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Abstract: This paper proposes the design of a hierarchical control strategy formed by a two-level
controller: a Linearized Robust MPC (LRMPC) and an Integral Sliding Mode (ISM) control laws. The
proposed strategy guarantees robustness towards parameters mismatch for a macroscopic continuous
photobioreactor model, obtained from mass balance based modelling. Firstly, as a starting point, this
work focuses on classical robust nonlinear model predictive control law under model parameters
uncertainties implying solving a basic min-max optimization problem for setpoint trajectory tracking.
We reduce this problem into a regularized optimization problem based on the use of linearization
techniques, to ensure a good trade-off between tracking accuracy and computation time. Secondly, in
order to eliminate the static error due to the fact that the nonlinear model is approximated through
linearization in the LRMPC law, an ISM controller is synthesized relying on the knowledge of the
nonlinear model of the system. Finally, the efficiency of the developed hierarchical approach is illustrated
through numerical results and robustness against parameter uncertainties is discussed for the worst case
model mismatch.

Keywords: Robust predictive control, Min-max optimization problem, Integral Sliding Mode,
Bioprocesses, Uncertain systems.

1. INTRODUCTION

The industrial success of the microalgae cultivation is due to
its biochemical characteristics. The microalga is of particular
interest for the growing demand of organic products intended to
a large number of industrial applications: food, pharmacology,
chemistry and cosmetics production with more recent applica-
tions in sustainable environment, such as wastewater treatment
or decomposition of different classes of toxic compounds (Spo-
laore et al., 2006). Hence, to increase significantly the process
performances, new challenges emerge related to the control
of the biological variables. Biochemical processes are systems
where nonlinear effects are significant enough to justify the use
of nonlinear model. In addition, generally the process model is
identified and uncertain parameters are estimated with evalu-
ated confidence intervals, which motivates the development of
robust control laws in the presence of modelling uncertainties.
In the literature of microalgae cultivations, several nonlinear
control laws have been developed (Masci et al., 2010; Ifrim
et al., 2013; Toroghi et al., 2013; Tebbani et al., 2014). They
however do not specifically focus on robustness features.

The objective of this study is to design a robust controller which
would be able to elaborate an adequate feeding strategy in order
to guarantee that the process will yield the desired amount of
biomass along the cultivation period under model parameter
uncertainties. Here, the challenge is to lay down a stable real
time operation, insensitive to various disturbances, then, close
to a certain state or desired profile. This requires the application
of advanced optimal control strategies to ensure the bioprocess

efficiency, among them predictive control is a good candidate.
The key advantage of the Model Predictive Control law (MPC)
(Camacho and Bordons, 2004) is that it allows the current con-
trol input to be determined, while taking into account the future
system behavior. This is achieved by optimizing the control
profile over a finite time horizon, but applying only the current
control input. However, the performances of the NMPC law
usually decrease when the true plant evolution deviates signif-
icantly from the one predicted by the model. Robust variants
of NMPC (RNMPC) (Kerrigan and Maciejowski, 2004; Limon
et al., 2004) are able to take into account set bounded distur-
bance. The RNMPC can be formulated as a nonlinear min-max
optimization problem which tends to become too complex to
be solved online numerically. Consequently, in order to reduce
as much as possible the calculation time, the proposed solu-
tion in this study aims at transforming the min-max problem
into a robust regularized least squares problem. The original
problem is converted into a scalar minimization problem us-
ing a model linearization technique (first order Taylor series
expansion) at each sampling time along the nominal trajectory
which is defined based on the nominal parameter values and
the current operating point. The main advantage of LRMPC
is to be computationally tractable in calculating the optimal
control reducing the computation load. In order to reduce the
difference between the dynamics of the nominal model and the
current evolution of the state, which is due to the model ap-
proximation through linearization and the model uncertainties,
the proposed approach consists in using a hierarchical control
structure (Rubagotti et al., 2011) which can also be regarded as
a way to combine the use of the LRMPC with the ISM (Utkin



and Shi, 1996) that guarantees its robustness with respect to
model uncertainties. The choice of the ISM is motivated by
the fact that this strategy is able to cope with time-varying
disturbance terms coming from the linearization step.

The paper is structured as follows. Section 2 examines the
class of nonlinear systems that will be considered. In order
to regulate the biomass concentration at a desired value, by
manipulating the dilution rate chosen as a control variable,
Section 3 presents a hierarchical control strategy: LRMPC,
based on the linearization technique combined with the ISM.
An illustrative example (Droop dynamic model of a continuous
photobioreactor) is presented in Section 4. Moreover, numerical
results are provided in Section 5 to compare LRMPC and the
proposed strategy performances in case of model mismatch.
Conclusions and perspectives end this paper in Section 6.

2. PROBLEM STATEMENT

Consider a system described by an uncertain continuous time
nonlinear model:{

ẋ(t) = f (x(t),u(t),θ), x(t0 = 0) = x0
y(t) = Hx(t) (1)

where x ∈Rnx is the state vector and x0 its initial value, y ∈Rny

is the measured output, f the nonlinear process dynamics,
f is of class C1 with respect to all its arguments, u ∈ U ⊂
Rnu represents the control input with U the set of admissible
controls and θ ∈ Rnθ is the vector of uncertain parameters that
are assumed to lie in the admissible region Θ = [θ−,θ+]. The
measurement matrix is given by H ∈Rny×nx . Exogenous inputs
can act on system (1). They are omitted in the notation for
simplification.

The control input u is parametrized using a piecewise-constant
approximation (u(τ) = u(k), τ ∈ [kTs,(k + 1)Ts[) over a time
interval [tk, tk+1] , [kTs,(k+ 1)Ts] considering a constant sam-
pling time Ts. Let us define the discrete state trajectory g by the
solution at time tk+1 of system (1) with initial state x0, and utk

t0
the control sequence from the initial time instant t0 to the time
instant tk:

xk+1 = g(t0, tk+1,x0,u
tk
t0 ,θ) (2)

where xk+1 is the state at tk+1, k is the time index, xk and yk are
the discrete state vector and the sampled measurement at time
k, respectively.

This paper aims at designing a control strategy such that the
output signal yk tracks the reference signal ȳk without steady
state error and with optimized closed-loop performance.

3. CONTROLLER DESIGN

The predictive controller uses a nonlinear dynamic model to
predict the behavior of the plant over a finite receding horizon
of length NpTs starting from the current state. At each time
tk, the optimal control sequence is computed by minimizing
a cost function expressed as a quadratic criterion based on
the tracking error while making sure that all constraints are
respected. This optimal control sequence is implemented until
the next measurement becomes available. The optimization
problem is solved again at the next sampling time according
to the receding horizon principle.

In practice the parameter vector θ is often uncertain. The
parameters values are nevertheless assumed to belong to the

known region Θ. In this case, robust predictive control strategy
(RNMPC) implying a min-max optimization problem (Kerri-
gan and Maciejowski, 2004) can be defined as follows :

ũk+Np−1
k = arg min

u
k+Np−1
k

max
θ∈Θ

Π(uk+Np−1
k ,θ) (3)

where the cost function is defined as
Π(uk+Np−1

k ,θ) = ||uk+Np−1
k − ūk+Np−1

k ||2V + ||ŷk+Np
k+1 − ȳk+Np

k+1 ||
2
W
(4)

with
||z||2P = z>Pz, the Euclidean norm weighted by P.
uk+Np−1

k = [u>k , . . . ,u
>
k+Np−1]

> the optimization variable,

ūk+Np−1
k = [ur>

k , . . . ,ur>
k+Np−1]

> the reference control sequence,

ŷk+Np
k+1 =


Hg(tk, tk+1,xk,uk,θ)

Hg(tk, tk+2,xk,uk+1
k ,θ)

...
Hg(tk, tk+Np ,xk,u

k+Np−1
k ,θ)

 the predicted output,

(5)
and ȳk+Np

k+1 = [yr>
k+1, . . . ,y

r>
k+Np

]> the setpoint values.
V ≥ 0 and W > 0 are tuning diagonal matrices.
The optimal control sequence is determined so that the maxi-
mum deviation for all trajectories over all possible data scenarii
is minimized. Nevertheless, the min-max optimization problem
is time consuming. In the sequel, it will be simplified, in order
to reduce the online computational burden.

3.1 Linearized Robust Model Predictive controller

In this paper, we propose a new formulation of RNMPC law.
From (2), the predicted state for time tk+ j, starting from state
at tk, is linearized around the reference trajectory given by
the reference control sequence ūk+Np−1

k and for the nominal
parameters, θnom = (θ+ + θ−)/2. A first order Taylor series
expansion for j = 1,Np is used:

g(tk, tk+ j,xk,u
k+ j−1
k ,θ)≈ gnom(tk+ j)+

∇ug(tk+ j)(u
k+ j−1
k − ūk+ j−1

k )+∇θ g(tk+ j)(θ −θnom)
(6)

with
gnom(tk+ j) = g(tk, tk+ j,xk, ū

k+ j−1
k ,θnom) (7)

∇θ g(tk+ j)=
∂g(tk ,tk+ j ,xk ,u

k+ j−1
k ,θ)

∂θ

∣∣∣∣∣∣∣∣∣ uk+ j−1
k =ūk+ j−1

k
θ=θnom

(8)

∇ug(tk+ j)=
∂g(tk ,tk+ j ,xk ,u

k+ j−1
k ,θ)

∂uk+ j−1
k

∣∣∣∣∣∣∣∣∣ uk+ j−1
k =ūk+ j−1

k
θ=θnom

(9)

Different approaches are possible for determining the sensitiv-
ity functions defined in (8). The most precise method involves
analytical derivation (Dochain, 2008): the dynamics of sensi-
tivity function with respect to θ can be computed for time
t ∈ [tk, tk+Np ] by solving numerically the following differential
equation (from (1 and 2)):

d
dt
(∇θ g) =

∂ f (x,u,θnom)

∂x
∇θ g+

∂ f (x,u,θ)
∂θ

|θ=θnom (10)

with as an initial condition:
∇gθ (tk) = 0nx×nθ

(11)
where 0n×m ∈ Rn×m is the zero matrix.
In order to simplify the calculation of the gradient ∇ug, finite
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differences are used to approximate numerically the derivative
∇ug(tk+ j) for each control u j, j ∈ [k,k+Np−1].

From (5) and (6), it comes:

ŷk+Np
k+1 ≈ Ḡk+Np

nom,k+1 + Ḡk+Np−1
u,k (uk+Np−1

k − ūk+Np−1
k )

+Ḡk+Np
θ ,k+1(θ −θnom)

(12)

with Ḡ
k+N>p
nom,k+1 = [Hgnom(tk+1), . . . ,Hgnom(tk+Np)], the vector

containing the predicted output for the nominal case.

Ḡ
k+N>p
u,k+1 = [H∇ug(tk+1), . . . ,H∇ug(tk+Np)], the vector of Jaco-

bian matrices related to the control sequence.

Ḡ
k+N>p
θ ,k+1 = [H∇θ g(tk+1), . . . ,H∇θ g(tk+Np)], the vector of Jaco-

bian matrices related to the parameters.

Assuming that the uncertain parameters are uncorrelated, then
the bounded parametric error can be expressed by:

θ −θnom = γδθmax (13)
with

δθmax = (θ+−θ
−)/2 and ||γ|| ≤ 1 (14)

Matrix norm ||A|| is given by ||A||=
√

σ̄(A>A) with σ̄(A) the
maximum eigenvalue of A.
The min-max optimization problem (3) is converted into a
robust regularized least squares problem when applying (12-
14) in the presence of uncertain data (Sayed et al., 2002).
Let us consider the following optimization problem:

z̃ = arg min
z

max
δA,δb

||z||2V + ||(A+δA)z− (b+δb)||2W (15)

where δA denotes a perturbation matrix to the nominal matrix
A and δb a perturbation vector to the nominal vector b which
are assumed to satisfy the following factorized form:{

δA =C∆Ea
δb =C∆Eb

(16)

where ∆ denotes an arbitrary contraction with ||∆|| ≤ 1.
C 6= 0, Ea and Eb are known quantities of appropriate dimen-
sions.
The uncertainties in matrix A and vector b are modelled with an
unknown perturbation vector y:

Cy = δAz−δb (17)
Using (17), we rewrite the optimization problem (15) as fol-
lows:

min
z

max
||y||≤π(z)

||z||2V + ||Az−b+Cy||2W (18)

The nonnegative function π(z) is assumed to be a known bound
on the perturbation y and is a function of z only.
From (16) and (17), it comes:

π(z) = ||Eaz−Eb|| (19)
Introducing the Lagrange multiplier λ , the problem (18) be-
comes equivalent to (Sayed et al., 2002):

min
λ≥||C>WC||

min
z

z>V z+(Az−b)>W (λ )(Az−b)+λπ(z)2

(20)
where the minimizer z must satisfy the equation

(V +A>W (λ )A)z+
1
2

λ∇π
2(z) = A>W (λ )b (21)

The modified weighting matrix W (λ ) is obtained from W via:

W (λ ) =W +WC(λ I−C>WC)†C>W (22)
The solution of equation (21) becomes

z(λ ) = E(λ )−1B(λ ) (23)

with {
E(λ ) =V (λ )+A>W (λ )A+λE>a Ea

B(λ ) = A>W (λ )b+λE>a Eb
(24)

where the modified weighting matrix V (λ ) is obtained from V
via:

V (λ ) =V +λE>a Ea (25)
The invertibility of E(λ ) is guaranteed by the positive definite-
ness of V .
The nonnegative scalar parameter λ o ∈ R solution of (20), is
computed from the following unidimensional minimization:

λ
o = arg min

λ≥λl
||z(λ )||2V +λ ||Eaz(λ )−Eb||2+

||Az(λ )−b||2W (λ )

(26)

The lower bound on λ is denoted by λl , with: λl = ||C>WC||.
For any value of λ in the semi-open interval [λl ,+∞[, the
matrix W (λ ) is nonnegative definite so that criterion (26) is
nonnegative for λ ≥ λl .
Finally, the problem has a unique global minimum zo given by
(from (23-26)):

z̃ = zo(λ o) = E(λ o)−1B(λ o) (27)

For more details see Sayed et al. (2002).
The robust nonlinear predictive problem which is defined by
(3-4), is written in the form (15-16) with:{

z = uk+Np−1
k − ūk+Np−1

k ,A = Ḡk+Np−1
u,k ,b = ȳk+Np

k+1 − Ḡk+Np
nom,k+1

C = Ḡk+Np
θ ,k+1,∆ = γ,Ea = 0,Eb =−δθmax

(28)
The application of (24-27) provides the solution of (3-4):

• λ o is computed from the following minimization problem:

λ
o = arg min

λ≥||Ḡ
k+N>p
θ ,k+1 WḠ

k+Np
θ ,k+1||

G(λ )
(29)

where the function G(λ ) is defined by:

G(λ ) = ||Ḡk+Np−1
u,k z(λ )− ȳk+Np

k+1 + Ḡk+Np
nom,k+1||

2
W (λ )+

||z(λ )||2V +λ ||δθmax||2
(30)

with

z(λ ) = [V + Ḡk+Np−1>

u,k W (λ )Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k W (λ )(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]
(31)

and

W (λ ) =W +WḠk+Np
θ ,k+1(λ I− Ḡ

k+N>p
θ ,k+1WḠk+Np

θ ,k+1)
†Ḡ

k+N>p
θ ,k+1W

(32)
• The control sequence is derived from (27):

ũk+Np−1
k = ūk+Np−1

k +[V + Ḡk+Np−1>

u,k W (λ o)Ḡk+Np−1
u,k ]−1

[Ḡk+Np−1>

u,k W (λ o)(ȳk+Np
k+1 − Ḡk+Np

nom,k+1)]

(33)
with W (λ o) given in (32) for λ = λ o.

The minimum λ o of the unidimensional function G(λ ) is found
using the golden section search algorithm.
As a conclusion, the predictive controller consists in solving
online an unidimensional optimization problem (29-30) at each
sampling time, instead of solving min-max problem (3-4).
In the sequel, this predictive control law will be called as
linearized robust model predictive controller (LRMPC).

Administrateur
Texte surligné 



3.2 Integral Sliding Mode

To go further with model uncertainties and linearization draw-
back, the idea is to use the hierarchical control scheme (fig. 1),
as similar to the one proposed in (Rubagotti et al., 2011). The
control strategy is formed by an Integral Sliding mode (ISM)
controller and a LRMPC law. The reason for the choice of the
ISM is that this strategy can eliminate the static error due to
the approximation of the model through the linearization and
the model mismatch with guaranteed stability. Details related
to ISM can be found in (Utkin and Shi, 1996).

Fig. 1. Scheme of the hierarchical control strategy.

For the considered application (Section 4), the system has a
single output y and single input u and is control-affine, which
is a special case of (1). We will then consider for the ISM
development, the following model:{

ẋ = fx(x,θ)+ fu(x,θ)u, ∀t > t0, x(t0) = x0
y = Hx (34)

At each time instant t = kTs, the goal is to complete the
optimal control law ũ(t) obtained from the predictive controller
(33) by an Integral Sliding mode control law ŭ(t) in order to
cancel the error between the prediction model output and the
system output. In this study, the ISM design is performed in
continuous-time, then discretized for implementation.

The sliding mode control design consists in choosing the con-
trol input in such a way to drive the system to reach a sliding
manifold and maintain there for all future time. The goal is to
track the predicted output ŷ in order to cancel the difference
between the model prediction output and the system output.
The local attractivity of the sliding surface φ can be expressed
by the condition:

∀x ∈ Rnx : φ̇(x, t)φ(x, t)< 0 (35)
Let us define the modelling error variables (Toroghi et al., 2013)
for t ∈ [tk−1, tk]: Z1(t) =

∫ t

tk−1

(y(τ)− ŷ(τ))dτ

Z2(t) = ξ
−1
1 (y(t)− ŷ(t)−ξ2Z1(t))

(36)

where
ŷ(t) = Hg(tk−1, t,xk−1,uk−1,θnom) (37)

ŷ(t) represents the model prediction resulting from the applica-
tion of the previous control input.
Differentiating (36) with respect to time, we obtain:{

Ż1(t) = ξ1Z2 +ξ2Z1
Ż2(t) = ξ

−1
1 (ẏ(t)− ˙̂y(t)−ξ2Ż1(t))

(38)

A time varying sliding surface φ(x, t) is defined in the state
space Rnx as

φ(x, t) = Z2(t)+ξ3Z1(t) (39)
The ISM control law needs to be designed so that the invariance
of the sliding manifold is satisfied:

∀x ∈ Rnx ,φ(x, t) = 0 (40)

From (38), (39) and (40), it comes:
Ż1(t) = (ξ2−ξ1ξ3)Z1(t) (41)

In order to assure the convergence of Z1, the following condi-
tion must be satisfied:

ξ2−ξ1ξ3 < 0 (42)

Consequently, differentiating the sliding surface vector (39), we
obtain:

φ̇(x, t) = ξ
−1
1 (ẏ(t)− ˙̂y(t)− (ξ2−ξ1ξ3)(ξ1Z2(t)+ξ2Z1(t)))

(43)
The system output is obtained by the application of the previous
control input uk−1 combined with the sliding mode control law
ŭ(t) and the predicted output is generated by applying only the
previous input uk−1 as follows:{

ẏ(t) = H ( fx(x,θ)+ fu(x,θ)(uk−1 + ŭ(t)))
˙̂y(t) = H ( fx(x̂,θnom)+ fu(x̂,θnom)uk−1)

(44)

where the difference between the system output and the nom-
inal model prediction output is due only to parameters uncer-
tainties:

ẏ(t)− ˙̂y(t) = ϕ +χuk−1 +η ŭ(t) (45)
with {

ϕ = H( fx(x,θ)− fx(x̂,θnom)),
χ = H( fu(x,θ)− fu(x̂,θnom)),
η = H fu(x,θ)

(46)

Hence, the sliding surface (39) is made attractive by choosing:
φ̇(x, t) =−Kssign(φ(x, t)) (47)

where the switching gain Ks is a strictly positive constant.
From (43-47), it is deduced that the control law can be accord-
ingly found as:

ŭ(t) = η
−1(−ϕ−χuk−1−ξ1Kssign(φ(x, t))

+(ξ2−ξ1ξ3)(ξ1Z2(t)+ξ2Z1(t)))
(48)

Note that the term η must be regular.
Then, the attractive equation which implies that the distance
to the sliding surface decreases along all system trajectories is
satisfied since (from 43-48):

φ̇(x, t)φ(x, t) =−Ks|φ(x, t)|< 0 (49)
Here, in order to eliminate chattering phenomenon, a hy-
perbolic function is used instead of the switching function
sign(φ(x, t)). Finally, with (48) evaluated at t = tk, the control
input is obtained as the sum of two parts, given by

u(tk) = ũ(tk)+ ŭ(tk) (50)
The component ũ(tk) (the first value of the optimal control
sequence) is generated by the LRMPC controller, while ŭ(tk)
is generated by the Integral sliding mode controller as shown in
the following algorithm:

Step 1: Initialisation.
Step 2: Update xk.
Step 3: Compute Ḡu, Ḡnom, Ḡθ ←− xk, ū, ȳ, θnom.
Step 4: Determine λ o ←− Ḡu, Ḡnom, Ḡθ , ȳ, V , W , δθmax.
Step 5: Compute ũk ←− Ḡu, Ḡnom, Ḡθ , ȳ, ū, V , W , λ o

Step 6: Compute ŭk ←− xk, θnom, uk−1.
Step 7: Apply uk ←− ũk + ŭk.
Step 8: Go to Step 2.

4. ILLUSTRATIVE EXAMPLE

The process under consideration here is a continuous photo-
bioreactor (medium withdrawal flow rate equals its supply one,



leading to a constant effective volume), without any additional
biomass in the feed, and neglecting the effect of gas exchanges.
The nonlinear model is represented in the state-space formalism
(34), with: x =

[X
Q
S

]
, fx =

[
µ(Q, I)X

ρ(S)−µ(Q, I)Q
−ρ(S)X

]
, fu =

[ −X
0

(Sin−S)

]
θ = [ρm Ks µ̄ KQ KsI KiI ]

>
, u = D, y = X

(51)
where D represents the dilution rate (d−1, d: day).
The specific uptake rate, ρ(S), and the specific growth rate,
µ(Q, I), are given by:

ρ(S) = ρm
S

S+Ks
, µ(Q, I) = µ̄(1− KQ

Q
)

I

I +KsI +
I2

KiI

(52)

To simplify notations, the exogenous inputs (Sin, I) are omitted
but are applied to the model. In the sequel, the light intensity
I is either set at its optimal value Iopt =

√
KsIKiI or is time

varying, modelling the night/day cycle. The parameters of the
model used in this study are displayed in Table 1 (Goffaux and
Vande Wouwer, 2008; Munoz-Tamayo et al., 2014).

Table 1. Model parameters.

Paramet. Value Unit

maximal specific growth rate µ̄ 2 d−1

maximal specific uptake rate ρm 9.3 µmol µm−3 d−1

minimal cell quota KQ 1.8 µmol µm−3

substrate half saturation constant Ks 0.105 µmol L−1

light saturation constant KsI 150 µE m−2 s−1

light inhibition constant KiI 2000 µE m−2 s−1

inlet substrate concentration Sin 100 µmol L−1

optimal light intensity Iopt 547 µE m−2 s−1

Details related to the modelling can be found in (Benattia
et al., 2014a). The main objective of this study is to regulate
the biomass concentration X to a reference value X r, while
the dilution rate D is constrained to track the reference Dr.
The dilution rate reference trajectory is computed from the
knowledge of the targeted setpoint at each time instant as
detailed in (Benattia et al., 2014b).

5. RESULTS AND DISCUSSION

In this section, the efficiency of the proposed control strat-
egy is validated in simulation. The performances of the
above mentioned algorithms are compared for a worst un-
certain parameters case. The worst case biomass predic-
tion can be approximated using parameter bounds {θ−,θ+}
only, rather than by exploring the full parameter space (Gof-
faux and Vande Wouwer, 2008). The parameters values of
the system are chosen on the parameter subspace border
(θreal = [ρ+

m ,K−s , µ̄+,K−Q ,K−sI ,K
+
iI ]) and correspond to one of

the 4 worst-case model mismatches (Benattia et al., 2014b),
where the uncertain parameters subspace [θ−,θ+] is given by
[0.8θnom,1.2θnom]. The initial biomass concentration value is
set close to the setpoint in order to cancel the transient effect
and to focus only on the behavior during setpoint changes (ris-
ing and falling edge respectively), with a maximal admissible
dilution rate Dmax equal to 1.6 d−1. The simulation time Tf and
the sampling time Ts are chosen equal to 1 day and 20 min
respectively. The inlet substrate concentration Sin is assumed
to be perfectly known. The light intensity is assumed to be
non measured online. The controllers tuning parameters are

Table 2. Controllers tuning parameters.

LRMPC ISM
Paramet. Np V W ξ1 ξ2 ξ3 Ks

Value 5 I5 I5 0.1 -10 0.1 1

determined by a trial-and-error technique (see Table 2).
Figure 2 illustrates the comparison of LRMPC and LRMPC-
ISM.
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Fig. 2. Biomass concentration, tracking error and dilution rate
evolutions with time in the case of model mismatch.

In the case of LRMPC law, it can be noticed the anticipation
of a setpoint change due to the prediction of the model behav-
ior in the moving horizon with a static error which is due to
the superposition of two phenomena: the approximation of the
model through linearization and the model mismatch. It should
be mentionned that the static error could be further reduced by
decreasing Ts. On the other side, the LRMPC-ISM law allows
reducing the static error in comparison with LRMPC law as
shown in Fig.2. Moreover, it can be observed that the control
input is non zero during setpoint change (rising edge) due to
the fact that the ISM control is not canceled. The LRMPC,
thanks to it predictive property, cancels the dilution rate so that
the growth is maximized, whereas, the ISM does not take into
account future reference evolution.
The light intensity was set constant in the previous simulations
(equal to Iopt ). Now, a day/light variation is considered, mod-
elled as the square of sinusoidal function (Masci et al., 2010):

I(t) = Iopt(max{0,sin(2πt)})2 (53)
where the time t is in days. The light intensity modeling is
assumed mismatched (as shown in Fig.3). Figure 3 illustrates
the performances of the LRMPC law and the proposed strategy
for a constant reference trajectory (X r = 25µm3/L).
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Fig. 3. Biomass concentration tracking error and dilution rate in
the case of model mismatch with light intensity evolution.

When the setpoint is higher than the biomass concentration, as
soon as the light vanishes (i.e. at night, t ∈ [0,0.25]), the dilution
rate is cancelled and cellular concentration remains constant at
its previous value, leading to a non zero static error. In contrast,
when the reference is smaller than the biomass concentration
and the light begins sharply to decline, the dilution rate is
slightly increased, causing a reduction of the biomass concen-
tration in order to cancel the tracking error. Then, the dilution
rate is cancelled when it is dark. Both LRMPC and proposed
approach counter the effect of fluctuations in light intensity. It
can be observed that the hierarchical approach (LRMPC-ISM)
reduces the fluctuations of biomass concentration better than
LRMPC. In conclusion, the proposed approach is robust against
parameter uncertainties and less sensitive to light variations
than LRMPC.

6. CONCLUSION

In this paper, a hierarchical control strategy formed by an ISM
controller and a robust MPC law is proposed for biomass track-
ing trajectory. The min-max problem consists in determining
the optimal control sequence so that the maximum deviation
for all trajectories over all possible data scenarii is minimized.
Firstly, The original problem is converted into a simple scalar
minimization problem through linearization of the predicted
trajectory. Secondly, the ISM control strategy is added to the
optimal controller in order to reduce the gap between the model
prediction and the system behaviour. Finally, tests in simulation
show the efficiency and good performance of the proposed
strategy in the worst case of model uncertainties. It is observed
that the input setpoint is computed for the equilibrium resulting
in the desired output which depends on the nominal model.
In future work, an improvement will consist on considering
the control increments instead of the input setpoint in order
to overcome the previous drawback. An interesting perspective
may be the determination of sufficient conditions ensuring ro-
bust stability of the overall control scheme in case of bounded
uncertainties and/or trajectory constraints.
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