk
are the discrete state vector and the sampled measurement at
time tk, respectively.

This paper aims at designing a control strategy such that the
output signal yk tracks the reference signal ȳk while ensuring
good closed-loop behaviour and tracking accuracy, despite
the model uncertainties and perturbations than can act on the
system.

III. CONTROLLER DESIGN

A. Hierarchical control strategy

The proposed control strategy consists in a hierarchical
control scheme (Fig. 1), similarly to the one proposed in [10].
The controller is formed by a robust predictive law coupled
to a Proportional-Integral (PI) controller. The predictive con-
troller allows tracking the reference trajectory, whereas the PI
is added to reduce any residual tracking error. Hereafter, the
design of the predictive controller is detailed in Section III-B,
and of the PI controller in Section III-C.

HProcess

PI

ȳ(t)
ũ(t) u(t)

uPI(t)

x(t) y(t)

+ +

Predictive
Controller

Fig. 1. Scheme of the hierarchical control strategy.

B. Predictive controller design

1) Robust predictive controller: The predictive controller
predicts the plant future evolution over a finite receding
horizon of length NpTs, using a nonlinear dynamic model. At
each time instant tk, the future control sequence is computed by
minimizing a cost function expressed as a quadratic criterion
based on the future tracking errors, while ensuring that all
constraints are respected. The first value of this optimal control
sequence is applied to the system until the next time step,
when the measurement becomes available. The optimization
problem is solved again at the next sampling time according
to the well-known receding horizon principle.

Since the predictive controller is model-based, it is very
sensitive to model uncertainties, and more specifically to the
model parameters values. In our case, we will assume that the
parameter vector θ is uncertain and belongs to a known region
Θ. In this case, a robust predictive control strategy (RNMPC)
implying a min-max optimization problem [6] can be used and
expressed as follows (at time index k):

ũk+Np−1
k = arg min

u
k+Np−1
k

max
θ∈Θ

Π(uk+Np−1
k ,θ) (3)

where the cost function is defined as

Π(uk+Np−1
k ,θ) = ||uk+Np−1

k − ūk+Np−1
k ||2V+

||ŷk+Np
k+1 − ȳk+Np

k+1 ||
2
W

(4)

with ||z||2P = z>Pz the Euclidean norm weighted by P,
uk+Np−1

k = [u>k , . . . ,u
>
k+Np−1]

> the optimization variable,

ūk+Np−1
k = [ur>

k , . . . ,ur>
k+Np−1]

> the reference control sequence,

ŷk+Np
k+1 =


Hg(tk, tk+1,xk,uk,θ)

Hg(tk, tk+2,xk,uk+1
k ,θ)

...
Hg(tk, tk+Np ,xk,u

k+Np−1
k ,θ)

 the predicted (5)

output and ȳk+Np
k+1 = [ȳ>k+1, . . . , ȳ

>
k+Np

]> the reference trajectory.
V ≥ 0 and W > 0 are tuning weighting matrices (chosen
diagonal to simplify the study).
The optimal control sequence ũk+Np−1

k is determined to
minimize the tracking error in the worst case (by considering
all trajectories over all possible data scenarii). Since this
optimization problem is time consuming, it will be simplified:
(i) by reducing the number of the parameters that will be
optimized from a sensitivity analysis of the model with
respect to its parameters, (ii) and then by linearizing the
criterion around the nominal trajectory. These two steps are
detailed hereafter.

2) Sensitivity analysis: The sensitivity functions represent
the sensitivity of each state xi to (small) variations in each
model parameter θ j. Different approaches are possible to
determine the sensitivity functions. The most precise method
involves analytical derivation [11]. In this case, the dynamics
of sensitivities are calculated as follows:

d
dt

(
∂xi

∂θ j

)
=

∂

∂θ j

(
dxi

dt

)
=

∂ fi

∂θ j
+

dim(x)

∑
k=1

∂ fi

∂xk

∂xk

∂θ j
(6)

with as an initial condition: ∂xi
∂θ j

= 0.
From the analysis of the sensitivity functions temporal

evolution, and according to their magnitude order, one
can select the parameters which are significantly the most
influential on the model [7]. These parameters will be denoted
κ . In the sequel, only the most influential parameters κ are
considered in the criterion of problem (3), instead of the full
model parameters (with θ , [κ,ξ ]). The other parameters, ξ ,
are set to their nominal values with ξnom = (ξ++ξ−)/2.



3) Linearized Robust Model Predictive controller: The
min-max optimization problem, even when considering only
the most influential parameters, is still time consuming. It will
be simplified further by converting the min-max optimization
problem into an equivalent minimization one.
From (2), the predicted state for time tk+ j, starting from state
at tk, is linearized around the reference trajectory given by
the reference control sequence ūk+Np−1

k and for the nominal
parameters, κnom = (κ++κ−)/2. A first order Taylor series
expansion of (2) for j = 1,Np is used:

g(tk, tk+ j,xk,u
k+ j−1
k , [κ,ξnom])≈ gnom(tk+ j)+

∇ug(tk+ j)(u
k+ j−1
k − ūk+ j−1

k )+∇κ g(tk+ j)(κ−κnom)
(7)

with 

gnom(tk+ j) = g(tk, tk+ j,xk, ū
k+ j−1
k , [κnom,ξnom]) (8)

∇κ g(tk+ j)=
∂g(tk ,tk+ j ,xk ,u

k+ j−1
k ,[κ,ξnom])

∂κ

∣∣∣∣∣∣∣∣∣∣ uk+ j−1
k =ūk+ j−1

k

κ=κnom

(9)

∇ug(tk+ j)=
∂g(tk ,tk+ j ,xk ,u

k+ j−1
k ,[κ,ξnom])

∂uk+ j−1
k

∣∣∣∣∣∣∣∣∣∣ uk+ j−1
k =ūk+ j−1

k

κ=κnom

(10)

The dynamics of sensitivity function with respect to κ , defined
in (9), can be computed for time t ∈ [tk, tk+Np ] as detailed in (6).
In order to simplify the calculation of the gradient ∇ug, finite
differences are used to approximate numerically the derivative
∇ug(tk+ j) for each control u j, j ∈ [k,k+Np−1].
From (5) and (7), it comes:

ŷk+Np
k+1 ≈ Ḡk+Np

nom,k+1 + Ḡk+Np−1
u,k (uk+Np−1

k − ūk+Np−1
k )

+Ḡk+Np
κ,k+1(κ−κnom)

(11)

with (Ḡk+Np
nom,k+1)

T = [Hgnom(tk+1), . . . ,Hgnom(tk+Np)], the vec-
tor containing the predicted output for the nominal case,
(Ḡk+Np

u,k+1)
T = [H∇ug(tk+1), . . . ,H∇ug(tk+Np)], the vector of Ja-

cobian matrices related to the control sequence,
(Ḡk+Np

κ,k+1)
T = [H∇κ g(tk+1), . . . ,H∇κ g(tk+Np)], the vector of Ja-

cobian matrices related to the most influential parameters.
Assuming that the uncertain parameters are uncorrelated, the
bounded parametric error can be expressed by:

κ−κnom = γδκmax (12)

with δκmax = (κ+−κ
−)/2 and ||γ|| ≤ 1 (13)

Matrix norm ||A|| is given by ||A||=
√

σ̄(A>A) with σ̄(A)
the maximum eigenvalue of A.
The min-max optimization problem (3) is converted into a
robust regularized least squares problem when applying (11-
13) in the presence of uncertain data [8], as presented in [9].
Let us consider the following optimization problem:

min
z

max
||v||≤π(z)

||z||2V + ||Az−b+Cv||2W (14)

where the perturbation vector v is assumed to satisfy the
following factorized form:

Cv =C∆(Eaz−Eb) (15)

where ∆ denotes an arbitrary contraction with ||∆|| ≤ 1, C 6= 0,
Ea and Eb are known quantities of appropriate dimensions. The
nonnegative function π(z) is assumed to be a known bound
on the perturbation v and is a function of z only, given by:

π(z) = ||Eaz−Eb|| (16)

Introducing the Lagrange multiplier λ , the problem (14)
becomes equivalent to [8]:

min
λ≥||C>WC||

min
z

z>V z+(Az−b)>W (λ )(Az−b)+λπ(z)2

(17)
where the minimizer z must satisfy the equation

z(λ ) = E(λ )−1(A>W (λ )b+λE>a Eb) (18)

with
E(λ ) =V (λ )+A>W (λ )A+λE>a Ea (19)

The modified weighting matrices V (λ ) and W (λ ) are obtained
from V and W via:{

V (λ ) =V +λE>a Ea
W (λ ) =W +WC(λ I−C>WC)†C>W

(20)

The invertibility of E(λ ) is guaranteed by the positive defi-
niteness of V .
The nonnegative scalar parameter λ o ∈ R solution of (17),
is computed from the following unidimensional minimization
problem:

λ o = arg min
λ≥||C>WC||

||z(λ )||2V +λ ||Eaz(λ )−Eb||2+

||Az(λ )−b||2W (λ )

(21)

Finally, the problem has a unique global minimum zo given
by (18) for λ = λ o.
Based on this formalism, the robust nonlinear predictive prob-
lem which is defined by (3-4), is written in the form (14-16)
with: 

z = uk+Np−1
k − ūk+Np−1

k ,

A = Ḡk+Np−1
u,k ,b = ȳk+Np

k+1 − Ḡk+Np
nom,k+1,

C = Ḡk+Np
κ,k+1,∆ = γ,Ea = 0,Eb =−δκmax

(22)

The application of (18-21) provides the solution of (3-4) as
follows [9]:
step 1. λ o is computed from the following minimization
problem:

λ o = arg min
λ≥||Ḡ

k+N>p
κ,k+1 WḠ

k+Np
κ,k+1||

G(λ )
(23)

where the function G(λ ) is defined by:

G(λ ) = ||Ḡk+Np−1
u,k z(λ )− ȳk+Np

k+1 + Ḡk+Np
nom,k+1||

2
W (λ )+

||z(λ )||2V +λ ||δκmax||2
(24)



with
z(λ ) = [V + Ḡk+Np−1>

u,k W (λ )Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k W (λ )(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]
(25)

and

W (λ ) =W +WḠk+Np
κ,k+1(λ I− Ḡ

k+N>p
κ,k+1WḠk+Np

κ,k+1)
†Ḡ

k+N>p
κ,k+1W (26)

step 2. The control sequence is derived from (18):

ũk+Np−1
k = ūk+Np−1

k +[V + Ḡk+Np−1>

u,k W (λ o)Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k W (λ o)(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]
(27)

with W (λ o) given in (26) for λ = λ o.
The minimum λ o of the unidimensional function G(λ ) is

found using the golden section search algorithm.
As a conclusion, the predictive controller consists in solving
online an unidimensional optimization problem (23-24) at each
sampling time, instead of solving min-max problem (3-4).
In the sequel, this predictive control law will be referred
to as reduced linearized robust model predictive controller
(rLRMPC).

C. PI controller design

At each time instant tk = kTs, the optimal control law ũ(t)
obtained from the predictive controller (27) is completed by
a Proportional-Integral law uPI(t). The idea is to drive the
system to track the predicted output ŷ in order to cancel the
difference between the model prediction output and the system
output. In this study, the PI design is performed in continuous-
time, then discretized for implementation. Let us define the
model prediction resulting from the application of the previous
control input for t ∈ [tk−1, tk], as follows:

ŷ(t) = Hg(tk−1, t,xk−1,uk−1,θnom) (28)

In the case of the considered control problem, the control law
derived from the PI strategy is given by (with Kp and Ti the
controller parameters):

uPI(t) = Kp(y(t)− ŷ(t))+
Kp

Ti

∫ t

tk−1

(y(τ)− ŷ(τ))dτ (29)

Finally, with (29) evaluated at t = tk, the control input to be
applied to the plant is obtained as the sum of two parts, given
by:

u(tk) = ũ(tk)+uPI(tk) (30)

The component ũ(tk) (the first value of the optimal control
sequence) is generated by the rLRMPC controller, while
uPI(tk) is generated by the PI controller.

IV. ILLUSTRATIVE EXAMPLE

The process under consideration here is a continuous pho-
tobioreactor, without any additional biomass in the feed, and
neglecting the effect of gas exchanges. Thus, the dynamic
equations resulting from mass balances are given by [2]:

Ẋ(t) = µ(Q(t), I(t))X(t)−DX(t)
Q̇(t) = ρ(S(t))−µ(Q(t), I(t))Q(t)
Ṡ(t) = (Sin−S(t))D−ρ(S(t))X(t)

(31)

where D represents the dilution rate (d−1, d: day), X the
biomass concentration (µm3 L−1), Q the internal quota
(µmol µm−3), S the substrate concentration (µmol L−1) and
I the light intensity (µE m−2 s−1).
The specific uptake rate, ρ(S), and the specific growth rate,
µ(Q, I), are given by:

ρ(S) = ρm
S

S+Ks
and µ(Q, I) = µ̄

1−KQ/Q
I +KsI + I2/KiI

(32)

The nonlinear model is represented in the state-space formal-
ism (1), with:

f =

 µ(Q, I)X−DX
ρ(S)−µ(Q, I)Q

(Sin−S)D−ρ(S)X

 ,x =
X

Q
S

 , u = D,

θ =
[
ρm Ks µ̄ KQ KsI KiI

]>
, y = X

(33)

To simplify notations, the exogenous inputs (Sin, I) are omitted
but are applied. The model parameters are displayed in Table
I [12], [13]. Details related to the modelling can be found in
[14].

TABLE I
MODEL PARAMETERS.

Parameter Value Unit
µ̄: maximal specific growth rate 2 d−1

ρm: maximal specific uptake rate 9.3 µmol µm−3 d−1

KQ: minimal cell quota 1.8 µmol µm−3

Ks: substrate half saturation constant 0.105 µmol L−1

KsI : light saturation constant 150 µE m−2 s−1

KiI : light inhibition constant 2000 µE m−2 s−1

Sin: inlet substrate concentration 100 µmol L−1

Iopt =
√

KsIKiI : optimal light intensity 547 µE m−2 s−1

The main objective of the control is to regulate the biomass
concentration X to a reference value X r, while the dilution
rate D is constrained to track the reference Dr. The latter
is computed from the knowledge of the targeted setpoint at
each time instant as detailed in [7]. According to results
obtained in [7], the substrate half saturation constant Ks and
the minimal cell quota KQ are the most influential parameters
on the biomass concentration evolution (κ = [Ks,KQ]).

Now, the efficiency of the proposed control strategy is vali-
dated in simulation. The performances of the above mentioned
algorithms are compared in a worst uncertain parameters
case. The parameters values of the system are chosen on the
parameter subspace border (θreal = [ρ+

m ,K−s , µ̄+,K−Q ,K−sI ,K
+
iI ])

[7], where the uncertain parameters subspace [θ−,θ+] is given
by [0.8θnom,1.2θnom]. The maximal admissible dilution rate
Dmax equals 1.6d−1. The simulation time Tf and the sampling
time Ts are chosen equal to 1 day and 20 min respectively.
The inlet substrate concentration Sin is assumed to be perfectly
known. The controllers tuning parameters are determined by
a trial-and-error technique: Np = 5, V = I5 and W = I5 for the
predictive strategy and Kp = 1 and Ti = 0.01d−1 for the PI
controller. Simulations have been carried out considering the
uncertain parameter worst case cited previously.



First, the light intensity is assumed to be measured and
constant, equal to Iopt (that maximises µ(Q, I) [11]). Biomass
concentration measurements, yk, are assumed to be corrupted
by a Gaussian white noise of zero mean and 0.1 standard
deviation. The response of the system for a rising edge is
studied. The obtained results are depicted in Fig. 2. This
figure compares the (r)LRMPC and (r)LRMPC-PI controllers
performances (LRMPC is similar as in Section III-B3 when
considering all the parameters in the optimization step, i.e. no
reduction in the number of the parameters).

Fig. 2. Biomass concentration and dilution rate evolution with time for
(r)LRMPC and (r)LRMPC-PI strategies.
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Fig. 3. Histogram of the distribution of the computation time (left) and the
biomass concentration tracking error (right).

It can be noticed the anticipation of a setpoint change due to
the prediction of the model behavior in the moving horizon.

In the case of (r)LRMPC law, a static error is present, due
to the superposition of two phenomena: the approximation of
the model through linearization, and the model error. On the
other hand, the use of a hierarchical scheme (see Fig. 1) for
both the two (r)LRMPC-PI laws allows reducing the static
error (45% in comparison with (r)LRMPC laws as shown
in Fig. 3). Moreover, considering only the most influential
parameters (rLRMPC, with and without PI) leads to a decrease
of the online computation load (about 15% in comparison with
LRMPC as shown in Fig. 3) while keeping an acceptable level
of the tracking accuracy.
Nevertheless, the tracking error is not completely cancelled
with this choice of Ti. It could be reduced by decreasing
the Ti value, but inducing a more fluctuant control signal. A
compromise must thus be found.

Secondly, a day/night light variation is considered, modeled
as [2]: I(t) = Iopt(max{0,sin(2πt)})2, where the time t is in
days. The light intensity modeling is assumed mismatched
(20% as shown in Fig.4) and used in the prediction step. The
biomass concentration setpoint is constant (X r = 25µm3/L).
Figure 4 illustrates the performances of the proposed strategy
and compares it to those of a more classical Robust NMPC
as defined in (3).
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Fig. 4. Temporal evolutions of biomass concentration tracking error, dilution
rate and light intensity.

TABLE II
COMPARISON OF THE COMPUTATION TIMES

Computation time (s)
Controller min mean max

rLRMPC-PI < 10−5 0.014 0.08
RNMPC 0.125 3.73 17.64

Both strategies counter the effect of fluctuations in light
intensity. It can be observed that the proposed approach
(rLRMPC-PI) reduces the fluctuations of biomass concentra-
tion better than the RNMPC, especially at the end of the



culture duration. The computation times are given in Table II.
It can be noticed the reduction of the computation time with
the proposed strategy in comparison to the RNMPC law. In
conclusion, the proposed approach is robust against parameter
uncertainties and less sensitive to light variations than the
RNMPC.

V. CONCLUSION

In this paper, we have proposed a hierarchical control strat-
egy for a nonlinear system with bounded model uncertainties.
The developed approach is formed by a two-level controller: a
reduced linearized robust MPC and a PI control law. The first-
order linearization of the criterion of the Robust NMPC law,
in combination to the reduction of the number of uncertain
parameters, reduces the computation load while assuring a
good tracking behavior. The linearized robust MPC is further
combined with a classical Proportional-Integral controller to
improve the accuracy of the reference tracking. Work under
progress considers the proof of the stability of the proposed
control scheme, and future work could consider a robust
NMPC in case of unmodeled uncertainties and an experimental
validation.
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