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Abstract: This paper proposes the design of a robust predictive control strategy which guarantees
robustness towards parameters mismatch for a simplified macroscopic continuous photobioreactor
model, obtained from mass balance based modelling. Firstly, this work is focused on classical robust
nonlinear model predictive control law under model parameters uncertainties implying solving min-max
optimization problem for setpoint trajectory tracking. Secondly, a new approach is proposed, consisting
in reducing the basic min-max problem into a regularized optimization problem based on the use of
linearization techniques, to ensure a good trade-off between tracking accuracy and computation time.
Finally, the developed control law is compared to classical and robust predictive controllers. Its efficiency
is illustrated through numerical results and robustness against parameter uncertainties is discussed for
the worst case model mismatch.

Keywords: Bioprocesses, Robust Nonlinear Model Predictive Control, Min-max optimization problem,
Uncertain systems.

1. INTRODUCTION

Microalgae are cultivated nowadays for feed, food or cosmetics
production, and have recently emerged as an interesting source
for sustainable energy production at large scale which attracted
the interest from large companies. For these reasons also,
microalgae cultivation is becoming a key research topic since
it received high attention from scientific community leading to
many studies.

Biochemical processes are systems where nonlinear effects are
significant enough to justify the use of nonlinear model to give
a sufficiently adequate representation of the system behavior. In
addition, generally the process model is identified and uncertain
parameters are estimated with evaluated confidence intervals,
which motivates the development of robust control laws in the
presence of modelling uncertainties.

In the literature of microalgae cultivations, several nonlin-
ear control strategies have been developed: optimization-based
(Abdollahi and Dubljevic, 2012; Tebbani et al., 2014), adaptive
(Mailleret et al., 2004), sliding mode (Selisteanu et al., 2007),
input/output linearization (Ifrim et al., 2013; Tebbani et al.,
2015), and backstepping (Toroghi et al., 2013) approaches.
They however do not specifically focus on robustness features.

Our aim is therefore to design a robust predictive controller
which would be able to find an optimal feeding strategy in order
to guarantee that the process will yield the desired amount of
biomass along the cultivation period under model parameter
uncertainties. Here, the challenge is to lay down a stable real
time operation, insensitive to various disturbances, then, close
to a certain state or desired profile. This requires the application
of advanced optimal control strategies to ensure the bioprocess
efficiency.

This work is focused on Nonlinear Model Predictive Control
(NMPC) strategy (Camacho and Bordons, 2004). The main ad-
vantage of NMPC law is that it allows the current control input
to be optimized, while taking into account the future system
behavior. This is achieved by optimizing the control profile
over a finite time horizon, but applying only the current control
input. However, the performances of the NMPC law usually
decrease when the true plant evolution deviates significantly
from the one predicted by the model. Robust variants of NMPC
(Kerrigan and Maciejowski, 2004; Limon et al., 2004) are able
to take into account set bounded disturbance and/or constraints.
The RNMPC can be formulated as a nonlinear min-max op-
timization problem which tends to become too large to be
solved online numerically. Moreover, estimators are generally
needed to reconstruct the states due to the lack of reliable online
measurements. Consequently, the total calculation time is an
important factor that must be reduced as much as possible. The
proposed solution aims at transforming the min-max problem
into a robust regularized least squares problem. A similar dual
problem for robust state estimation, consisting on the design of
receding-horizon observer based on (Sayed et al., 2002) work
was presented in Goffaux and Vande Wouwer (2008). Thus,
in this paper, we propose to apply a similar approach, in the
case of NMPC law design. The original problem is converted
into a scalar minimization problem using a model linearization
technique (first order Taylor series expansion) at each sampling
time along the nominal trajectory which is defined by the nom-
inal parameter values and the current operating point. The main
advantage of this approach is to be computationally tractable in
calculating the optimal control compared to a min-max robust
approach, which makes it suitable for online application.



The paper is structured as follows. Section 2 describes the
dynamical model of the considered system, which is based on
Droop model. Section 3 addresses the characterization of the
steady state of the system. Section 4 presents nonlinear predic-
tive controllers (classical, robust and regularized formulations)
in order to regulate the biomass concentration at a desired value,
by manipulating the dilution rate chosen as a control variable.
Linearized Robust MPC (LRMPC) is derived in Section 5,
based on the linearization technique cited previously. Moreover,
numerical results are provided in Section 6 to compare classi-
cal NMPC, Robust NMPC (RNMPC) and proposed LRMPC
performances in case of model mismatch. Conclusions and
perspectives end this paper in Section 7.

2. MODEL DESCRIPTION

The specificity of microalgae in comparison to other microor-
ganisms is that inorganic substrate uptake and growth are de-
coupled thanks to an intracellular storage of nutrients (Bernard,
2011). In order to take into account this phenomenon, the
growth of microalgae is represented by Droop model (Bernard
and Gouzé, 1995), (Bernard, 2011) which involves three state
variables: the biomass concentration (denoted X, in µm3 L−1),
the internal quota (denoted Q, in µmol µm−3), which is de-
fined as the quantity of substrate per unit of biomass, and the
substrate concentration (denoted S, in µmol L−1).
The considered dynamic model assumes that the photobioreac-
tor operates in continuous mode (medium withdrawal flow rate
equals its supply one, leading to a constant effective volume),
without any additional biomass in the feed, and neglecting the
effect of gas exchanges. The time varying equations resulting
from mass balances are given by (Masci et al., 2010): Ẋ(t) = µ(Q(t), I(t))X(t)−DX(t)

Q̇(t) = ρ(S(t))−µ(Q(t), I(t))Q(t)
Ṡ(t) = (Sin−S(t))D−ρ(S(t))X(t)

(1)

where D represents the dilution rate (d−1, d: day) and Sin the
inlet substrate concentration (µmol L−1).
The specific uptake rate, ρ(S), and the specific growth rate,
µ(Q, I), are given by:

ρ(S) = ρm
S

S+Ks

µ(Q, I) = µ̄(1− KQ

Q
)µI(I)

(2)

Parameters Ks and ρm represent respectively the substrate half
saturation constant and the maximal specific uptake rate. The
theoretical maximal specific growth rate is denoted µ̄ and KQ
represents the minimal cell quota allowing growth.

The modelling of light effect consists in including the term
µI which is represented by a Haldane kinetics to model the
photoinhibition (Masci et al., 2010):

µI(I) =
I

I +KsI +
I2

KiI

(3)

where I is the light intensity (µE m−2 s−1), KsI and KiI are light
saturation and inhibition constants respectively. The optimal
light intensity that maximises the function µI is given by Iopt =√

KsIKiI . In the sequel, the light intensity is set at this optimal
value Iopt . The parameters of the model used in this study
are displayed in Table 1 (Goffaux and Vande Wouwer, 2008;
Munoz-Tamayo et al., 2014).

Table 1. Model parameters.

Parameter Value Unit

µ̄ 2 d−1

ρm 9.3 µmol µm−3 d−1

KQ 1.8 µmol µm−3

Ks 0.105 µmol L−1

KsI 150 µE m−2 s−1

KiI 2000 µE m−2 s−1

Sin 100 µmol L−1

Iopt 547 µE m−2 s−1

3. STEADY STATE CHARACTERIZATION

The nonlinear model (1) is represented thereafter in the state-
space formalism as follows:{

ẋ(t) = f (x(t),u(t),θ), x(t0 = 0) = x0
y(t) = X(t) (4)

with:  x =

[X
Q
S

]
, f =

[
µ(Q, I)X−DX

ρ(S)−µ(Q, I)Q
(Sin−S)D−ρ(S)X

]
θ = [ρm Ks µ̄ KQ KsI KiI ]

>
, u = D

(5)

where x ∈ Rnx is the state vector and x0 its initial value, f the
nonlinear process dynamics, u∈U⊂Rnu represents the control
input with U the set of admissible control values and θ ∈Rnθ is
the vector of uncertain parameters that are assumed to lie in the
admissible region Θ = [θ−,θ+] (nx = 3, nu = 1 and nθ = 6).
To simplify notations, the exogenous inputs (Sin, I) are omitted
but are applied to the model.
The state and control variables are restricted to fulfill the
following constraints (Bernard and Gouzé, 1995):

X > 0, KQ ≤ Q≤ ρm

µI µ̄
+KQ, 0≤ S≤ Sin, D≥ 0 (6)

The steady states of the system are derived from three nonlinear
equations, given by f (x(t),u(t),θ) = 0. For a given value of X
(denoted X r), the goal here is to characterize the correspond-
ing values for Q and S. Then, the equilibrium is defined by
(X r,Qr,Dr) as follows:

Dr = µ(Qr, I)(
Sin−

DrQrKs

ρm−DrQr

)
Dr−DrQrX r = 0

(7)

After developments, taking Qr as an unknown variable, for a
given biomass concentration X r, the only admissible solution is
given by:

Qr =
µ̄µI(Sin +Ks)+(ρm + µ̄µIKQ)X r−

√
∆

2µ̄µIX r (8)

with
∆ =((ρm + µ̄µIKQ)X r− µ̄µI(Sin +Ks))

2

+4µ̄µIKsρmX r > 0
(9)

4. NONLINEAR MODEL PREDICTIVE CONTROLLER

The main objective of this study is to regulate the biomass
concentration X to a reference value X r, while the dilution rate
D is constrained to track the reference Dr. The dilution rate
reference trajectory is computed from the knowledge of the
targeted setpoint at each time instant as detailed in section 3.
Thereafter, the notations introduced in (4-5) will be used.



Nonlinear model given by (4-5) can be replaced by a discrete-
time model which is obtained from the discretization of the
continuous time state space model (4) using the Runge-Kutta
scheme. Considering a constant sampling time Ts, the discrete
time prediction model over a time interval [tk, tk+1], [kTs,(k+
1)Ts)] is defined as follows: xk+1 = xk +

∫ tk+1

tk
f (x(τ),uk,θ)dτ

yk = Hxk

(10)

where xk+1 is the state at tk+1, k is the time index, xk and yk are
the discrete state vector and the sampled measurement at time k,
respectively. The measurement matrix is given by H = [1 0 0].
The control input u is parametrized using a piecewise-constant
approximation (u(τ) = u(k), τ ∈ [kTs,(k+1)Ts]).
Let us define the discrete state trajectory g by the solution at
time tk+1 of system (4-5) with initial state x0, and utk

t0 the control
sequence from the initial time instant t0 to the time instant tk:

xk+1 = g(t0, tk+1,x0,u
tk
t0 ,θ) (11)

This solution may result from generalisation of (10).
The predictive controller takes measurements of the system
at each sampling time, using a nonlinear dynamical model
to predict the behavior of the plant over a finite time reced-
ing horizon of length NpTs. The optimal control sequence is
computed minimizing a cost function expressed as a quadratic
criterion based on the tracking error while making sure that
all constraints are fulfilled. This optimal control sequence is
implemented until the next measurement becomes available.
The optimization problem is solved again at the next sampling
time according to the receding horizon principle.
Assuming a perfect knowledge of the parameter vector θ , the
formulation of the optimization problem is moved into a nonlin-
ear programming problem over the prediction horizon NpTs at
each sampling time tk. The optimal control sequence is obtained
as follows:

ũk+Np−1
k = arg min

u
k+Np−1
k

Π(uk+Np−1
k ,θ) (12)

where the cost function is defined as
Π(uk+Np−1

k ,θ) = ||ŷk+Np
k+1 − ȳk+Np

k+1 ||
2
P + ||u

k+Np−1
k − ūk+Np−1

k ||2R
(13)

||z||2P = z>Pz, is the Euclidean norm weighted by P.
with

ȳk+Np
k+1 =

 X r
k+1
...

X r
k+Np

 the setpoint values (i.e. X r values),

uk+Np−1
k =

 uk
...

uk+Np−1

 the optimization variable,

ūk+Np−1
k =

 Dr
k

...
Dr

k+Np−1

 the reference control sequence

(i.e. Dr values), and the predicted output

ŷk+Np
k+1 =


Hg(tk, tk+1,xk,uk,θ)

Hg(tk, tk+2,xk,uk+1
k ,θ)

...
Hg(tk, tk+Np ,xk,u

k+Np−1
k ,θ)



(14)

where, the subscript is related to the time instant.
P≥ 0 and R > 0 are tuning diagonal matrices.

This problem is solved using nonlinear least-square optimiza-
tion techniques.

5. ROBUST NONLINEAR MODEL PREDICTIVE
CONTROLLER

5.1 Min-max optimization problem

In practice the parameter vector θ is often uncertain. The
parameters values are nevertheless assumed to belong to a
known interval Θ = [θ−,θ+]. In this case, robust predictive
control strategy (RNMPC) implying a min-max optimization
problem (Yu, 1998; Kerrigan and Maciejowski, 2004) can be
defined as follows:

ũk+Np−1
k = arg min

u
k+Np−1
k

max
θ̂∈Θ

Π(uk+Np−1
k , θ̂) (15)

Π and ŷ same as in (13-14) respectively, with θ = θ̂ .

The optimal control sequence is determined so that the maxi-
mum deviation for all trajectories over all possible data scenarii
is minimized. Nevertheless, the min-max optimization problem
is time consuming. In the sequel, it will be simplified, in order
to reduce the computational burden.

5.2 Linearization techniques

In this paper, we propose a new formulation of RNMPC law.
The trajectory prediction is linearized around the reference
trajectory given by the reference dilution rate sequence ūk+Np−1

k
and for the nominal parameters, θnom, using a first order Taylor
series expansion for j = 1,Np:

g(tk, tk+ j,xk,u
k+ j−1
k , θ̂)≈ gnom(tk+ j)+

∇ug(tk+ j)(u
k+ j−1
k − ūk+ j−1

k )+∇θ g(tk+ j)(θ̂ −θnom)
(16)

with the state trajectory for the nominal case:

gnom(tk+ j) = g(tk, tk+ j,xk, ū
k+ j−1
k ,θnom) (17)

The nominal parameters are chosen as the average parameters
values in the uncertain interval [θ−,θ+]:

θnom =
θ++θ−

2
(18)

The partial derivatives of the state vector x with respect to the
parameter vector θ and the control input sequence u, so-called
sensitivity functions, are defined as follows:

∇θ g(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂θ

∣∣∣∣∣∣∣∣ uk+ j−1
k = ūk+ j−1

k
θ = θnom

(19)

∇ug(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂uk+ j−1
k

∣∣∣∣∣∣∣∣ uk+ j−1
k = ūk+ j−1

k
θ = θnom

(20)
Different approaches may be considered for determining the
sensitivity functions defined in (19). The most precise method
involves analytical derivation (Dochain, 2008). In the latter
approach, the dynamics of the sensitivity function with respect
to θ can be computed for time t ∈ [tk, tk+Np ] by solving numer-
ically the following differential equation (from (4) and (11)):

d
dt
(∇θ g) =

∂ f (x,u,θnom)

∂x
∇θ g+

∂ f (x,u,θ)
∂θ

|θ=θnom (21)



with as an initial condition:
∇gθ (tk) = 03×6 (22)

where 0n×m ∈ Rn×m is the zero matrix.
In order to simplify the calculation of the gradient ∇ug, finite
differences are used to approximate numerically the derivative
∇ug(tk+ j) for each control u j, j ∈ [k,k+Np−1].

From (14) and (16), it comes:

ŷk+Np
k+1 ≈ Ḡk+Np

nom,k+1 + Ḡk+Np−1
u,k (uk+Np−1

k − ūk+Np−1
k )

+Ḡk+Np
θ ,k+1(θ̂ −θnom)

(23)

with Ḡk+Np
θ ,k+1 = [H∇θ g(tk+1), . . . ,H∇θ g(tk+Np)]

>, the vector of
Jacobian matrices related to the parameters,
Ḡk+Np

u,k+1 = [H∇ug(tk+1), . . . ,H∇ug(tk+Np)]
>, the vector of Jaco-

bian matrices related to the control sequence,
Ḡk+Np

nom,k+1 = [Hgnom(tk+1), . . . ,Hgnom(tk+Np)]
>, the vector con-

taining the predicted output for the nominal case given by
(ūk+Np−1

k ,θnom).

5.3 Proposed control strategy

Assuming that the uncertain parameters are uncorrelated, then
the bounded parametric error can be expressed by:

θ̂ −θnom = γδθmax (24)
with

δθmax =
θ+−θ−

2
and ||γ|| ≤ 1 (25)

The min-max optimization problem (15) but without the in-
equality constraints is now converted into a robust regularized
least squares problem when applying (23-24) in the presence of
uncertain data:

z̃ = arg min
z

max
δb
||Az− (b+δb)||2P + ||z||2R (26)

with 
z = uk+Np−1

k − ūk+Np−1
k ,

A = Ḡk+Np−1
u,k ,

b = ȳk+Np
k+1 − Ḡk+Np

nom,k+1,

δb =−Ḡk+Np
θ ,k+1γδθmax

(27)

The regularized robust solution and the corresponding robusti-
fied weighting parameters that will be determined are based on
the following theorem:
Theorem 1. Regularized Robust Design Criterion for Uncertain
Data (Sayed et al., 2002) Consider the following optimization
problem:

zo = arg min
z

max
δA,δb

||z||2V + ||(A+δA)z− (b+δb)||2W (28)

where V > 0 and W ≥ 0 are Hermitian weighting matrices.
δA denotes a perturbation matrix to the nominal matrix A and
δb a perturbation vector to the nominal vector b which are
assumed to satisfy the following model:{

δA =C∆Ea
δb =C∆Eb

(29)

where ∆ denotes an arbitrary contraction with ||∆|| ≤ 1.
The regularized robust least-squares problem (28) is a special
case of a constrained two-player game problem, defined as
follows:

zo = arg min
z

max
||κ||≤π(z)

||z||2V + ||Az−b+Cκ||2W (30)

where π(z) is a nonnegative function given by:
π(z) = ||Eaz−Eb|| (31)

and κ is an unknown perturbation vector which is equal to
∆(Eaz−Eb).
The original optimization problem (28) is equivalent to:

min
z

[z>V z+(Az−b)>Ŵ (λ )(Az−b)+λπ
2(z)] (32)

This problem has a unique global minimum zo given by:

zo(λ o) = [V̂ (λ o)+A>Ŵ (λ o)A]−1[A>Ŵ (λ o)b+λ
oE>a Eb]

(33)
where the modified weighting matrices Ŵ (λ ),V̂ (λ ) are ob-
tained from W,V via:{

Ŵ (λ o) =W +WC(λ oI−C>WC)†C>W
V̂ (λ o) =V +λ

oE>a Ea
(34)

The notation α† denotes the pseudo inverse of α .
The invertibility of V̂ (λ o) +A>Ŵ (λ o)A is guaranteed by the
positive definiteness of V . The nonnegative scalar parameter
λ o ∈ R representing the Lagrange multiplier (Sayed et al.,
2002), is computed from the following minimization:

λ
o = arg min

λ≥λl
||z(λ )||2V +λ ||Eaz(λ )−Eb||2+

||Az(λ )−b||2Ŵ (λ )

(35)

with z(λ ) = [V̂ (λ )+A>Ŵ (λ )A]−1[A>Ŵ (λ )b+λE>a Eb]

Ŵ (λ ) =W +WC(λ I−C>WC)†C>W
V̂ (λ ) =V +λE>a Ea

(36)

The lower bound on λ is denoted by λl , with:

λl = ||C>WC|| (37)
Matrix norm, like e.g. ||A|| is related to the maximum singular
value of the corresponding matrix i.e. ||A|| =

√
σ̄(A>A) with

σ̄(A) the maximum eigenvalue of A.
For any value of λ in the semi-open interval [λl ,+∞[, the
matrix Ŵ (λ ) is nonnegative definite so that criterion (35) is
nonnegative for λ ≥ λl .

Proof: see (Sayed et al., 2002).

The robust nonlinear predictive problem which is defined by
(26-27), is written in the form (28-29) with:

C = Ḡk+Np
θ ,k+1,∆ = γ,Ea = 0,Eb =−δθmax (38)

The application of the theorem 1 provides the following unique
solution:

ũk+Np−1
k = ūk+Np−1

k +[R+ Ḡk+Np−1>

u,k P̂(λ o)Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k P̂(λ o)(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]

(39)
with

P̂(λ o) = P+PḠk+Np
θ ,k+1(λ

oI− Ḡ
k+N>p
θ ,k+1PḠk+Np

θ ,k+1)
†Ḡ

k+N>p
θ ,k+1P (40)

λ o is computed from the following minimization problem:
λ

o = arg min
λ≥||Ḡ

k+N>p
θ ,k+1 PḠ

k+Np
θ ,k+1||

G(λ )
(41)

where the function G(λ ) is defined by:

G(λ ) = ||Ḡk+Np−1
u,k z(λ )− ȳk+Np

k+1 + Ḡk+Np
nom,k+1||

2
P̂(λ )+

||z(λ )||2R +λ ||δθmax||2
(42)



with

z(λ ) = [R+ Ḡk+Np−1>

u,k P̂(λ )Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k P̂(λ )(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]
(43)

and P̂(λ ) as in (40).

The minimum λ o of the unidimensional function G(λ ) is found
using the golden section search algorithm.
As a conclusion, the predictive controller consists in solving
online a unidimensional optimization problem (41) at each
sampling time, instead of solving min-max problem (15). In the
sequel, this predictive control law will be called as linearized
robust model predictive control (LRMPC).

6. RESULTS AND DISCUSSION

In this section, the efficiency of the proposed control strat-
egy is validated in simulation. The performances of the above
mentioned algorithms are compared for a worst uncertain
parameters case. The worst case biomass prediction can be
approximated using parameter bounds {θ−,θ+} only, rather
than by exploring the full parameter space (Goffaux and
Vande Wouwer, 2008). Then to reduce the search in the whole
parameter subspace to a search on its boundary, 2dim(θ) tests
have been realized using NMPC law. The parameters values
of the system are chosen on the parameter subspace border
(θreal = [ρ+

m ,K−s , µ̄+,K−Q ,K−sI ,K
+
iI ]) and correspond to one of

the 4 worst-case model mismatches (Benattia et al., 2014b),
where the uncertain parameters subspace [θ−,θ+] is given
by [0.8θ ,1.2θ ]. The initial biomass concentration value is set
close to the setpoint in order to cancel the transient effect and to
focus only on the behavior during setpoint changes (rising and
falling edge respectively), with a maximal admissible dilution
rate Dmax equal to 1.6 d−1. The simulation time is set to Tf =
2 days but the optimal control law is applied between 0 and
Tf −NpTs. The inlet substrate concentration Sin is assumed to be
perfectly known. The light intensity is assumed to be measured
online, non-corrupted with noise. The weighting matrices are
chosen as P = INp and R = INp (the same for all controllers).

First, simulations have been carried out considering the un-
certain parameter worst case cited previously. The results as
depicted in Fig. 1 show the influence of the sampling time Ts
on the biomass concentration tracking error and dilution rate
evolution for NMPC and LRMPC (Np = 5) without considering
measurements affected by noise. It can be observed that the
model should be sampled sufficiently fast in order to guarantee
that the first order Taylor series expansion is accurate as much
as possible. It should be noted that a compromise is required
to properly select an appropriate sampling time taking into
account the computation burden due to potential state estimator
and/or online determination of the optimal trajectory. It appears
clearly that Ts = 10 min allows satisfying a good trade off
between linearization accuracy and computational burden.

Secondly, the choice of the prediction horizon Np is studied
for the same conditions cited previously with Ts = 10 min.
The prediction horizon Np is chosen to satisfy a compromise
between the computation time and a sufficient vision of the
system behaviour. Figure 2 shows that increasing the prediction
horizon leads to a loss of accuracy which is due to the prediction
using an approximated model (in the linearization procedure).

Finally, three predictive control laws will be tested (Fig. 3):
a classical Nonlinear Model Predictive Control (denoted as
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Fig. 1. Biomass concentration tracking error and dilution rate
evolution with time for NMPC (− red) and LRMPC (−−
blue) strategies.
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Fig. 2. Biomass concentration tracking error evolution with
time for NMPC (− red) and LRMPC (−− blue) strategies.

NMPC), a robust one using criterion (15) (denoted as RNMPC)
and the proposed one (LRMPC). The tuning parameters are the
same for all strategies (Ts=10 min, Np = 5 and P = R = INp ).
Biomass concentration measurements, yk, are assumed to be
corrupted by a centred Gaussian white noise with 0.1 standard
deviation.
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Fig. 3. Biomass concentration and dilution rate evolution with
time for NMPC, RNMPC and LRMPC strategies.

It can be noticed the anticipation behavior to a setpoint change
(Fig. 3), due to the prediction of the setpoint trajectory future



evolution over the moving horizon. The dilution rate decrease
leads to an increase of the cell concentration and vice versa
which agrees with the biological aspect. The obtained results
show that both RNMPC and LRMPC have better performances
than the classical NMPC under parameter uncertainties and
measurement noise. In the NMPC law, the biomass concentra-
tion is not able to track the specified setpoint in the presence
of parameters uncertainties, due to the fact that the mismatch
between the system and the model is not considered during
the prediction step inside the minimization procedure. Fur-
thermore, both RNMPC and LRMPC in term of accuracy are
slightly the same. The LRMPC algorithm performs well and
offers a very significant computational load reduction compar-
ing with RNMPC as shown in Table 2 (in purpose of comparing
the computation time, upper bound constraint on D is omitted
in the NMPC law).

Table 2. Comparison of the proposed algorithms in
terms of computation time at each sampling time

(worst case).

Computation time (s)
``````````Algo.

Perf. indices
min mean max

NMPC < 10−5 0.024 0.31
RNMPC 0.43 3.32 47.5
LRMPC < 10−5 0.016 0.1

In the case of LRMPC law, the static error is due to the super-
position of two phenomena: the approximation of the model
through linearization and the model mismatch. In the latter
case, a possible improvement could be to use the difference
between the system and the model outputs at each sampling
time during the prediction step (Benattia et al., 2014a).

7. CONCLUSION

In this paper, a new robust NMPC law is proposed. The min-
max problem is solved in two ways: first, the optimal control
sequence is determined so that the maximum deviation for all
trajectories over all possible data scenarii is minimized. Sec-
ondly, a linearization of the predicted trajectory is performed to
turn the original min-max problem into a simple scalar mini-
mization problem. Tests in simulation show good performance
of the proposed strategy with respect to worst case model
uncertainties. Moreover, it allows to significantly reduce the
computational load with a good tracking trajectory accuracy.

In order to increase the quality of linearized model, there are
several issues that deserve further investigation. An interesting
perspective may be considering a second order expansion rather
than the first order approximation to improve the robustness
and accuracy of the proposed control strategy. Future works
will be directed on the determination of sufficient conditions
ensuring robust stability of LRMPC with bounded uncertainties
including inequality constraints. Furthermore, an estimation al-
gorithm to reconstruct biomass concentration will be developed
and coupled to the proposed control strategy.
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