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Abstract—This paper aims at introducing an optimal design
methodology for the Stewart Platform robot controlled by a
PD position controller. This optimal design method intends
to maximize the positioning accuracy by using metaheuristic
optimization methods. The structure design variables of the
mechanism combined with the gains of the controller are the
structure-control design variables. The structure-control design
variables are considered simultaneously in the optimal design
method. A sensitivity analysis is performed to evaluate the effect
of the structure-control design variables, especially of struc-
ture variables, on the positioning accuracy. Simulation results
demonstrate that the proposed design procedure is effective to
increase the position accuracy, as well as the closed loop dynamics
performance of the robot is improved.

I. INTRODUCTION

The optimal design of parallel robots aims at determining
a set of design variables to satisfy an optimal performance
criterion. Many works have addressed the optimal design
of parallel robots by using different approaches in order to
optimize a desired performance criterion.

The growing number of new applications of parallel robots
demands to increase the positioning accuracy. The structure
design of the mechanism and the design of the control system
have been addressed separately. The structure design of the
mechanism has been figured up to obtain high kinematic
performance, some works have addressed this problem by
maximizing kinematic accuracy [1]–[3]. The design of the
controller intends to improve the dynamic behavior to perform
a specific task, thus, some works have applied advanced
position controllers to enhance the positioning accuracy [4]–
[6].

The mechatronic design has been used as an alternative to
optimal design of parallel robots, this methodology takes into
account structural-control design variables of the system simul-
taneously during the design procedure. Mechatronic design has
been applied to parallel robots [7]–[9]. Villareal-Cervantes et
al. (2009) [7] proposed structure-control mechatronic design
of the planar parallel robot. Silva et al. (2013) [8] figured up
the optimal design of a pick-and-place robotic system by using
mechatronic design concepts. Villareal-Cervantes et al. (2013)
[9] developed a robust formulation for the mechatronic design
of planar parallel robot. All the aforementioned works are
concerned with planar parallel robots. Nevertheless, some ap-
plications require high-performance positioning systems with
spatial parallel mechanism.

In this contribution, we propose an optimization of
structure-control design variables simultaneously to maximize
position tracking accuracy of the Stewart-Gough robot through
the design method. A sensitivity analysis, based on vari-
ance decomposition, is performed to quantify the effect of
structure and control variables on position tracking accuracy.
The optimization problem is solved by using metaheuristic
optimization methods.

The remain of this paper is organized in several sec-
tions. Section II presents the robot modeling to introduce the
structure-control design variables and the objective function.
In section III, a sensitivity analysis method is presented to
quantify the effect of the design variables on the objective
function. In section IV, the optimization problem to solve the
optimal design is presented. Section V gives the simulation
results. Finally, section VI enumerates some conclusions.

II. ROBOT MODELING

The 6-UPS Stewart-Gough manipulator has six identical
legs connecting the fixed base to the movable platform by
universal joints denoted by U at points Bi and spherical joints
denoted by S at points Pi (for i = 1, . . . , 6), respectively. Both
the universal and the spherical joints are passive. Each leg has
an upper and a lower member connected by an active prismatic
joint denoted by P that extend and retract the leg. The movable
platform has six degrees of freedom, three translational and
three rotational motions. Fig. 1 shows the Stewart-Gough
manipulator.

A. Structural modeling

Two coordinate frames {P} and {B} are attached to
the movable and fixed base respectively. The vector bi =
[bix biy biz]

T
describes the position of the reference point

Bi with respect to the frame {B}; In the same way, the vector

pi = [pix piy piz]
T

describes the position of the reference
point Pi with respect to the reference frame {P} (see Fig. 2).

bi = [rb cos(ψi) rb sin(ψi) 0] = [bix biy biz]
pi = [rp cos(Ψi) rp sin(Ψi) 0] = [pix piy piz] (1)



Fig. 1. Stewart-Gough robot.

where

ψi =
iπ

3
− φb

2
Ψi =

iπ

3
− φp

2
i = 1, 3, 5

ψi = ψi−1 + φb Ψi = Ψi−1 + φp i = 2, 4, 6

Fig. 2. Fixed base and movable platform.

The Stewart-Gough manipulator geometry was defined
with two coplanar set of vectors: b and p; b corresponds to
the fixed base and p to the movable platform [1]. According to
Eq. (1), the Stewart-Gough mechanism can be defined by five
structure design variables: rb is the radius of the fixed base, rp
is the radius of the movable platform, φb is the spacing angle
of the vectors bi, φp is the spacing angle of the vectors pi.
Finally, s sets the length of the lower member as function of
total length of the leg, thus the length of the upper member
is defined as hdi

= sili and the length of the lower member
is hui

= (1− si)li. Consequently, the structure of mechanism
can be parametrized by the vector λs ∈ R

5×1.

λs = [rp φp rb φb s]T (2)

B. Dynamic Model

The dynamic equations for the 6-UPS Stewart-Gough
manipulator were derived in closed form through the Newton-
Euler approach by [4].

J−1M(q)J−T q̈ + J−1[η(q, q̇)−M(q)J−T u] = f (3)

where,

• f = [f1 . . . f6]
T ∈ R

6×1 is the actuator force
vector.

• J =
[

s1 . . . s6

p1 × s1 . . . p6 × s6

]
∈ R

6×6 is the Jaco-

bian matrix. si is the unit vector along each leg, for
i = 1, . . . , 6 (Fig. 1).

• q = [l1 . . . l6]
T ∈ R

6×1 is the leg length vector.

• q̈ =
[
l̈1 . . . l̈6

]T ∈ R
6×1 is the leg acceleration

vector.

• M = Mplat +
∑6

i=1 Mi ∈ R
6×6 is the total inertia

matrix which considers the inertia of the legs and the
movable platform.

• η = ηplat +
∑6

i=1 ηi ∈ R
6×1 is the Coriolis,

gravitation, and centrifuge force vector of the movable
platform and each leg.

• u ∈ R
6×1 is an expression related to the acceleration

of the legs.

Additional details of the formulation of the dynamic equations
can be obtained in [4]. Eq. (3) can be written in a simplified
way:

A(q)q̈ + h(q, q̇) = f (4)

where A(q) = J−1M(q)J−T and h(q, q̇) = J−1[η(q, q̇) −
M(q)J−T u].

The inertial properties of the movable platform and the six
legs are defined as function of the structure variables of Eq. (2).
The geometric shape of the rigid bodies of the Stewart-Gough
mechanism is defined as cylinders (see Fig. 1). The inertia
matrix and center of mass are defined based on the structure
variables λs and the density of each rigid body. The center
of mass of the movable platform is attached to the coordinate
frame {P}. The inertia matrix of the lower and upper member
of the legs is defined with respect to the coordinate frames {U}
and {D} and the centers of mass are ru = [−hu 0 0]T and

rd = [−hd 0 0]T , respectively. The following parameters
should be defined in order to describe the inertia of all rigid
bodies as function of the structural parameters λs: thickness
of the movable platform hp, radius of the upper ru and lower
rl members of the legs, density of the material of the movable
platform ρp and legs ρl.

C. Tracking position control

Six independent joint space PD controllers are used to track
a desired trajectory (Fig. 3).

Fig. 3. Joint space PD controller of Stewart-Gough robot.

Assuming that the desired trajectory for each actuator is
specified with the desired joint space position qd and velocity
q̇d, the control law is:

fc = KP (qd − q) + KD(q̇d − q̇) (5)



where, KP = diag(kpi
, . . . , kpi

), KD = diag(kdi
, ..., kdi

),
for i = 1, . . . , 6. Assuming that the proportional and derivative
gains of the six PD controllers are equal, the tracking position
controller can be parametrized by the vector λc ∈ R

2×1.

λc = [kp kd]
T

(6)

Several methods to tune the PD controllers of robot manipu-
lators have concluded that positive gains stabilize robot [12].

The closed-loop dynamics of the robot with the PD con-
troller is formulated by using the state space formalism.

ẋ = f(x,xd,λ, t) =
[

q̇
−A−1(q)h(q, q̇)

]
+

[
0

−A−1(q)

]
fc
(7)

with ẋ = [q̇ q̈]T ∈ R
12×1, xd =

[
qd q̇d

]T ∈ R
12×1.

and λ ∈ R
7×1 is the vector of the structure-control design

variables.

λ = [λs λc]
T = [rp φp rb φb s kp kd]

T
(8)

As seen in Eq. (7), the closed loop dynamics of the Stewart-
Gough robot depends on the structure-control design variables.

D. Objective function

Performance criteria based on Jacobian matrix have been
widely used in the optimal design to improve the dexterity
and accuracy of serial robots [13]. By using Jacobian matrix
analysis it is possible to determine the singularity loci of
Stewart-Gough platform. The 6-UPS Stewart-Gough platform
is a spatial mechanism. The conventional Jacobian matrix
expresses a coupled relation of both translational and rotational
motions. The elements of the conventional Jacobian matrix
have nonhomogenous physical units. Therefore, the use of
performance indices such as the condition number of the
Jacobian matrix may lead to a lack of physical meaning [2].

kinetostatic performance indices indicate when the parallel
robot is closed to a singular configuration as an alternative
to indices based on the Jacobian matrix [14]. The singularity
zones in the workspace can be characterized with the aid of
kinetostatic performance indices. When the parallel manipula-
tor is close to the singularity zone, they lose their stiffness and
their quality of motion transmission, this affects the position
accuracy of the robot.

Furthermore, it has been demonstrated that the motion
through such singularity loci is feasible and the singularities
can also be examined based on the dynamics of the robot.
Nevertheless, at this specific condition during motion the
position accuracy decreases significantly [15]. Consequently,
performance criterion based on the closed-loop dynamics are
suitable for the optimal design of the Stewart-Gough robot. The
tracking position error of PD position controller in Eq. (5) is
selected since the objective of this contribution is to improve
the position tracking accuracy of the robot.

Integrating Eq. (7) over an imposed trajectory xd leads to
the actual closed loop position of the robot. Thus, the tracking
position error of the six legs is e(λ)) = (qd−q) ∈ R

6×1. The
objective function to be minimized J is the total tracking error
evaluated by means of the Root Mean Square Error (RMSE)
of the six legs:

J = RMSE(e(λ)) =
1
6

6∑
i=1

√
eT

i ei (9)

III. SENSITIVITY ANALYSIS

The previous sections presented the robot modeling, the
parametrization of the structure-control design variables and
the objective function for the optimal design. It would be inter-
esting to evaluate the effect of each variable independently on
the variation of the position accuracy of the robot. Additionally,
the sensitivity analysis allows to understand the effect of each
design variable within the search space to meet the optimum
criterion.

The sensitivity analysis aims at determining the influence
of each structure-control variable of Eq. (8) on the dynamic
response. Consequently, this analysis allows to indicate the
degree of influence of each variable on the variation of the
dynamic response, specifically on the position accuracy of the
robot.

Among the various methods used to analyze the sensi-
tivity, the variance-based sensitivity analysis decomposes the
variance of the output of the model into fractions which
are associated with the variation of each variable [16]. This
method allows to quantify the effect of the variation of an
individual variable on the dynamic response of the robot
by means of a probabilistic framework based on the Monte
Carlo Simulation method. Additionally, this method copes with
nonlinear models, which is suitable to quantify the sensitivity
of the robot.

Considering the model under the form y = f(w), where

y a scalar output and w = [w1 . . . wk]T ∈ R
k×1 is a

vector of k design variables. These variables are considered
as independently and uniformly distributed within the unit
hypercube, i.e., wi ∈ [0, 1] for i = 1, . . . , k. f(w) is
decomposed:

y = f(w) = f0 +
k∑

i=1

fi(wi) +
k∑

i<j

fij(wi, wj) + · · ·+ f12...,k

(10)

The decomposition of the variance expression is [17]:

V (y) =
k∑

i=1

Vi +
k∑

i<j

Vij + · · ·+ V12...k (11)

where, Vi = Vwi
(Ew∼i

(y|wi)), Vij = Vwij
(Ew∼ij

(y|wij)),
and so on. A variance based first order effect for a generic
design variable wi is:

Vwi(Ew∼i(y|wi)) (12)

where wi is the i-th variable and w∼i denotes the matrix of
all variable except wi. The meaning of the inner expectation
operation is that the mean of y is taken over all possible
values w∼i while keeping wi fixed. The associated sensitivity
measure denominated first-order sensitivity index is defined as:

si =
Vwi

(Ew∼i
(y|wi))

V (y)
(13)



si states the effect of the variation of wi only, however
divided by the variation in other variables. Nevertheless, the
total effect-index sTi measures the contribution to the output
variance of wi, including all the effects of its interactions with
any other input variable.

sTi =
Ew∼i

(Vwi
(y|w∼i))

V (y)
= 1− Vw∼i

(Ewi
(y|w∼i))

V (y)
(14)

The Monte Carlo Simulation combined with the Latin Hyper-
cube sampling [18] is used to calculate the total-effect indices.
The total number of model evaluation to compute the total-
sensitivity index is N = ns(k + 1), where ns is the number
of the Monte Carlo samples [16].

IV. OPTIMIZATION PROBLEM

In this contribution, the optimal design aims at selecting
the optimal structure-control design variables according to
dynamic and geometric constraints. The optimization prob-
lem is solved to minimize position tracking error over a
required workspace trajectory. For practical purposes, a re-
quired workspace trajectory is defined. The related joint-space
position reference trajectory qd is obtained by means of the
inverse kinematic model. The joint-space velocity reference q̇d

is proportional to the workspace velocity as stated by [4].

Thus, the optimization problem to select the structure-
control design variables λ of the parallel robot is given by

min
λ
{J = RMSE(e(λ))}

subject to

rp, rb ∈ [rmin, rmax]
φp ∈ [φminp

, φmaxp
], φb ∈ [φminb

, φmaxb
]

s ∈ [smin, smax]
kp ∈ [kpmin , kpmax ], kv ∈ [kvmin , kvmax ]
fc ∈ [fminc

, fmaxc
]

∀q ∈ qd,∀q̇ ∈ q̇d (15)

Metaheuristic algorithms for optimization have been success-
fully applied to nonlinear and constraint problems in order
to find the global minima. Thus, this optimization problem
is solved by using Genetic Algorithm [10] and Differential
Evolution [11].

V. SIMULATION RESULTS

This section presents the results of the sensitivity anal-
ysis and the optimal design. For the proposed optimization
problem, the sensitivity analysis helps to evaluate the effect of
the design variables within the search space on the objective
function.

As presented in section II-B the model parameters of
Table I should be imposed to define completely the parameters
of dynamic equation of the robot as function the structure-
control design variables λ. The simulations were implemented
using MATLAB.

TABLE I. MODEL PARAMETERS.

Parameter Value

ρp 7874kg/m3

ρl 2697kg/m3

ru 0.03m

rd 0.03m

A. Sensitivity analysis

The sensitivity analysis was performed based on the model
of the controlled Stewart-Gough robot presented on section II.
This analysis is performed over an imposed circular workspace
trajectory (see Fig. 5), nevertheless any other trajectory could
be considered. The total effect-indices of the structure-control
design variables λ of Eq. (8) are computed by using the
variance-based sensitive analysis presented on section III.

In order to perform the sensitivity analysis, each design
variable of λ was modeled as a normal distributed random
variable. The mean λi and standard deviation σi were selected
in order to establish the dispersion of each random variable (in
Table II) within the search space of the optimization problem
defined in Eq. (16).

TABLE II. PARAMETERS OF NORMAL RANDOM VARIABLES.

rp[m] φp[o] rb[m] φb[
o] s kp kv

λi 0.4 90 0.4 30 0.5 80000 400

σi 0.0667 10 0.0667 10 0.0667 26667 133.3

The number of computation of the Monte Carlo samples
required to perform the sensitivity analysis was fixed at ns=100
to ensure an accurate solution. Considering k=7 variables, the
total number of model evaluations is N=800.

The total effect-indices of the design variables λ for
the circular trajectory are showed in Fig. 4. As seen, the
position accuracy is more sensitive to the proportional gain
kp of PD position controller than the other variables. This
is expected since the position error is proportional to this
gain. However, among the structure variables the radius of the
movable platform rp exhibits a significant sensitivity.
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In order to determine the sensitivity of the structure vari-
ables for the same circular trajectory of the previous analysis,
the control variables are considered as constant. The constant



values of control are their means kp and kv of Table II. Fig-
ure 5 shows the circular reference trajectory and the trajectories
obtained by using the structure variables of the Monte Carlo
samples. This indicates that, even with constant controller
gains the position accuracy is very sensitive to the structural
design variables.

�����
�

����
����

����

�����

�

����

����	

���


���
	

���

����	

����

����	

�

x[m]y [m]
�

z
[m

]

R eference

Actaual tra jectory

Fig. 5. Sensitivity analysis: reference and actual trajectory.

The total effect-indices of structure design variables for
the circular trajectory are showed in Fig. 6. This demonstrates
that the position accuracy is high sensitive to the radius of the
movable platform as seen in the sensitivity analysis of Fig. 4.
The radius of the fixed base, the spacing angles of the movable
platform and fixed base show a considerable sensitivity in view
of the fact that the Jacobian matrix depends on these design
variables. The length of the upper and lower members of the
legs is slightest sensitive, hence the variations in the length of
member have minor effects on position accuracy.
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B. Optimization

The structure-control design variables of vector λ of Eq. (8)
are optimized for obtaining the minimum RMS error over an
imposed workspace trajectory (see Fig. 5), i.e. to maximize the
position accuracy. The constraints of the design variables are
limited by manufacturing tolerances and the maximum power

of the actuators. The optimization problem is formulated as
follows:

min
λ
{J = RMSE(e(λ))}

subject to

rp, rb ∈ [0.2m, 0.6m]
φp ∈ [60o, 120o], φb ∈ [0o, 60o]
s ∈ [0.3, 0.7]
kp ∈ [0, 160000], kv ∈ [0, 800]
fc ∈ [−100N, 100N]
∀q ∈ qd,∀q̇ ∈ q̇d (16)

After some preliminary simulations, the tuning parameters
used in the GA and DE optimization algorithm are presented
in Table III.

TABLE III. PARAMETERS USED IN THE GA AND DE ALGORITHMS.

Parameter GA DE

Max. Generation number 100 100

Population size 70 70

Crossover probability 0.5 0.5

Perturbation rate - 0.8

Strategy - DE/rand/1/bin

Mutation rate 0.08 -

In order to evaluate the solution of the optimization prob-
lem of Eq. (16), the evolution of the objective function along
the generations using the GA and DE optimization algorithm
is presented in Fig. 7. When GA optimization method is used,
the objective function converges after 56 generations and its
value is RMSE(e)=0.1530×10−3m, the objective function
was computed 2925 times among which 437 exhibited a
singularity condition. When DE optimization method is used,
the objective function converges after 51 generations and its
value is RMSE(e)=0.1451×10−3m, the objective function
was computed 3543 times among which 1385 exhibited a
singularity condition.

0 10 20 30 40 50
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

 

X: 51
Y: 0.1451

Generations

J
o
p
t[m

m
]

GA
DE

Fig. 7. Objective function evolution using GA and DE.

As seen in Table IV, the optimization results are similar
using both optimization algorithms. Even though, the objective



function was computed fewer times by using GA optimization,
however, the solution obtained using DE algorithm exhibits a
better solution by using the tuning parameters of Table III.

TABLE IV. OPTIMIZATION RESULTS, DESIGN VARIABLES

rp[m] φp[o] rb[m] φb[
o] s kp kv

GA 0.2468 103.372 0.3232 42.2860 0.7000 160000 62

DE 0.2379 95.3968 0.2918 32.2675 0.6962 159610 250

The proportional gain of the controller reached its maxi-
mum feasible value. This is expected since magnitude of this
variable is proportional to the position accuracy. The structure
design variables over the circular reference trajectory were
selected by the optimization algorithms to avoid configurations
closed to singularity zones taking into account the closed-loop
dynamics of the robot. Consequently, the optimized structure
variables minimize the degradation of position accuracy during
the motion.

An additional simulation was considered in order to eval-
uate the position accuracy with the design variables obtained
by DE algorithm (Table IV). The circular reference trajectory
of the Fig. 5 is considered to assess the workspace error
obtained with the initial λ0 and optimized λopt set of structure-
control design variables. As expected, Fig. 8 shows that the
workspace error is minimized by using the optimal structure-
control design variables obtained by DE optimization.
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VI. CONCLUSION

This contribution presented an optimal design procedure,
minimizing the tracking accuracy over an imposed trajectory,
to find simultaneously the structure-control design variables of
a Stewart-Gough robot. This methodology allows to find the
optimal performance of the robot considering dynamic and
kinematic properties simultaneously.

The sensitivity analysis demonstrated the great influence of
structure variables of the mechanism on the position accuracy
of robot. Metaheuristic optimization algorithms has shown to
be a robust optimization tool to find optimal structure-control
design variables for this optimal design problem.
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