
HAL Id: hal-01258499
https://centralesupelec.hal.science/hal-01258499

Submitted on 17 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic scheme for hybrid computing with CPU,
Xeon-Phi/MIC and GPU devices on a single machine

Sylvain Contassot-Vivier, Stéphane Vialle

To cite this version:
Sylvain Contassot-Vivier, Stéphane Vialle. Algorithmic scheme for hybrid computing with CPU, Xeon-
Phi/MIC and GPU devices on a single machine. International Conference on Parallel Computing 2015
(ParCo 2015), Sep 2015, Edinburgh, United Kingdom. pp.1-10, �10.3233/978-1-61499-621-7-25�. �hal-
01258499�

https://centralesupelec.hal.science/hal-01258499
https://hal.archives-ouvertes.fr


Algorithmic scheme for hybrid computing
with CPU, Xeon-Phi/MIC and GPU

devices on a single machine

Sylvain CONTASSOT-VIVIER a and Stephane VIALLE b

a Loria - UMR 7503, Université de Lorraine, Nancy, France
b CentraleSupélec & UMI GT-CNRS 2958, Metz, France

Abstract. In this paper, we address the problem of the efficient parallel exploitation
of different types of computing devices inside a single machine, to solve a scientific
problem. As a first step, we apply our scheme to the Jacobi relaxation. Despite its
simplicity, it is a good example of iterative process for scientific simulation. Then,
we evaluate and analyze the performance of our parallel implementation on two
configurations of hybrid machine.

Keywords. Accelerator, Xeon-Phi/MIC, GPU, hybrid computing, heterogeneous
computing, offload computing.

Introduction

According to the hardware evolution in the last decades, the architecture of parallel sys-
tems becomes more and more complex. In particular, the development of many-core de-
vices such as GPU (Graphical Processing Unit) and MIC (Many Integrated Cores) have
induced an additional hierarchical level of parallelism in supercomputers. Indeed, current
parallel systems are typically organized as big clusters of nodes and the many-core de-
vices provide much larger computational power at the node level. However, the efficient
programming of all that gathered power is still a major difficulty in the domain of High
Performance Computing, partly due to the hierarchy in the system and to the communi-
cations between the different levels. The main issue is to design and implement efficient
parallel schemes, as general as possible, that allows an efficient cooperation between all
the computing units in a parallel system. The study presented in this paper is, to the best
of our knowledge, one of the first attempt to solve a scientific application by using three
different types of computing units inside a single node: the CPU cores, a GPU and a
MIC.

After a brief review of the previous works over the programming of hybrid machines
(containing different kinds of computing devices) in Section 1, our application and hard-
ware testsbeds are described in Section 2. Then, Section 3 details the different algorithms
designed and implemented for each kind of device (CPU, GPU, MIC). Finally, a multiple
devices solution is proposed in Section 4. An experimental performance comparison and
analysis, proposed in Section 5, allows us to evaluate the efficiency of our scheme and to
point out the major difficulties in such cooperation.



1. Related works

In the past, we have investigated some ways to efficiently design algorithms and codes
for hybrid nodes (one PC with a GPU) and clusters of hybrid nodes (cluster of multi-
core nodes with GPUs) [1,2]. Overlapping of computations with communications was
a key point to achieve high performance on hybrid architectures. The processing speed
of each node increases when using accelerators, while interconnection networks remains
unchanged, and data transfer times between CPU main memory and accelerator memory
introduce new overheads.

Today, scientific computing on GPU accelerators is common, but using Xeon Phi ac-
celerators has still to be explored, although some comparison works have been achieved.
In [3], authors point out the need to optimize data storage and data accesses in different
ways on GPU and Xeon Phi, but no dot attempt to use both accelerators in the same
program. Another strategy is to use a generic programming model and tool to program
heterogeneous architectures, like OpenCL [4]. But usually it does not hide the different
architectures requirements to achieve optimal performance, and it still requires an (im-
portant) algorithmic effort to design high performance codes running concurrently on
different accelerators.

2. Benchmark application and testbeds

2.1. Jacobi relaxation application

According to the scope of this paper (hybrid computing with CPU, GPU and MIC),
we have chosen an application with a regular domain, that is quite representative of
the scientific problems adapted to the constraints of the studied devices (especially the
GPU). Indeed, the objective of this work is not to propose parallel schemes for general
numerical methods but to study the best ways to make the different internal devices of a
hybrid computer work together.

The Jacobi relaxation is a classical iterative process providing a simple modeling of
heat transfer or electrical potential diffusion in 2D or 3D discrete domain (regular grid).
The objective of this application is to compute the stable state over the entire domain for
some given fixed boundary conditions. An explicit iterative 2D scheme is performed as:

crt[l][c] =
pre[l − 1][c] + pre[l][c− 1] + pre[l][c] + pre[l][c + 1] + pre[l + 1][c]

5
(1)

where crt[l][c] is the value of the grid point at line l and column c at the current iteration,
while pre[l][c] gives the value of the same grid point at the previous iteration. The other
four grid points involved are the direct neighbors (in 4-connexity) of the current point.

This iterative process is performed until the termination condition is reached. As the
quantities in the grid are generally coded by real numbers, the strict stabilization may
not be reachable in reasonable time. Among the different solutions to get around this
problem, we have chosen to fix the number of iterations. This presents the advantage of
providing a complete and accurate control over the amount of computation. In fact, this
parameter is essential to study some aspects of parallel algorithms, such as the scalability.

2.2. Testbeds

The machine used at CentraleSupelec is a Dell R720 server containing two 6-cores In-
tel(R) Xeon(R) CPU E5-2620 at 2.10GHz, with two accelerators on separate PCIe buses.



One accelerator is an Intel MIC Xeon-Phi 3120 with 57 physical cores at 1.10 GHz,
supporting 4 threads each. The second accelerator is a Nvidia GPU GeForce GTX Titan
Black (Kepler architecture) with 2880 CUDA cores. The machine used at Loria is a Dell
R720 server containing two 8-cores Intel(R) Xeon(R) CPU E5-2640 at 2.00GHz, with
two accelerators on separate PCIe buses. One accelerator is an Intel MIC Xeon-Phi 5100
with 60 physical cores at 1.05 GHz supporting 4 threads each. The second accelerator is
a Nvidia GPU Tesla K40m (Kepler architecture) with 2880 CUDA cores.

In this paper, we study the behavior of our parallel scheme on these two different
machines, taking into account the relative computation powers of CPU, GPU and MIC.

3. Optimized kernels for single architecture and device

3.1. Multi-core CPU with OpenMP

A first version of the multi-core CPU kernel to perform the Jacobi relaxation consists in
a classical domain decomposition in horizontal strips through the cores. This is achieved
by inserting the parallelism at the level of the loop over the lines of the domain inside the
main iterative loop. That main loop updates the current version of the grid according to
the previous one. The corresponding parallel scheme is given in Listing 1.

Listing 1: Simple OpenMP scheme for the Jacobi relaxation

1 #pragma omp parallel num_threads(nbT) // Threads creation
2 {
3 ... // Local variables and array initializations
4 for(iter=0; iter<nbIters; ++iter){ // Main iterative loop
5 // Parallel parsing of horizontal strips of the domain
6 #pragma omp for
7 for(lig=1; lig<nLig-1; ++lig){ // Lines in each strip
8 for(col=1; col<nCol-1; ++col){ // Columns in each line
9 ind = lig * nCol + col;

10 crt[ind] = 0.2 * (prec[ind - nCol] + prec[ind-1] + prec[ind]←↩
+ prec[ind+1] + prec[ind+nCol]);

11 }
12 }
13 #pragma omp single
14 { ... // Arrays exchange for next iteration (avoids copy) }
15 }
16 }

Horizontal
strip
associated
to one core

Entire grid

Blocks inside the horizontal strip

the cache use

whose width optimizes

Figure 1.: Blocks in horizontal
strips to optimize the cache use

Although this simple version works quite
well for small and medium sizes of grids, it
is not fully scalable for grids with large lines,
due to the L2 cache use that is not optimized.
We remind the reader that one L2 cache is
present in each core of a CPU. So, a sec-
ond version has been implemented explicitly
taking into account the cache management in
each core. Due to the data dependencies in our
application and to the cache mechanism, the
modifications mainly consist in changing the



update order of the elements in each horizontal strip. In the first version, the updates are
performed by following the order of the entire lines of the grid. In the second version, the
horizontal strips are divided in blocks along their width and their updates are performed
block by block. The height of the blocks in a given strip is the same as the height of the
strip, but their width may be smaller as it is directly deduced from the cache size and
the line width (lw), as illustrated in Figure 1. In fact, the optimal block width (obw) is
deduced from the cache size. Then, the number of blocks (nbb) per strip is computed.
Finally, the actual block width (abw) is computed in order to obtain blocks of the same
width in the horizontal strip.

nbb =
⌈

lw

obw

⌉
, abw =

lw

nbb
(2)

3.2. Many-core MIC with offloaded OpenMP

In order to use the MIC Xeon-Phi, Intel proposes an extension of the OpenMP library in
its C/C++ compiler. It mainly consists in additional directives that allows the programmer
to control the MIC directly from the CPU. It must be noticed that any classical OpenMP
program can be run directly on a MIC. However, in this context, the MIC acts as an
autonomous multi-core machine but it cannot cooperate (via OpenMP) with the central
CPU cores. So, in the perspective of making the MIC cooperate with other devices (CPU,
GPU,...), it is required to use the MIC as a co-processor of the central CPU (see [5]
for an introduction to offload programming paradigm). One great advantage of the MIC,
compared to other devices such as GPU, is that the same OpenMP code that runs on the
CPU can be executed on the MIC without modification. Hence, Listing 1 can be directly
executed on a MIC. However, the MIC has its own memory and can only process data in
its memory. This implies the need of explicit data transfers between the central memory
of the node and the memory on the MIC board.

The execution and data transfers can be expressed with the same directive, called
offload, as depicted in Listing 2.

Listing 2: Offloading of the Jacobi relaxation on a MIC with synchronous data transfers

1 #pragma offload target(mic:0) inout(tabM:length(nLig*nCol) align(64))
2 { // Computes nbIters iterations of Jacobi over array tabM
3 // with nbTMic cores on the MIC
4 jacobi(tabM, nLig, nCol, nbIters, nbTMic);
5 }

In this example, target gives the identifier of the MIC device to use, and the
inout parameter specifies that the array tabM (whose size must be given in number of
elements) is an input as well as an output of the offload. That means that before the
start of the computation on the MIC, the array is copied from central RAM to the MIC
RAM. And once the computation is over, the array is copied back from the MIC RAM to
the central RAM (at the same location). The scalar variables passed as parameters of the
jacobi function are implicitly copied from the central RAM to the MIC RAM. Finally,
the align parameter is optional and forces the memory allocations for the data on the
MIC to be aligned at boundaries greater or equal to the specified number of bytes. Such
memory alignments improve the performance of data transfers.

It is worth noticing that the offload presented in Listing 2 is blocking. So, the core
CPU that executes this offload will wait for the end of the execution of jacobi on the



MIC and for the completion of the output data transfer from the MIC memory to the
central one, before resuming its execution. When the MIC is used alone, without cooper-
ating with the CPU, this synchronous scheme is pertinent. Nevertheless, it prevents any
computation by the CPU while the MIC is running. We will see in Section 4 how to per-
form asynchronous (non-blocking) offloads, in order to allow the CPU to work during
the MIC execution. Also, we will point out the need to replace blocking data transfers by
asynchronous ones, in order to overlap communication with computation.

3.3. Many-core GPU with CUDA

We designed a single CUDA kernel to process the GPU part of the Jacobi relaxation. It
is called two times per iteration: to quickly and early compute the boundary of the GPU
part of the Jacobi grid, and to compute the (large) rest of this grid part. We optimized our
algorithm and code to make fast coalescent memory accesses, to use the shared memory
of each vectorial multiprocessor of the GPU, and to limit the divergence of the thread
of a same block (when not executing exactly the same instructions). See [6] for efficient
CUDA programming rules.

Each thread of this kernel updates one point of the Jacobi Grid during one cycle,
and threads are grouped in 2-dimensional blocks of a 2-dimensional grid. This kernel has
been optimized using the shared memory of each multiprocessor of the GPU, allowing
each thread to read only one data from the GPU global memory, to share this data with
others threads of its block, and efficiently access the 5 input data it requires to update
its Jacobi grid point. Global memory read and write are achieved in a coalescent way.
Considering a block of size BSY × BSX, all the threads (in the range [0; BSY − 1] ×
[0; BSX − 1]) load data from the global memory into the shared memory, and (BSY −
2)× (BSX − 2) threads in the range [0; BSY − 3]× [0; BSX − 3] achieve computations,
limiting the divergence of the threads inside a block.

Listing 3: Optimized CUDA kernel

1 __global__ void update(double *gpuPrec, double *gpuCrt, int gpuLigs,←↩

int cols)
2 {
3 int idx, lig, col;
4 __shared__ double buf[BLOCKSIZEY][BLOCKSIZEX];

6 // Coordinates of the Jacobi grid to load in shared memory
7 col = blockIdx.x * (BLOCKSIZEX - 2) + threadIdx.x;
8 lig = blockIdx.y * (BLOCKSIZEY - 2) + threadIdx.y;
9 // If valid coordinates: load data and compute

10 if(col < cols + 2 && lig < gpuLigs + 2){
11 idx = lig * (cols + 2) + col;
12 buf[threadIdx.y][threadIdx.x] = gpuPrec[idx];
13 __syncthreads();
14 lig++; col++; // shift coordinates to point out element to compute
15 // if new coordinates are valid: achieve computation
16 if(col <= cols && lig <= gpuLigs && threadIdx.x < BLOCKSIZEX-2 ←↩

&& threadIdx.y < BLOCKSIZEY-2){
17 idx = lig * (cols + 2) + col;
18 gpuCrt[idx] = 0.2 * (buf[threadIdx.y][threadIdx.x+1] +
19 buf[threadIdx.y+1][threadIdx.x] +
20 buf[threadIdx.y+1][threadIdx.x+1] +



21 buf[threadIdx.y+1][threadIdx.x+2] +
22 buf[threadIdx.y+2][threadIdx.x+1]);
23 }
24 }
25 }

Moreover, CPU memory arrays involved in the CPU-GPU data transfers have been
locked in memory, using cudaHostAlloc(...) routine, in order to support asyn-
chronous and faster data transfers. Finally, we used some CUDA streams to efficiently
manage and run concurrent data transfers and kernel computations, so that we obtain a
maximal overlapping.

4. Multiple architectures and devices solution

4.1. General asynchronous scheme and data distribution

crt

prec GPU device

MIC deviceCPU device

Inter-device 

data transfers

GPU part

CPU part

MIC part

fc1

fg1

fc2

fg2

fc3
fc4

fm1
fm2

Figure 2.: Data structures imple-
mented on the three devices (CPU,
MIC and GPU)

The GPU remains a scientific co-processor,
and we use the MIC in offload mode. So, our
hybrid CPU+MIC+GPU solution still uses the
CPU to run the main function, to launch all
computation steps on the GPU, on the MIC
and on its own cores, and to launch the data
transfers between the CPU and the accelera-
tors. The CPU memory hosts the entire cur-
rent (crt) and previous (prev) Jacobi grids,
but the top part is transferred on the GPU and
the bottom part on the MIC, see Figure 2. We
name CPU boundaries the first and last lines
computed by the CPU, GPU boundary the last
line computed by the GPU, and MIC bound-
ary the first line computed by the MIC. We
name corpus the other lines computed by a
computing device. So, each computing device
(CPU, MIC and GPU) stores its parts of the
Jacobi grids and the adjacent boundary(ies) of
other device(s). In order to save memory and
optimize the transfers, our parallel algorithm
has been designed to allow the direct transfer of each frontier to its right place in the local
array on the destination device. So, no intermediate array is required to store the received
frontiers coming from another device. Also, some efforts have been made to obtain a
CPU algorithm that uses symmetric data structures and interactions for both accelerators.
Figure 3 introduces our multi-device algorithm, based on the following principles:

• Before to enter a new computation step, a processor has its previous Jacobi grid
entirely updated, including the boundary of the adjacent processor. So it can com-
pute all its part of its current grid.

• A processor sends its newly updated boundary to the adjacent processor while it
receives the updated boundary of this adjacent processor.

• Boundary(ies) computation and transfer of a processor are sequentially linked,
but achieved in parallel of its corpus computation. The objective is to overlap as



u

ArrayuallocationuonuCPU

ArrayuallocationuonuMICuSfromutheuCPUF

ArrayuallocationuonuGPUuSfromutheuCPUF

MemoryulockinguofuCPU-GPUufrontiersuarraysu
SpartsuofutheuCPUuarraysFu

u

DatauarrayuinitialisationuonuCPUuScrtuanduprevuarraysFu

ComputationuofuGPUuboundaryuSoneuline
uuuuofuGPUucrtuarrayFu;
TransferuofuGPUuboundaryuintouCPUuucurentu
uuuugridu;

ComputationuofuGPUucrtuarrayR
uuuexceptedutheuGPUuboundaryulineu;u

ComputationuofuMICuboundaryuSoneuline
uuuuofuMICucrtuarrayFu;
TransferuofuMICuboundaryuintouCPUucurrent
uuuuugridu;u

ComputationuofuMICucrtuarrayR
uuuexceptedutheuMICuboundaryulineu;

Asynchronousulaunch

Asynchronousulaunch

Asynchronousulaunch

Asynchronousulaunch

ComputationuofunorthuandusouthuCPUu
uuuuboundariesuStwoulinesuofuCPUucrtuarrayFu;

Asynchronousulaunch
Asynchronousulaunch

TransferuofuCPUuboundaryutoutheuMIC
uuuucurrentugridTransferuofuCPUuboundaryutoutheuGPUuu

uuuuucurrentugrid

CPU GPU MIC

ComputationuofuCPUucrtuarrayRuexceptedunorth
uuuuandusouthuboundariesulinesu;

Waituenduofutasks
Waituenduofutasks

PermutationuofucrtuanduprevuarraysuonuMIC

PermutationuofucrtuanduprevuarraysuonuCPU
PermutationuofumicCrtuandumicPrevuarrayu
uuuuupointersuonuCPU
PermutationuofugpuCrtuandugpuPrevuarray
uuuuupointersuonuCPU

TransferuofucrtuarrayuonuGPUutoutheuGPUupartuof
uuuutheucrtuarrayuonuCPU

Synchronousulaunch TransferuofucrtuarrayuonuMICutoutheuMICupart
uuuuofutheucrtuarrayuonuCPU

FreeuCPUucrtuanduprevuarrays
FreeuGPUucrtuanduprevuarrays
FreeuMICucrtuanduprevuarrays

END

START

Synchronousulaunch
TransferuofuMICupartsuofucrtuanduprevuarrays
uuuuonuCPUutoutheuMIC

Synchronousulaunch TransferuofuGPUupartsuofucrtuanduprevuarrays
uuuuonuCPUutoutheuGPU

S-MIC

S-GPU

Synchronousulaunch

Figure 3. CPU-MIC-GPU algorithm

much as possible the data transfers with large computations, as well as to avoid
that a processor is underused by processing only its boundary(ies).

• The CPU launch asynchronous computations on accelerators and asynchronous
data transfers from and to the accelerators. So, the two accelerators and the CPU
can compute in parallel, and the different data transfers can exploit the two PCI
express buses in parallel.

Obviously, two synchronization points, S-MIC and S-GPU, are mandatory to ensure
that data transfers and computations are finished respectively on MIC and GPU, before
to switch the arrays (current and previous grids) and to enter the next iteration.

A slight asymmetry appears between the MIC and GPU concerning the arrays
switching management (pointers switching). In fact, pointers on GPU arrays are stored
in the CPU memory and sent to the GPU computing kernel as parameters when launch-
ing the kernel. So, these pointers can be switched directly in the CPU memory by the
CPU process. On the contrary, array pointers on MIC are stored in the MIC memory and
managed by the MIC. So, the CPU needs to launch a short task on the MIC to make it
switch its local array pointers.



4000× 4000 pts, 2000 iterations

Testbed Measure CPU MIC GPU

CentraleSupelec Pts Updates/s 1.28E + 09 2.81E + 09 9.16E + 09

machine Speedup 1.0 2.20 7.15

Loria Pts Updates/s 1.62E + 09 4.23E + 09 7.84E + 09

machine Speedup 1.0 2.61 4.84
Table 1. Absolute and relatives performances of the three devices

Finally, we obtain an efficient and rather generic and symmetric parallel scheme that
make cooperate CPU, MIC and GPU devices to solve the same problem.

4.2. Implementation details

To achieve asynchronous transfers between CPU and GPU, three CUDA streams are
used together with two CUDA registrations of the memory banks concerned by the trans-
fers to lock them and avoid their swapping. One stream is used to compute and send
the FG1 line (cf. Fig.2) to the CPU (FC1), another one is used to receive the FG2 line
from the CPU (FC2), and the last one is used to control the asynchronous computation of
the GPU part. The two registrations concern the two frontier lines (FG1 and FG2). The
cudaMemcpyAsync and cudaStreamSynchronize functions are used to perform
the asynchronous transfers and to ensure their completion before to proceed to the fol-
lowing computations.

Concerning the asynchronous data transfers between CPU and MIC, the signal
clause is used in the offload directive computing and sending (with a out clause) the
FM2 line to the CPU (FC4). It is also used in the offload_transfer directive re-
lated to the reception of FM1 from the CPU (FC3). There is also a signaled offload to
asynchronously perform the computation of the MIC part. Then, the offload_wait
directive is used to ensure the transfer completions before performing the following com-
putations.

5. Experiments

5.1. Individual performances of the devices

Table 1 shows the absolute and relative performances of the three devices (computing
units) of each testbed machine, during 2000 iterations on a grid of 4000 × 4000 points.
In both cases the CPU cores of the motherboard is the less powerful, the MIC device
is medium, and the GPU is the most powerful on this problem. But the MIC achieves
higher absolute and relative performance (compared to the motherboard CPU) on the
Loria testbed, while the GPU is faster on the CentraleSupelec (CS) testbed. So, our two
testbed machines could have different behaviors when running multi-device codes.

5.2. Performance of heterogeneous computing on the three devices

Table 2 shows absolute performance (in point update/s) of an heterogeneous computing
concurrently on the three devices of each machine (again during 2000 iterations on a grid
of 4000 × 4000 points). The cutting lines specify the load balancing of the grid on the
three devices: first result line of table 2 summarizes some experiments with lines 1−999



4000× 4000 pts, 2000 iterations

Testbed GPU/CPU CPU/MIC CPU MIC GPU CPU + MIC
cutting line cutting line Pts Ups/s Pts Ups/s Pts Ups/s + GPU

CS 1000 3000 1.28E + 09 2.81E + 09 9.16E + 09 2.11E + 09

machine 2000 2500 1.27E + 09 2.81E + 09 9.22E + 09 5.47E + 09

Loria 1000 3000 1.62E + 09 4.23E + 09 7.84E + 09 2.68E + 09

machine 2000 2500 1.71E + 09 4.12E + 09 7.81E + 09 5.32E + 09

Table 2. Absolute performance (points updates/s) of heterogeneous computing on CPU, MIC and GPU

4000× 4000 pts, 2000 iterations

Testbed CPU/MIC CPU MIC CPU + MIC Speedup CPU+MIC
cutting line Pts Ups/s Pts Ups/s Pts Ups/s vs max(CPU,MIC)

CS machine 700 1.26E + 09 2.77E + 09 2.95E + 09 1.06
750 1.25E + 09 2.78E + 09 2.96E + 09 1.07
850 1.26E + 09 2.77E + 09 2.88E + 09 1.04
950 1.27E + 09 2.75E + 09 2.82E + 09 1.03

Table 3. Absolute performance (points updates/s) of heterogeneous computing on CPU and MIC

processed on the GPU, lines 1000− 2999 processed on the CPU, and lines 3000− 3999
processed on the MIC.

As expected, we observe the sensitivity of the heterogeneous computing perfor-
mance to the load balancing on the three devices. The last column introduces this perfor-
mance that varies from 2.11 to 5.47 Giga Point Updates/s on the CS machine, and from
2.68 to 5.32 Giga Point Updates/s on the Loria machine, for two different load balanc-
ing. First load balancing is very bad: global performance is greater than pure CPU per-
formance, but less than GPU and MIC ones on the two testbeds. Second load balancing
is better: global performance are greater than CPU and MIC performances on the two
testbeds. But they remain less than the GPU performance.

In fact, we experimented other load balancing, and we never succeeded to obtain
greater performances than pure GPU executions. When using simultaneously several
devices we add data transfers between CPU and GPU, and between CPU and MIC, at
each time step. Despite our efforts to overlap communication with computation on the
different devices (see section 4), the GPU are so powerful on this application, compared
to others devices, that:

• when processing significant parts of the problem on the CPU or the MIC, we slow
down the execution (compared to a pure GPU execution),

• when processing only small parts of the problem on the CPU or the MIC, to try
to load balance the computation with the GPU, the computations times are low,
and the data transfers can not be hidden and slow down the application.

According to these preliminary results, the simultaneous use of the three devices in each
machine does not bring significant improvement in performance. However, further study
should be done to look for contexts where the three-devices version is faster than the
GPU alone.



5.3. Performance of heterogeneous computing on CPU and MIC

Table 3 shows that it is possible to run faster on both CPU and MIC, than on CPU or
MIC alone, on the CS machine. We achieved a small speedup close to 1.07 with a cutting
line at 750 (lines 1− 749 processed on the CPU, and lines 750− 3999 processed on the
MIC). However, we never succeeded to achieve a speedup on the Loria machine. The
MIC/CPU speed ratio was close to 2.15 on the CS machine, while it was close to 2.58
on the Loria machine. It seems possible to speedup using simultaneously CPU and MIC
when their computing power are not so different, but it seems more difficult when their
computing power ratio increases.

6. Conclusion

A parallel scheme has been described that allows the cooperation of different computing
devices inside a single hybrid machine. The major difficulties in exploiting those devices
together come from the data transfers between the central memory of the system and the
local memory on each device. To obtain good efficiency, it is required to make extensive
use of asynchronism between the different computing devices, especially by overlapping
computations with communications thanks to asynchronous data transfers.

Our experiments have validated our multi-devices parallel scheme: results were
qualitatively identical using one, two or three devices. Two series of asynchronous data
transfers (CPU↔ GPU and CPU↔MIC) have been implemented with different mech-
anisms. However, the global performance obtained when using simultaneously the CPU,
the MIC and the GPU, are lower than when using only the most powerful device and
computing kernel for this problem (the GPU alone and our optimized CUDA kernel).
On some testbeds, we succeeded to achieve significant speedups using CPU and MIC
devices compared to MIC or CPU alone, with a finely tuned load balancing. This points
out the difficulty to efficiently balance load on hybrid heterogeneous systems.

The next steps in this work should be to adapt our parallel scheme to more complex
scientific applications, to the coupling of different solvers running on different devices,
and to larger problems that could not fit in the memory of a single device.

References

[1] S. Vialle and S. Contassot-Vivier. Patterns for parallel programming on GPUs, chapter Optimization
methodology for Parallel Programming of Homogeneous or Hybrid Clusters. Saxe-Coburg Publications,
2014. ISBN: 978-1-874672-57-9.

[2] S. Contassot-Vivier, S. Vialle, and J. Gustedt. Designing Scientific Applications on GPUs, chapter Devel-
opment Methodologies for GPU and Cluster of GPUs. Chapman & Hall/CRC Numerical Analysis and
Scientific Computing series. Chapman & Hall/CRC, 2013. ISBN 978-1-466571-64-8.

[3] J. Fang, A. L. Varbanescu, B. Imbernon, J. M. Cecilia, and H. Perez-Sanchez. Parallel computation of
non-bonded interactions in drug discovery: Nvidia GPUs vs. Intel Xeon Phi. In 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2014), Granada, Spain, 2014.

[4] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Computing with OpenCL. Morgan
Kaufmann, 2nd edition, 2012. ISBN 9780124058941.

[5] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high-performance programming. Elsevier Waltham
(Mass.), 2013. ISBN 978-0-12-410414-3.

[6] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010. ISBN-10 0131387685, ISBN-13 9780131387683.


