
HAL Id: hal-01258753
https://centralesupelec.hal.science/hal-01258753

Submitted on 19 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Production-Sharing Optimization and
Application to Power Grid Networks

Azary Abboud, Franck Iutzeler, Romain Couillet, Merouane Debbah, Houria
Siguerdidjane

To cite this version:
Azary Abboud, Franck Iutzeler, Romain Couillet, Merouane Debbah, Houria Siguerdidjane. Dis-
tributed Production-Sharing Optimization and Application to Power Grid Networks. IEEE
Transactions on Signal and Information Processing over Networks, 2016, 2 (1), pp.16-28.
�10.1109/TSIPN.2015.2509182�. �hal-01258753�

https://centralesupelec.hal.science/hal-01258753
https://hal.archives-ouvertes.fr

1

Distributed Production-Sharing Optimization and
Application to Power Grid Networks

Azary Abboud*, Student Member, IEEE, Franck Iutzeler, Member, IEEE, Romain Couillet, Member, IEEE,
Mérouane Debbah, Fellow Member, IEEE, and Houria Siguerdidjane, Member, IEEE

Abstract—Based on recent works on asynchronous versions
of the distributed Alternating Direction Method of Multipliers
(ADMM) algorithm, we develop and prove the convergence
of a distributed asynchronous method for Production-Sharing
Problems over networks. The asynchronous nature of the al-
gorithm allows both for the relaxation of the synchronization
constraint often inherent to distributed ADMM-based methods
and distributed optimization methods at large, but also allows
for random local failures to occur in fully centralized methods.
These two considerations motivate the application of the method
to the Direct-Current Optimal Power Flow (DC-OPF) problem
in power transmission networks. Applied to the DC-OPF, this
method leads to an overall network optimal production obtained
through a sequence of local computations in subareas of the
network (each area waking up randomly while the rest of the
network is non-operational) and neighboring data exchanges. In
another scenario, the DC-OPF is performed via iterations of a
centralized network-wide ADMM method which may contain dis-
connected nodes (in general with low probability and for a short
duration). In both cases, this method still converges and thus
provides additional flexibility to classical DC-OPF algorithms.
The proposed algorithm, inherently designed for networks of
overlapping subareas, is then extended to networks of non-
overlapping areas. Simulations are carried out on the IEEE-30
and IEEE-118 bus test systems which illustrate the convergence,
scalability and effectiveness of the proposed algorithms.

Index Terms—Convex optimization of large scale problems,
ADMM, randomized methods, smart grids, flow calculations,
distributed control.

I. INTRODUCTION

One of the salient features of power transmission systems
is their ability to ensure an optimal transmission throughout
the power grid of generated powers at a low economical
cost. This naturally leads to the so-called Optimal Power
Flow [2] problem, widely studied up until very recently with
the emergence of the smart-grid paradigm, see e.g., [3]–[6]
for recent works. This problem can be generally cast as that
of finding an operational point leading to the least global
generation cost subject to power flow equations (such as
Kirchhoff and Ohm’s laws) and other operational constraints
[7]. The physical constraints make the problem nonlinear and
non-convex [8], but as far as power transmission is concerned

Azary Abboud and Mérouane Debbah are with Laneas Group, Supélec, Gif-
sur-Yvette, France. Franck Iutzeler is with the ICTEAM Institute, Université
Catholique de Louvain, Louvain-la-Neuve, Belgium. Romain Couillet is with
the Telecommunication Department, Supélec, Gif-sur-Yvette, France. Houria
Siguerdidjane is with the Automatic and Control Department, Supélec, Gif-
sur-Yvette, France. Email: firstname.lastname@supelec.fr. Part of the material
of this paper has been presented at the 39th IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Florence, May 9, 2014
[1].

linear approximations are considered accurate and significantly
simplify the problem [6].

Our focus is here on the Direct-Current Optimal Power Flow
(DC-OPF) problem, which is a linear DC approximation of the
original OPF problem [2]. In the DC-OPF formulation, voltage
angles differences are considered close to zero and voltage
magnitudes are fixed.1 Embracing the smart-grid paradigm,
we seek here to minimize the power generation cost of the
grid while taking advantage of its advanced communication
characteristics [2], [11]. A classical method to solve problems
of the OPF class relies on a central fusion center which collects
data from all the network agents and centrally evaluates the
optimal system parameters before communicating these values
to the corresponding agents [12]. However, on the one hand,
this centralized optimization method is rather prohibitive in
large-scale and sparse networks due to the communication
burden and the delay induced by the required computations
and communication [12], [13]. On the other hand, the privacy
concerns of the end users or the grid owners in case of
network with multiple authorities, and the recent tendency
toward multinational electricity markets, make it impossible
to efficiently implement the centralized optimization scheme.
Besides, several security issues such as single point of failure,
bottleneck and agreement on decisions, may arise in case of
centralized optimization [12], [14].

To reduce the computational burden and the inherent
weakness of a single centralized computation unit, one may
leverage on the presence of independent processors in each
component of the power grid [13] to increase the available
computational capacity. This implies having a distributed
computing platform, which naturally calls for the intervention
of distributed optimization approaches in order to solve the
management problems in the power grid. This distributed
scheme is specifically preferred when power sources are
located at different parts of a large network while being
under the control of multiple companies or authorities. We
thus aim here to solve the DC-OPF problem by using several
processors distributed all over the network. Distributed DC-
OPF approaches where multi-utility transmission systems are
divided into autonomously managed area were proposed in
[15], [16] and in references therein. The distributed computa-
tion is a preferable approach that helps in reducing the data
exchange overhead and the processing time, leading to a smart
optimization of the power system. The pioneering work of

1Although the DC-OPF constitutes a simplified version of the OPF, it is
used by several North American Independent System Operators (ISO) for
day-to-day operation [3], [9], [10].

2

Tsitsiklis and Bertsekas [17], [18] in this field has led to
extensive studies on distributed optimization techniques and
several methods were developed to solve various optimization
problems in a distributed manner [19], [20].

Several methods can be used to perform distributed op-
timization, either in a sequential or in a parallel manner,
such as Lagrangian relaxation [21], augmented Lagrangian
[15], approximate Newton directions in conjunction with stan-
dard Lagrangian [16], [22] as well as the auxiliary problem
principle [23]. These methods are however computationally
cumbersome [24], [25] as they share the same synchronization
that ties the different areas and demand strong coordination
(each area optimizes its variables in every iteration and com-
municates with its adjacent areas before moving to another
iteration). The synchronous burden tends to cause degradation
in performance mainly because of the inherent communication
overhead and the idle processing time [26]. Among those
methods, the technique known as the Alternating Direction
Method of Multipliers (ADMM), while sharing the same per-
formance limitations, has the advantage of converging faster
than the aforementioned methods [27], [28], of being easier
to implement, and of requiring less time and computational
capacity at each processor. The structure of the iterations
in this method makes their distribution among the existing
processors easier than the previously mentioned methods [28].

Recently [29] proposed a fully asynchronous distributed
version of the ADMM that is applied sequentially by randomly
selecting overlapping areas of the network, the union of which
covers the whole network. Despite the asynchrony, by relying
on a careful analysis of the proximal splitting method [27]
of which the ADMM is a special instance, it is proved that
such an algorithm converges. As opposed to [29], which
was not designed for DC-OPF problems specifically, in the
present article, we additionally consider that the problem under
study (being DC-OPF compliant) is such that the optimization
variables are spread across the network (instead of being
shared among the nodes) and that these variables have to
satisfy some additional box constraints. In power grid terms,
the power generated in the network are local quantities only
bounded to an indirect user satisfaction constraint, and must be
such that maximal capacities of power lines are not exceeded.
In [29] the distributed agents seek to find consensus on an
(unconstrained) unique parameter minimizing a node-wise
aggregate cost. As such, although closely related, our problem
formulation differs from [29]. We formulate the problem in a
more generic form than the DC-OPF, the Production-Sharing
Problem. Each agent has a production ability at a certain cost
and can exchange its resources with its neighbors through
the links connecting them. This generic formulation makes
it applicable to problems involving distributed computations
other than power systems (please refer to [30] for an example).
Because imposing overlapping areas in a power network
structure may lead to practical management problems, inspired
by the method of passing adjacent variables [31] that allows
to convert networks of non-overlapping and independent areas
into a network of overlapping areas, we extend the approach
from [29] to cover this context.

The rest of the article is organized as follows. Section II
defines the convex optimization problem with linear con-
straints for which we provide in Section III the distributed
formulation and solution using ADMM. Then, in Section IV,
relying on the distributed Production-Sharing optimization w/
ADMM algorithm, we develop the asynchronous distributed
Production-Sharing w/ ADMM algorithm. In Section V, we
extend our algorithm to the non-overlapping area scenario.
Section VI is devoted to the application of the algorithms on
the linear DC-OPF problem. The results are presented on the
power grid network given by the IEEE-30 bus test system [32],
then on the IEEE-118 bus test system [32] in order to verify
the scalability of the proposed algorithms. Lastly, Section VII
contains our concluding remarks.

Notations

Lowercase (resp. uppercase) boldface characters will denote
vectors (resp. matrices). Furthermore, xi denotes the ith entry
of vector x and Aij stands for the ith row jth column entry
of matrix A. [A]i corresponds to the ith row of the matrix
A. xT and AT denote respectively the transpose of vector x
and matrix A. In addition, we will note x = [x1; . . . ;xN]
the vector formed by the vertical concatenation of vectors
(xi)i=1,...,N .

II. PROBLEM FORMULATION

In this section, we will formulate a generic sharing opti-
mization problem which encompasses as a particular case the
DC-OPF problem.

A. A Production-Sharing Problem on a Graph

Consider a group of N agents connected by an undirected
connected graph of N nodes, G = (V,E), where V =
{1, ..., N} is the set of nodes2 and E is the set of bidirectional
edges. We will say that i and j are neighbors, or i ∼ j, if
{i, j} ∈ E, and we will note Ni = {j ∈ V : i ∼ j} the
set of neighbors of i. We introduce symmetric edge weights
wij = wji such that wij > 0 if and only if {i, j} ∈ E and
0 elsewhere, the matrix W defined by the entries {wij} is
called the weighted adjacency matrix, the diagonal matrix D
such that Dii =

∑
j∈V wij is called the degree matrix, and

finally L = D−W is called the Laplacian matrix of the graph.
We look at the case where each agent j ∈ V produces

and/or consumes some resource (typically electric power)
represented by a real value, and the agents can exchange this
resource using the links of the aforementioned graph. More
precisely, each agent has a production ability in the form of an
interval (reduced to {0} for non-producers) and a cost function
depending on the quantity produced (which will be assumed
convex in the following). The natural problem ensuing is thus
to minimize the total production cost under the constraints
that i) the demands are satisfied and ii) the network is able
to dispatch correctly the resource. This last point can take
multiple forms depending on the resource type and will be
made explicit when considering the DC-OPF problem next;

2We will use the terms nodes and agents interchangeably.

3

however, we will write it generically as “the vector of the
differences between production and consumption at each agent
belongs to the span of the Laplacian matrix”.

We write this problem formally as a convex optimization
problem3 with linear constraints:

Production-Sharing Problem

min
x,y,z∈RN

∑
j∈V fj(xj)

subject to ∀j ∈ V, rj ≤ xj ≤ rj{
y = x− d
y = Lz

(1)

where x is the resource production vector, d is the demand
vector, fj is the production cost function at agent j and
[rj , rj] is its production range, L is the Laplacian of graph
G, and finally y and z are intermediate vectors.

In order to be able to perform meaningful derivations, we
will make the following standard assumption.

Assumption 1. The functions {fj}j∈V are convex, proper,
lower semi-continuous and the graph G is undirected and
connected. Furthermore, the set of minimizers of Problem (1)
is non-empty.

A simple example: Consider a complete graph with unit
edge weights and say that each of the N agents has a unit
demand (d = [1, ..., 1]T). Because the graph is complete
L = NI − J where I is the identity matrix and J is
filled with ones. This means that the second condition of the
above problem simply translates to “the mean of the resource
production vector x is one”.
Now, assume that half of the agents cannot produce any
resource (for them, rj = rj = 0 thus xj = 0) while the other
half can produce any quantity x (rj = 0, rj = +∞) with cost
ax (for every producer j, fj(xj) = axj and a > 0); it is
immediate to see that each producer will produce the same
quantity (as they are indistinguishable in the problem with a
complete unweighted graph) and this quantity must be 2 (as
only half of the agents produce and the mean of the production
vector has to be one).

Now, let us see how this problem can encompass problems
encountered in power networks such as the DC-OPF.

B. DC-OPF as a Production-Sharing Problem on a Graph

A power network consists of a set of agents/buses V . Each
agent j ∈ V can generate a power pgj with a cost fj(p

g
j) in

its generation ability range [rj , rj] (possibly reduced to {0} if
the agent is not a generator) as well as a power demand pdj .

The agents are linked by transmission lines E, G = (V,E)
forming a connected undirected graph. Let θj be the phase
of the current produced by node j ∈ V . In the DC model,
the power flow on the transmission line from agent i to j
is proportional to their phase difference θi − θj through a
constant Bij representing the imaginary part of the element in

3the introduction of the excess variable y is not mandatory but it is kept
for clarity purposes.

the ith row and jth column of the bus admittance matrix Y
[2], [33], [34]. We also introduce the excess power of node j,
pej = pgj − pdj .

Kirchoff’s Voltage law and the DC model conditions
impose the excess power (which is possibly negative)
to be transmitted through the adjacent transmission
lines. Formally, for every agent j, this sums up to
pej =

∑
i∼j Bji(θj − θi) = (

∑
i∼j Bji)θj −

∑
i∼j Bjiθi.

This condition can be rewritten in a vectorial manner as
pe = LBθ where LB is the Laplacian matrix defined from
the weighted adjacency matrix B as defined previously and
θ = (θ1, . . . , θN) is the phase vector. Let pg = (pg1, . . . , p

g
N)

be the power generation vector and pd = (pd1, . . . , p
d
N) be the

power demand vector. Then, the DC-OPF Production-Sharing
Problem can be formulated as follows,

DC-OPF Production-Sharing Problem

min
pg,pe,θ∈RN

∑
j∈V fj(p

g
j)

subject to ∀j ∈ V, rj ≤ pgj ≤ rj{
pe = pg − pd
pe = LBθ

(2)

It is straightforward to see that the above problem has
the same form as Problem (1). It is important to notice that
the matrix B (through its Laplacian) suffices to structure the
generated power vector to comply with electrical equalities
across the power network.

III. DISTRIBUTED PRODUCTION-SHARING

The Production-Sharing Problem introduced in the previous
section is essentially centralized. Indeed, while the underlying
graph is present through the Laplacian matrix, the condition
y = Lz on the transmission of the excess production implies
a coordinated action of the whole network. In this section,
we first design an equivalent problem where the network
condition is split into overlapping subgraphs and add an
additional indicator function in order to ensure the equivalence
with the former problem. Then, after noticing that this new
problem is well suited for the Alternating Direction Method
of Multipliers, we derive a distributed Production-Sharing
algorithm solving our problem.

A. Distributed Formulation of the Problem

Starting from Problem (1), as every agent can control its
resource generation (and thus its excess) as well as its network
intermediate vector (its phase in the DC-OPF case), it is
convenient to stack these variables into a vector of size 3N ,
u = [x;y; z].

With this new variable, it is useful to introduce a function
F corresponding to the function to minimize in (1) applied to
u and encompassing the range condition:

F : R3N −→ (−∞,+∞]

u =

 x
y
z

 7−→


∑
j∈V

fj(xj) if ∀j, xj ∈ [rj , rj]

+∞ elsewhere
(3)

4

One can remark that, provided that the functions {fj}j∈V
are convex, F is also convex. Now, the rest of the conditions
can be written linearly as: I −I 0

0 −I L


︸ ︷︷ ︸

A

 x
y
z


︸ ︷︷ ︸

u

=

 d
0


︸ ︷︷ ︸

d̃

(4)

Hence, Problem (1) rewrites as

min
u∈R3N

F (u)

subject to Au = d̃
(5)

Let us recall that in our scheme, each agent j has the knowl-
edge of its cost function fj , its production-related variables
xj , yj , zj , and the jth row/column of the Laplacian matrix L.
It is then straightforward to see that, whereas the upper part
of the equality in (4) is local to each agent, the rows of the
lower part corresponds to the network connections.

In order to derive a distributed algorithm, a common solu-
tion is to introduce one variable per condition line per agent
and an indicator function ensuring that for each condition
line, the sum of the agents related variables is equal to the
corresponding value in d̃. Formally, define the 6N2 × 3N
matrix

Ã =

 diag([A]1)
...

diag([A]2N)

 (6)

and the indicator function4

G : R6N2 −→ (−∞,+∞]

v 7−→

 0 if ∀i = 1 . . . 2N,

3iN∑
j=3(i−1)N+1

vj = d̃i

+∞ elsewhere,
(7)

where, diag([A]i) is the diagonal matrix whose diagonal
entries are the elements of the row [A]i.

One can note that vector v has a lot more components
than actually needed. Due to the sparsity of the matrix A,
several components in v are equal to zero and can be omitted.
But, for notation simplicity, the full vector will be kept
until we provide the actual algorithm derivation, where we
will eliminate unnecessary components and precise the actual
number of variables to be updated per agent.

Finally, we obtain the following distributed problem.

Distributed Production-Sharing Problem

min
u∈R3N

F (u) +G(Ãu) (8)

By construction, the solutions of this problem allow to
derive the solutions of the original problem as mentioned in
the following lemma.

4throughout this paper, we call indicator function, a function which returns
0 when the argument is in some set C and +∞ elsewhere. It is immediate
to check that is C is closed and convex, then the indicator of set C is convex
and lower semi-continuous.

Lemma 1. Let Assumption 1 hold. Then, the solutions of Prob-
lem (8) are of the form u? = [x?;y?; z?] where (x?,y?, z?)
is a solution of Problem (1).

B. Application of the ADMM to the Distributed Production-
Sharing Problem

Writing an iteration of the ADMM algorithm on Problem (8)
leads to the following set of equations

uk+1 = argmin
u

{
F (u) +

ρ

2

∥∥∥∥∥Ãu− vk +
λk

ρ

∥∥∥∥∥
}2

(9a)

vk+1 = argmin
v

{
G(v) +

ρ

2

∥∥∥∥∥Ãuk+1 − v +
λk

ρ

∥∥∥∥∥
}2

(9b)

λk+1 = λk + ρ
(
Ãuk+1 − vk+1

)
(9c)

where ρ > 0 is a free hyper-parameter and λ is the vector of
Lagrangian multipliers.

Using the definitions of function F and G, and matrix Ã, we
obtain the following algorithm after some derivations reported
in Appendix A.

Distributed Production-Sharing optimization w/ ADMM
1) Initialize u and π to the initial values u0 and π0.
2) At iteration k every agent j = 1, . . . , N performs the

following steps :
a) Update xj , yj and zj

xk+1
j =argmin

xj

fj(xj) +
ρ

2
‖xj +

πk1,j
ρ
− xkj+

1

d1(j)

(
xkj − ykj − dj

)
‖2

(10a)

yk+1
j =ykj +

πk1,j + πk2,j
2ρ

+
rk1,j

2d1(j)
+

rk2,j
2d2(j)

(10b)

zk+1
j =zkj −

1
N∑
i=1

L2
ij

N∑
i=1

Lij

(
πk2,i
ρ

+
rk2,i
d2(i)

)
(10c)

with ∀i = 1, ..., N , d1(i) = 2 and d2(i) = 2+ |Ni|
b) Communicate zk+1

j and yk+1
j to neighboring

nodes.
c) For each constraint i ∈ Ij = {i;∃Aip 6= 0, p =
{j, j +N, j + 2N}}, compute

rk+1
1,i = xk+1

i − yk+1
i − di (11a)

rk+1
2,i = −yk+1

i +

N∑
j=1

Lijz
k+1
j (11b)

πk+1
1,i =

ρ

d1(i)
rk+1
1,i + πk1,i (12a)

πk+1
2,i =

ρ

d2(i)
rk+1
2,i + πk2,i (12b)

5

3) If the stopping criterion is not satisfied, increase k and
go to 2). Otherwise, retain xk+1

j , yk+1
j and zk+1

j .

This algorithm is effectively distributed; agent j computes
and maintains its personal variables using local information
(fj , Lj,·) and exchanges with its neighbors. We can also re-
mark that, contrary to the consensus-based distributed ADMM
[35], the relations between the agents are directly linked to
the original constraints and not due to a reformulation of an
originally centralized problem.

Theorem 1. Let Assumption 1 hold. Then, the sequence
(uk)k>0 = ([xk,yk, zk])k>0 generated by Distributed
Production-Sharing optimization w/ ADMM converges to
u? = [x?;y?; z?] where (x?,y?, z?) is a solution of Prob-
lem (1).

The proof of Theorem 1 is straightforward as Distributed
Production-Sharing optimization w/ ADMM relies on ADMM
applied to a sum of two functions that are proper lower
semi-continuous and convex by construction (F is constructed
from the (fi) with Assumption 1; G is a projection onto
a linear space). These properties are the sole conditions for
the convergence of ADMM (see e.g. [36]) and thus for our
algorithm.

The convergence speed is expected to be at least O(1/k) as
the reasoning from [37] can be adapted; nevertheless, linear
convergence speed have also been proved for other ADMM-
based algorithms with additional assumptions on F [38], [39].

IV. RANDOMIZED DISTRIBUTED PRODUCTION-SHARING

A. Theoretical foundations

In the previous section, we presented an algorithm for
solving Problem (1) in a distributed manner over the graph
associated with L. However, it is not always possible nor
appropriate to compute a full iteration of this algorithm. For
example, some agents of the network can randomly fail to
exchange or compute their update. Also, it may be faster to
solve the problem by taking into account only a random subset
of the agents/links at each iteration in the spirit of mini-batch
algorithms.

For these reasons, it is interesting to consider a randomized
version of the previous algorithm where only some parts of
the network are active at a given iteration.

This can be achieved by following the ADMM random-
ization scheme proposed in [29]. At each iteration k, this
method consists of picking a random set of coordinates ξk

(or equivalently a random subset of agents and links), and
performing the updates of Eqs. (9b) and (9c) only for the
coordinates of ξk, the other ones being kept at their former
value. As for the first update Eq. (9a), only the coordinates
needed for the partial update of Eqs. (9b) and (9c) are to be
computed.

In this way, provided that the random coordinate selection
sequence (ξk)k>0 is independent and identically distributed
(i.i.d.) and such that the selection probability is positive for
every coordinate, the randomized algorithm converges almost
surely to a sought solution [29] (see also [40] for refinements).

Power generation Power transmission

Area 1
Area 2

Power demand

Fig. 1. Power grid and its graph presentation divided into 2 overlapping areas.

B. Randomized algorithm

In the case of a network of agents with multiple authorities
or when the network is divided into multiple micro-networks,
it is advised to use area-based distributed mechanisms to
manage efficiently the network. Interestingly, the components
of λ and v are linked either to a node or to an edge of
the network; thus, updating only a part of these components
sums up to performing computations and exchanges only on
a subgraph.

Let us decompose the graph G into L connex areas A`,
l ∈ {1, . . . , L} (see Fig. 1); area A` is a graph with vertices
V` ⊂ V and edges E` = {{i, j}; (i, j) ∈ V 2

` } ∩ E. Each
area A` will act as a local processor exchanging data with
its closest neighbors when selected by the random sequence
(ξk)k>0; i.e. at times k such that ` ∈ ξk+1. In order to ensure
convergence to the sought solution [29], we will assume that i)
the areas are connected and encompass the whole graph; and
ii) (ξk)k>0 is i.i.d. and for all l ∈ {1, . . . , L}, the selection
probability for area A` is positive: P[` ∈ ξ1] > 0.

Assumption 2. For any l ∈ {1, ..., L}, let G(V`) , (V`, E`)
be the sub-graph of area A`, the following properties are
assumed:

1)
⋃L
l=1 V` = V ,

2)
⋃L
l=1G(V`) is connected.

Furthermore, the area selection sequence (ξk)k>0, valued
in the set of the subsets of {1, ..., L}, is independent and
identically distributed and such that ∀`, P[` ∈ ξ1] > 0.

This means that in order to ensure convergence, the areas
must overlap (i.e., have at least an agent in common, see
Fig. 1), which can be restrictive. Let us first state the asyn-
chronous algorithm with overlapping areas and extend it to the
non-overlapping case in next section.

At each iteration k, applying Eqs. (9a)-(9c) but keeping only

6

the components related to the areas5 of ξk+1 in the two latter
equations leads to the following algorithm (the calculations
are quite similar as the ones in Appendix A).

Asynchronous Distributed Production-Sharing optimiza-
tion w/ ADMM

1) Initialize u and π to the initial values u0 and π0.
2) At iteration k, a random area Aξk+1 becomes opera-

tional, and each agent j ∈ Vξk+1 performs the following:

a) Update xj , yj and zj using equations (10a), (10b)
and (10c)

b) Communicate zk+1
j and yk+1

j to the neighboring
nodes.

c) For each constraint i ∈ Ij , compute rk+1
1,i , rk+1

2,i

πk+1
1,i and πk+1

2,i using equations (11a) to (12b)
respectively.

3) Every non-selected agent j /∈ Vξk+1 keeps its former
values xk+1

j = xkj , zk+1
j = zkj , ...

4) If the stopping criterion is not satisfied, increase k and
go to 2). Otherwise, retain xk+1

j , yk+1
j and zk+1

j .

We remark that this algorithm is effectively randomized in
the sense that only the agents of the chosen areas perform
computations and exchanges, the others simply keeping their
former variables. The performance of this algorithm as well
as details about the choice of the area selection sequence will
be provided in Section VI.

Theorem 2. Let Assumptions 1 and 2 hold. Then, the sequence
(uk)k>0 = ([xk,yk, zk])k>0 generated by Asynchronous
Distributed Production-Sharing optimization w/ ADMM con-
verges almost surely to u? = [x?;y?; z?] where (x?,y?, z?)
is a solution of Problem (1).

The proof of Theorem 2 is derived from [29, Th. 2]
as Asynchronous Distributed Production-Sharing optimization
w/ ADMM relies on i) ADMM applied to a sum of two
functions that are proper lower semi-continuous and convex
by construction (see Theorem 1); and ii) an i.i.d randomization
veryfying Assumption 2 in order to match the assumptions of
[29, Th. 2]. Again, the convergence speed in the mean square
sense is expected to be O(1/k) from [41].

As mentioned before, the convergence result is limited to
the case where these areas overlap. This is equivalent to having
some agents falling under the authority of multiple areas. In
power grid networks, this may result in conflicts in decision
making as a coordination is thus required between these
authorities. In the following section, we extend our algorithms
to the case of non-overlapping areas by introducing dummy
nodes between the areas. Subsequently, the areas become
independent as every agent refers to only one area.

5It may seem counter-intuitive that the active set of nodes at times k is
denoted by ξk+1, this index mismatch is justified so that every variable at
time k + 1 (denoted ·k+1) is Fk+1-measurable where Fk+1 is the sigma-
field induced by (u0,π0, ξ1, ..., ξk+1). Indeed, the only randomness in the
algorithm comes from the area selection process and variables at time k+ 1
are derived from the last selection variable (ξk+1) in a deterministic manner.

Area 1
Area 2

Area 1
Area 2

Overlapping

Border nodeInner node Dummy node

Non-overlapping

Fig. 2. Network of 2 non-overlapping areas converted to overlapping network.

V. EXTENSION TO THE NON-OVERLAPPING AREAS CASE

In this section, we extend our previous result to the case
where non-overlapping areas are activated at each iteration.
We focus here on the aforementioned Distributed Production
-Sharing algorithm but the reasoning below can be easily
adapted to a large class of distributed ADMM-based algo-
rithms.

As opposed to Assumption 2, we divide here the graph G
(linked to Laplacian L as described in the previous section)
into L strictly separated areas A`, ` ∈ {1, . . . , L} where every
node belongs to exactly one area. A node will be called a
border node if and only if it is connected to a node in a
different area, and an inner node otherwise.

Starting from the initial Production-Sharing Problem (1), we
aim at decomposing it into L sub-problems, each associated
to an area A`. Obviously, some constraints couple multiple
areas together and thus cannot be assigned to one area. These
coupling constraints are related to the connections between
border nodes. Inspired by the method of passing adjacent
variables [31], we propose an approach that transforms our
problem so that only the agents of a given area are active at
each iteration. For this, we add a dummy node between each
pair of connected border nodes of different areas as shown
in Fig. 2. These dummy nodes are not associated with any
cost function but only serve to rewrite the constraints coupling
adjacent areas using a shared variable, that will have to be
exchanged as we will see later.

Thus, the changes to be applied to the initial optimization
problem are:

• Add chosen dummy nodes;
• Rewrite the coupling constraints accordingly.

Practically, the problem becomes

Non-overlapping Distributed Production-Sharing Problem

7

min
◦
x,
◦
y,
◦
z∈R

◦
N

∑
j∈
◦
V

◦
f j(
◦
xj)

subject to ∀j ∈
◦
V ,
◦
rj ≤

◦
xj ≤

◦
rj

◦
y =

◦
x−

◦
d

◦
y =

◦
L
◦
z

(13)

where

–
◦
V = V

⋃ •
V is the new set of

◦
N agents composed of

the set of the N original agents V plus the set of the
•
N

dummy agents
•
V .

– for all j ∈ V ,
◦
f j ,

◦
rj ,
◦
rj , and

◦
dj are respectively equal

to their original values fj , rj , rj , and dj ;

– for all d ∈
•
V ,
◦
fd ≡ 0,

◦
rd =

◦
rd = 0, and

◦
dd = 0;

– the design of
◦
L from L is a bit more tedious and explained

in Appendix B:

◦
Ljj = Ljj +

1

2

∑
d∼j

◦
Ljd,

◦
Ljd = −2Lij ,

◦
Ldd = 4Lij ,

◦
Lij = Lij , if i and j belong to the same area.

With this formulation we can see that Problems (1) and
(13) are equivalent. Following the reasoning of the previous
sections while considering the modified problem, one can
derive a new distributed algorithm using ADMM that accounts
for the modified functions and matrices. A solution of the
original problem of non-overlapping areas can then extracted
from a solution of the modified overlapping problem by
omitting the entries related to the dummy nodes. One can
remark that in the new algorithm, when an area is updated,
it only needs local information plus the value of the variables
corresponding to the dummy nodes. An iteration is thus now
composed of two parts: i) local computations and exchanges in
the selected area; ii) communication of border-related values
to the adjacent areas.

VI. IMPLEMENTATIONS AND SIMULATIONS

In this section, we implement our algorithms on the DC-
OPF problem [2]. Simulations are first carried out on the
IEEE−30 bus test system [32] then, on the IEEE−118 bus
test system.

In the DC-OPF context defined in II-B, Problem (5) writes

min
u∈R3N

F (u)

subject to Au = d̃
(14)

where,

A =

[
I −I 0
0 −I LB

]
and

d̃ = (pD1 , . . . , p
D
N , 0, . . . , 0)T ∈ R2N .

Note that the cost only depends on the generated power.
We consider here quadratic cost functions, more precisely for
each generator agent j, we take fj(xj) = c′jx

2
j + cjxj for

TABLE I
GENERATORS DATA, IEEE−30 BUS TEST SYSTEM

Node pgj,min pgj,max c′j cj

1 0 100 0.037 20

2 0 30 0.01 20

6 0 80 0.0175 10

10 0 35 0.0083 10

13 0 20 0.01 15

15 0 50 0.0625 10

19 0 20 0.01 15

24 0 30 0.0250 20

27 0 40 0.0250 20

TABLE II
IEEE−30 BUS TEST SYSTEM DIVISION INTO 3 OVERLAPPING AREAS

Area Nodes Number of nodes

A1 1-11,17,20,28 14

A2 3,4,12-20,23 12

A3 10,21-30 11

pgj,min ≤ xj ≤ p
g
j,max and +∞ otherwise, with the coefficients

given in Table I.
In the following, we apply our asynchronous distributed

algorithm to the DC-OPF problem using the network of the
IEEE−30 bus test system.

A. Overlapping areas

The cost functions (fj) are defined as above and ρ is set to
1. Eq. (10a) then simplifies to,

xk+1
j = Π

[pgj,min,p
g
j,max]

[
1
2x

k
j − cj − πk1,j + 1

2 (ykj + dj)

2c′j + 1

]
where Π[pgj,min,p

g
j,max] is the projection onto the interval

[pgj,min, p
g
j,max].

Firstly, we divide the network representing the IEEE−30
bus test system into L = 3 overlapping areas as per Table II.
We compare the synchronous Distributed Production-Sharing
algorithm with the asynchronous version in two different
settings: i) one randomly chosen area is active at each iteration;
and ii) areas A1 and A3 are activated together while area A2 is
activated randomly 50% of the time. In the first scenario only
one area is activated per iteration. On total, each area is only
activated for 33% of the total time. In the second scenario, A1

and A3 are activated together, while A2 is activated 50% of
the time.

Secondly, we test the application of the algorithm in the
case of nodes failure. That is, the whole network except for
random nodes is being updated every iteration. In this scenario,
nodes 1−4, 27 are randomly switched off for 45% of the time
and nodes 10− 14, 19, 22, 28− 30 are randomly switched off

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration k

N
M

S
D

 Centralized w/ ADMM
Asynchronous Distributed ADMM, two areas off

Asynchronous Distributed ADMM, one area off
Asynchronous Distributed ADMM, nodes failure

(a) Normalized mean squared deviation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration k

M
e

a
n

 g
lo

b
a

l
p

o
w

e
r

 d
e

fi
c
ie

n
c
y

 Centralized w/ ADMM
Asynchronous Distributed ADMM, two areas off

Asynchronous Distributed ADMM, one area off
Asynchronous Distributed ADMM, nodes failure

(b) Mean global power deficiency

Fig. 3. Performance of the asynchronous distributed Production-Sharing w/
ADMM algorithm when the IEEE−30 bus system is divided to 3 overlapping
areas.

for 15% of the time. As an example, in a certain iteration
when nodes 1 − 4 are deactivated, the rest of the network is
considered as one area that is currently activated. In another
iteration, when nodes 28− 30 are deactivated, the rest of the
network, represented by another area, is then activated.

In Fig. 3a, we plot the normalized mean squared deviation
(NMSD) to the optimal solution versus the number of iter-
ations. Remark here that while every agent is active in the
centralized scheme, only a subset of the agents may be active
in the asynchronous version leading to a lower computations
per iteration ratio. In Fig. 3b, we check the sufficiency of the
power demand in this network by plotting the residual of the
power flow constraints.

B. Non-overlapping areas

We take the same IEEE−30 bus system and we divide it
into L = 3 non-overlapping areas as given by Table III. We
modify this network by introducing 9 dummy nodes on the
tie-lines linking two different areas. Using the two scenarios
explained in Section VI-A, we plot in Fig. 4a and Fig. 4b
the results of applying the Distributed Production-Sharing

TABLE III
IEEE−30 BUS TEST SYSTEM DIVISION INTO 3 NON-OVERLAPPING AREAS

Area Nodes Number of nodes

A1 1,2,5-11,17,20,28 12

A2 3,4,12-19 9

A3 21-27,29,30 9

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Iteration k

N
M

S
D

 Centralized w/ ADMM

Overlapping, Asynchronous Distributed ADMM, one area off

Non−overlapping, Asynchronous Distributed ADMM, one area off

Overlapping, Asynchronous Distributed ADMM, two areas off

Non−overlapping, Asynchronous Distributed ADMM, two areas off

(a) Normalized mean squared deviation

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Iteration k

M
e

a
n

 g
lo

b
a

l
p

o
w

e
r

d
e

fi
c
ie

n
c
y

 Centralized w/ ADMM
Overlapping, Asynchronous Distributed ADMM, one area off
Non−overlapping, Asynchronous Distributed ADMM, one area off
Overlapping, Asynchronous Distributed ADMM, two areas off
Non−overlapping, Asynchronous Distributed ADMM, two areas off

(b) Mean global power deficiency

Fig. 4. Performance of the asynchronous distributed Production-Sharing w/
ADMM algorithm when the IEEE−30 bus system is divided to 3 overlapping
and non-overlapping areas.

TABLE IV
IEEE−118 BUS TEST SYSTEM DIVISION INTO 3 OVERLAPPING AREAS

Area Nodes Number of nodes

A1 1-34,38,113-115,117 39

A2 24,33-75,116 45

A3 68,69,75-112,118 41

algorithm w/ADMM on this modified network. As observed
from the plots, the convergence is slightly slower when the

9

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Iteration k

N
M

S
D

Centralized w/ ADMM
Asynchronous Distributed ADMM, two areas off
Asynchronous Distributed ADMM, one area off

(a) Normalized mean squared deviation

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Iteration k

M
e

a
n

 g
lo

b
a

l
p

o
w

e
r

d
e

fi
c
ie

n
c
y

Centralized w/ ADMM
Asynchronous Distributed ADMM, two areas off
Asynchronous Distributed ADMM, one area off

(b) Mean global power deficiency

Fig. 5. Performance of the asynchronous distributed ADMM algorithm when
the network of 118 nodes is divided to 3 overlapping areas.

areas do not overlap. This is mainly because the variables
of the shared nodes are being updated more frequently in
the overlapping case. Thus, even in the case of a network
with multiple authorities, an agreement on the minimum of
the global cost can be met using the distributed Production-
Sharing w/ ADMM algorithm.

C. IEEE−118 bus test system

We test our algorithms with larger areas using the
IEEE−118 bus test system [32] as our network. This network
consists of N = 118 buses, 53 generators and 186 branches.
We divide it into 3 overlapping areas as in Table IV and we
implement the two scenarios described in Section VI-A.

We obtain the plots in Fig. 5a and 5b representing the evo-
lution of the NMSD and the global power demand deficiency
(i.e., the residual of the power flow constraints).

These plots illustrate the capability of our algorithms to
solve the DC-OPF problem even when the network becomes
larger. This feature makes them adequate for large power grid
problems.

VII. CONCLUSION

In this paper, we provided distributed algorithms for solving
a Production-Sharing Problem. First, a synchronous version
based on the ADMM is developed. Then, an asynchronous
version is derived; this scheme reduces the number of active
agents to a random subset of the original network, allowing
for random failures or for deactivation of parts of the network
while preserving convergence.

We applied these algorithms to the DC-OPF problem, which
can be cast as a Production-Sharing Problem. Simulations were
carried on the IEEE−30 and IEEE−118 bus test systems.
Multiple scenarios were provided, illustrating the convergence
to the optimal network global state despite the presence of
random failures and/or inactivated areas.

An interesting topic for future work is to study the asyn-
chronous behavior of the algorithm when the network under
study is dynamic. This is the main case when the nodes are
equipped with renewable energy sources and storage devices.
As for the asynchronous behavior of the algorithm, it would
be interesting to study the case where the random coordinate
selection sequence is Markovian and not i.i.d. so to model
more realistic long-term failures.

APPENDIX A
DERIVATION OF THE SYNCHRONOUS ALGORITHM

For every node j ∈ V , let Ij = {i : Aip 6= 0, p = {j, j +
N, j + 2N}} be the set of constraints in which node j is
involved.

The minimization step (9a) can be written as

uk+1 = argmin
xj ,yj ,zj ,
j=1,...,N

N∑
j=1

{
fj(xj) +

2N∑
i=1

{
ρ

2

∥∥∥∥Aijxj + λkα
ρ
− vkα

∥∥∥∥2

+
ρ

2

∥∥∥∥∥Aij+N yj + λkα+N

ρ
− vkα+N

∥∥∥∥∥
2

+
ρ

2

∥∥∥∥∥Aij+2N
zj +

λkα+2N

ρ
− vkα+2N

∥∥∥∥∥
2}}

(15)

where α = α(i, j) = 3N(i − 1) + j is used as a compact
notation to index the values of v and λ corresponding to the
element Aij (similarly α+N and α+2N correspond to Aij+N
and Aij+2N

).
This expression is separable into node basis because the

component corresponding to the update of xj (respectively,
yj and zj), depends only on the previous values calculated
for node j. Thus the iteration on u can be implemented in a
distributed manner where each node j ∈ V update its three
components xj , yj and zj by solving the following update
steps.

xk+1
j =argmin

xj

fj(xj) +
ρ

2

2N∑
i=1

‖Aijxj +
λkα
ρ
− vkα‖2 (16a)

yk+1
j =argmin

yj

ρ

2

2N∑
i=1

‖Aij+N yj +
λkα+N

ρ
− vkα+N

‖2 (16b)

zk+1
j =argmin

zj

ρ

2

2N∑
i=1

‖Aij+2N
zj +

λkα+2N

ρ
− vkα+2N

‖2. (16c)

10

These update steps can be further simplified as follows using
the specific structure of matrix A and using compact notations
β = β(i, j) = 3N(j−1)+j, γ = γ(i, j) = 3N(j+N−1)+j
and ω = ω(i, j) = 3N(i+N − 1) + j.

xk+1
j = argmin

xj

fj(xj) +
ρ

2

N∑
i=1

‖Aijxj +
λkα
ρ
− vkα‖2

+
ρ

2

2N∑
i=N+1

‖λ
k
α

ρ
− vkα‖2

= argmin
xj

fj(xj) +
ρ

2
‖xj +

λkβ
ρ
− vkβ‖2 (17)

yk+1
j =argmin

yj

ρ

2

N∑
i=1

‖Aij+N yj +
λkα+N

ρ
− vkα+N

‖2+

ρ

2

2N∑
i=N+1

‖Aij+N yj +
λkα+N

ρ
− vkα+N

‖2

=argmin
yj

ρ

2

{
‖ − yj +

λkβ+N

ρ
− vkβ+N

‖2+

‖ − yj +
λkγ+N
ρ
− vkγ+N ‖

2

}
(18)

zk+1
j =argmin

zj

ρ

2

2N∑
i=1

‖Aij+2N
zj +

λkα+2N

ρ
− vkα+2N

‖2

=argmin
zj

ρ

2

N∑
i=1

‖Lijzj +
λkω+2N

ρ
− vkω+2N

‖2 (19)

To further simplify equations (17) to (19), we first explicit the
update step (9b).

vk+1 =argmin
v

G(v) +
ρ

2

2N∑
i=1

N∑
j=1

{∥∥∥∥∥Aijxk+1
j − vα +

λα
k

ρ

∥∥∥∥∥
2

+

∥∥∥∥∥Aij+N yk+1
j − vα+N

+
λα+N

k

ρ

∥∥∥∥∥
2

+

∥∥∥∥∥Aij+2N
zk+1
j − vα+2N

+
λα+2N

k

ρ

∥∥∥∥∥
2}

. (20)

This last equation can be divided into a set of three equations

vk+1
α =argmin

vα

ρ

2

∥∥∥∥∥Aijxk+1
j − vα +

λα
k

ρ

∥∥∥∥∥
2

(21a)

vk+1
α+N

=argmin
vα+N

ρ

2

∥∥∥∥∥Aij+N yk+1
j − vα+N

+
λα+N

k

ρ

∥∥∥∥∥
2

(21b)

vk+1
α+2N

=argmin
vα+2N

ρ

2

∥∥∥∥∥Aij+2N
zk+1
j − vα+2N

+
λα+2N

k

ρ

∥∥∥∥∥
2

(21c)

subject to
N∑
j=1

vα + vα+N
+ vα+2N

= d̃i,∀i = 1, . . . , 2N.

In order to solve this set of minimization steps we introduce
the vector of Lagrangian multipliers π = (π1, . . . , π2N)T to

the set of constraints on the entries of v (i.e., to the set of
constraints Ãu = d̃). After some algebra we obtain,

vk+1
α =

1

ρ
(−πk+1

i + λkα) +Aijx
k+1
j (22a)

vk+1
α+N

=
1

ρ
(−πk+1

i + λkα+N
) +Aij+N y

k+1
j (22b)

vk+1
α+2N

=
1

ρ
(−πk+1

i + λkα+2N
) +Aij+2N

zk+1
j . (22c)

We substitute these results into their corresponding constraints
which gives us

πk+1
i =

ρ

d(i)
ri(u

k+1) +
1

d(i)

N∑
j=1

λkα + λkα+N
+ λkα+2N

(23)

where d(i) = 2 + 1i>N
∑N
j′=1 1j′∈Ωi is the degree of the

ith constraint (i.e., the count of its nonzero elements), and
rki =̂[A]iu

k − d̃i is its residual given by

rki =1i<N

N∑
j=1

1i=j(x
k
j − ykj)− di − 1i>N

N∑
j=1

1i=j+N y
k
j +

N∑
j=1

Li−N jz
k
j

where 1i<N = 1 when i < j and 0 otherwise, vice versa for
1i>N .

As for the dual variable update step (9c), we can substitute
it with a set of separated updates of its components λα. Then,
by making use of (22a) we can reduce the computational
complexity of the dual update step (9c) by replacing it with a
set of updates on π. This is proved as follows,

λk+1 = λk + ρ
(
Ãuk+1 − vk+1

)
⇒λk+1

α = λkα + ρ(Aijx
k+1
j − vk+1

α) (24a)

λk+1
α+N

= λkα+N
+ ρ(Aij+N y

k+1
j − vk+1

α+N
) (24b)

λk+1
α+2N

= λkα+2N
+ ρ(Aij+2N

zk+1
j − vk+1

α+2N
) (24c)

Equation (24a) yields

λk+1
α =λkα + ρ(Aijx

k+1
j − 1

ρ
(−πk+1

i +λkα)−Aijxk+1
j)

=πk+1
i , ∀j = 1, . . . , N. (25)

In the same manner we can prove that λk+1
α+N

= πk+1
i and

λk+1
α+2N

= πk+1
i , ∀j = 1, . . . , N. We plug this last result

into (22a) (22b) and (22c),

vk+1
α = Aijx

k+1
j − rk+1

i

d(i)
(26a)

vk+1
α+N = Aij+N y

k+1
j − rk+1

i

d(i)
(26b)

vk+1
α+2N = Aij+2N

zk+1
j − rk+1

i

d(i)
. (26c)

Which can be reduced to

vk+1
α = 1i=j x

k+1
j − rk+1

i

d(i)
(27a)

vk+1
α+N = −1i=j||i−N=j y

k+1
j − rk+1

i

d(i)
(27b)

vk+1
α+2N = 1i>NLi−N j z

k+1
j − rk+1

i

d(i)
. (27c)

11

These last updates correspond to the difference between the
updated primal variables and the corresponding constraints’
residuals. Thus, they can be directly taken into account in the
other steps of the distributed optimization algorithm.

As for (23), after some algebra we obtain

πk+1
i =

ρ

d(i)
rk+1
i + πki . (28)

We adopt a new formulation for the residual r = (r1, r2)
where, for i = 1, . . . , N

rk1,i=̂r
k
i =

N∑
j=1

1i=j(x
k
j − ykj)− di (29)

rk2,i=̂r
k
i+N = −

N∑
j=1

1i=jy
k
j +

N∑
j=1

Lijz
k
j . (30)

In the same manner, we divide π into π1 ∈ RN and π2 ∈
RN , after some algebra we obtain

πk+1
1,i =̂πk+1

i =
ρ

d1(i)
rk+1
1,i + πk1,i (31)

πk+1
2,i =̂πk+1

i+N
=

ρ

d2(i)
rk+1
2,i + πk2,i (32)

Finally, we can rewrite equations (17), (18) and (19) as

xk+1
j =argmin

xj

{
fj(xj) +

ρ

2
‖xj +

πk1,j

ρ
− xkj +

1

d1(j)
(xkj − ykj − dj)‖2

}

yk+1
j =argmin

yj

{
‖ − yj +

πk1,j

ρ
+ ykj +

1

d1(j)
rk1,j‖2

+ ‖ − yj +
πk2,j

ρ
+ ykj +

1

d2(j)
rk2,j‖2

}

zk+1
j =argmin

zj

N∑
i=1

‖Lijzj − Lijzkj +
πk2,i

ρ
+

1

d2(i)
rk2,i‖2.

Solving the update steps on yj and zj leads to the Distributed
Production-Sharing optimization with ADMM listed in Sec-
tion III.

APPENDIX B
NON-OVERLAPPING TO OVERLAPPING ARCHITECTURE

In the original problem, the constraint related to L writes for
all j ∈ V , yj =

∑
i∈V Ljizi. Furthermore, if j belongs to area

`, this can be rewritten yj =
∑
i∈A` Ljizi +

∑
k∈V \A` Ljkzk

where the second term represents the coupling relations we
want to eliminate thanks to the addition of dummy nodes.

In the new problem, the constraint related to
◦
L is written

for all nodes j ∈ A` as
◦
yj =

∑
i∈A`\j

◦
Lji
◦
zi+

∑
d∼j

◦
Ljd
◦
zd+

◦
Ljj
◦
zj . For all i, j ∈ V belonging to the same area, we have

◦
Lji = Lji.

Noticing that
◦
yd = 0 for all d ∈

•
V , we get that 0 =

◦
Ldd

◦
zd+

◦
Ldi
◦
zi +

◦
Ldj
◦
zj =

◦
Ldd

◦
zd +

◦
Lid
◦
zi +

◦
Ljd
◦
zj , where i and j are

the two original nodes between which the dummy node was
inserted (and the second equality is due to the fact that L
needs to remain symmetric). Node d serves as a dummy node

which does not generate or consume, thus
◦
Ldj(

◦
zj −

◦
zd) +

◦
Ldi(

◦
zi −

◦
zd) = 0. We assume the symmetry on the edges

linking d to i and j, thus
◦
Lid =

◦
Ljd =

◦
Ldi =

◦
Ldj . We obtain

◦
Ldd = −2

◦
Ldj . We can rewrite

◦
yj as

◦
yj =

∑
k∈A`\j

◦
Ljk
◦
zk +

(
◦
Ljj − 1

2

∑
d∼j

◦
Ljd)

◦
zj − 1

2

∑
i∼j,d∼j

◦
Ldj
◦
zi.

Comparing this expression of
◦
yj with the previous one, we

obtain,
◦
Ljj = Ljj +

1

2

∑
d∼j

◦
Ljd,

◦
Ljd = −2Lij ,

◦
Ldd = 4Lij .

ACKNOWLEDGMENT

This work has been supported by the ERC Starting Grant
305123 MORE (Advanced Mathematical Tools for Complex
Network Engineering). The work of F. Iutzeler is also sup-
ported by the IAP DYSCO Network (Dynamical Systems,
Control, and Optimization).

REFERENCES

[1] A. Abboud, R. Couillet, M. Debbah, and H. Siguerdidjane, “Asyn-
chronous alternating direction method of multipliers applied to the
direct-current optimal power flow problem,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[2] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power system analysis
and design. CengageBrain. com, 2011.

[3] G. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollen-
berg, “Monitoring and optimization for power grids: A signal processing
perspective,” IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 107–
128, 2013.

[4] S. Bolognani and S. Zampieri, “A distributed control strategy for
reactive power compensation in smart microgrids,” IEEE Transactions
on Automatic Control, vol. 58, no. 11, pp. 2818–2833, 2013.

[5] A. Lam, A. Dominguez-Garcia, B. Zhang, and D. Tse, “Optimal
distributed voltage regulation in power distribution networks,” Tech.
Rep., 2012.

[6] L. Gan and S. H. Low, “Optimal power flow in direct current networks,”
in IEEE Conference on Decision and Control (CDC), 2013.

[7] M. B. Cain, R. P. Oneill, and A. Castillo, “History of optimal power
flow and formulations,” 2012.

[8] A. J. Wood and B. F. Wollenberg, Power generation, operation, and
control. John Wiley & Sons, 2012.

[9] J. Sun and L. Tesfatsion, “DC optimal power flow formulation and
solution using QuadProgJ,” in IEEE Power and Energy Society General
Meeting, 2007.

[10] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” IEEE
Transactions on Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[11] B. Stott, “Review of load-flow calculation methods,” Proceedings of the
IEEE, vol. 62, no. 7, pp. 916–929, 1974.

[12] J. M. Guerrero, P. C. Loh, T.-L. Lee, and M. Chandorkar, “Advanced
control architectures for intelligent microgrids? Part II: Power quality,
energy storage, and AC/DC microgrids,” IEEE Transactions on Indus-
trial Electronics, vol. 60, no. 4, pp. 1263–1270, 2013.

[13] S. Massoud Amin and B. F. Wollenberg, “Toward a smart grid: power
delivery for the 21st century,” IEEE Power and Energy Magazine, vol. 3,
no. 5, pp. 34–41, 2005.

[14] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy
management via proximal message passing,” Foundations and Trends in
Optimization, vol. 1, no. 2, pp. 73–126, 2014.

[15] B. H. Kim and R. Baldick, “Coarse-grained distributed optimal power
flow,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 932–939,
1997.

[16] A. J. Conejo, F. J. Nogales, and F. J. Prieto, “A decomposition procedure
based on approximate newton directions,” Mathematical programming,
vol. 93, no. 3, pp. 495–515, 2002.

[17] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation.” DTIC Document, Tech. Rep., 1984.

[18] J. N. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

12

[19] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
2012.

[20] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[21] F. Zhuang and F. D. Galiana, “Towards a more rigorous and practical
unit commitment by lagrangian relaxation,” IEEE Transactions on Power
Systems, vol. 3, no. 2, pp. 763–773, 1988.

[22] D. G. Luenberger, Linear and nonlinear programming. Springer, 2003.
[23] A. Losi and M. Russo, “On the application of the auxiliary problem

principle,” Journal of optimization theory and applications, vol. 117,
no. 2, pp. 377–396, 2003.

[24] D. Kalyanmoy, Optimization for engineering design: Algorithms and
examples. PHI Learning Pvt. Ltd., 2004.

[25] S. Paudyal, C. A. Canizares, and K. Bhattacharya, “Three-phase dis-
tribution opf in smart grids: Optimality versus computational burden,”
in IEEE International Conference and Exhibition on Innovative Smart
Grid Technologies (ISGT Europe), 2011.

[26] H. Kung, “Synchronized and asynchronous parallel algorithms for
multiprocessors,” DTIC Document, Tech. Rep., 1976.

[27] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,” Mathematical Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[29] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous
Distributed Optimization using a Randomized Alternating Direction
Method of Multipliers,” IEEE Conference on Decision and Control
(CDC), 2013.

[30] A. Abboud, E. Bastug, K. Hamidouche, and M. Debbah, “Distributed
caching in 5g networks: An alternating direction method of multipliers
approach,” Online http://goo. gl/vBdhV7, 2015.

[31] A. J. Conejo and J. A. Aguado, “Multi-area coordinated decentralized
DC optimal power flow,” IEEE Transactions on Power Systems, vol. 13,
no. 4, pp. 1272–1278, 1998.

[32] IEEE power systems: http://www.ee.washington.edu/research/pstca.
[33] A. Gómez-Expósito, A. J. Conejo, and C. Cañizares, Electric energy

systems: analysis and operation. CRC Press, 2008.
[34] L. Powell, Power System Load Flow Analysis (Professional Engineer-

ing). McGraw-Hill Professional, 2004.
[35] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad

hoc wsns with noisy linkspart i: Distributed estimation of deterministic
signals,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp.
350–364, 2008.

[36] H. Bauschke and P. Combettes, Convex analysis and monotone operator
theory in Hilbert spaces. Springer, 2011.

[37] W. Deng, M.-J. Lai, and W. Yin, “On the o (1/k) convergence and
parallelization of the alternating direction method of multipliers,” arXiv
preprint arXiv:1312.3040, 2013.

[38] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence
rate of a distributed alternating direction method of multipliers,” arXiv
preprint arXiv:1312.1085, 2013.

[39] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers
(admm): quadratic problems,” Automatic Control, IEEE Transactions on,
vol. 60, no. 3, pp. 644–658, 2015.

[40] P. Bianchi, W. Hachem, and F. Iutzeler, “A stochastic coordinate de-
scent primal-dual algorithm and applications to large-scale composite
optimization,” arXiv preprint arXiv:1407.0898, 2014.

[41] E. Wei and A. Ozdaglar, “On the o (1= k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Global Con-
ference on Signal and Information Processing (GlobalSIP), 2013 IEEE.
IEEE, 2013, pp. 551–554.

	Introduction
	Problem formulation
	A Production-Sharing Problem blueon a Graph
	DC-OPF as a Production-Sharing Problem on a Graph

	Distributed Production-Sharing
	Distributed Formulation of the Problem
	Application of the ADMM to the Distributed Production-Sharing Problem

	Randomized Distributed Production-Sharing
	Theoretical foundations
	Randomized algorithm

	Extension to the non-overlapping areas case
	Implementations and Simulations
	Overlapping areas
	Non-overlapping areas
	IEEE-118 bus test system

	Conclusion
	Appendix A: Derivation of the synchronous algorithm
	Appendix B: Non-overlapping to overlapping architecture
	References

