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Abstract: This paper aims at analyzing the effect of uncertain parameters on a 6-DOF fully
parallel robot by using a stochastic approach. The uncertainties of the parameters are considered
as small variations with respect to their nominal values modeled by means of random variables.
The dynamics of the robot under uncertain structural and dynamic parameters including a
computed torque position controller is analyzed. Additionally, a sensitivity analysis allows to
determine the degree of influence of each uncertain parameter on the response of the robot.
Numerical simulations illustrate the proposed methodology so that the effect of uncertain
parameters on the dynamic performance of the robot is properly described.
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1. INTRODUCTION

Parallel robots are unavoidably subject to uncertainties.
The main sources of uncertainties include various aspects
such as manufacturing limitations and assembling toler-
ances of the mechanical parts, noise in the sensors, and
unmodeled dynamics in the control system. Furthermore,
in several applications, the robots operate with different
values of payload to perform a specific task (e.g. pick and
place robots).

Despite uncertainties, the parallel robots should be able to
execute diverse tasks with high accuracy and repeatability
which requires high reliability (e.g. robots used in medical
applications). Therefore it is necessary to analyze the
effects of uncertain parameters on the dynamic response in
order to observe the behavior of the parallel robots under
these conditions.

Several methodologies have been used to analyze uncer-
tainties in robot manipulators. The stochastic approach
has been widely applied to study the effects of uncertain
parameters on the behavior of robot manipulators. In
agreement with this approach, the effect of tolerances asso-
ciated with the manipulator parameters on the reliability
was studied (Kim et al., 2010; Pandey and Zhang, 2012).
Moreover, Polynomial Chaos Theory was applied to study
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the effect of uncertain inertia and payload on SCARA
robot dynamics (Voglewede et al., 2009).

Interval analysis has been also applied to study the un-
certainties aiming at ensuring the reliability of robot ma-
nipulators (Merlet, 2009). Additionally, an approach based
on fuzzy dynamic analysis has been applied to study un-
certain parameters in a robot manipulator (Lara-Molina
et al., 2014a). The aforementioned approaches are suitable
when the stochastic process that governs the uncertainty
is unknown; thus uncertain parameters are modeled by
means of fuzzy variables.

According with the previous discussion, it is necessary
to analyze the dynamic response of parallel robots under
uncertain parameters, i.e., to analyze how the robot dy-
namics is affected by uncertain dynamic parameters, and
thus to quantify these effects into the dynamic response
of the robot by using straightforward numerical methods.
Furthermore, it is necessary to evaluate the effect of un-
certain parameters in terms of position accuracy of the
parallel robots.

In this contribution the dynamics of a 6-DOF fully paral-
lel robot with random uncertain parameters is analyzed.
The simulation of the robot with uncertain parameters
is performed by means of a numerical method based on
the Monte Carlo simulation, hence, the position accuracy
of the parallel robot controlled by PID-computed torque
is analyzed under uncertain parameters. Additionally, the
sensitivity in terms of the position accuracy of the un-
certain parameters is analyzed. This paper is organized



in three sections. Section 2 introduces the robot manipu-
lator model and the tracking position control scheme. In
section 3, the stochastic uncertainty analysis is presented.
Section 4 presents the sensitivity analysis. The numerical
results are shown in section 5. Finally, the conclusions and
further work are outlined.

2. ROBOT MODELING

The 6-UPS Stewart-Gough manipulator has six identical
legs connecting the fixed base to the movable platform by
universal joints denoted by U at points Bi and spherical
joints denoted by S at points Pi (for i = 1, . . . , 6),
respectively. Both the universal and the spherical joints
are passive. Each leg has an upper and a lower member
connected by an active prismatic joint denoted by P that
extends and retracts the leg. The movable platform has six
degrees of freedom, three translational and three rotational
motions. Fig. 1 shows the Stewart-Gough manipulator.

Fig. 1. Stewart-Gough robot.

2.1 Structural modeling

Two coordinate frames {P} and {B} are attached to the
movable and fixed base respectively. The vector bi =
[bix biy biz]T describes the position of the reference point
Bi with respect to the frame {B}; In the same way, the
vector pi = [pix piy piz]T describes the position of the
reference point Pi with respect to the reference frame {P}
(see Fig. 2).

bi = [rb cos(ψi) rb sin(ψi) 0] = [bix biy biz]
pi = [rp cos(Ψi) rp sin(Ψi) 0] = [pix piy piz] (1)

where

ψi =
iπ

3
− φb

2
Ψi =

iπ

3
− φp

2
i = 1, 3, 5

ψi = ψi−1 + φb Ψi = Ψi−1 + φp i = 2, 4, 6

The Stewart-Gough manipulator geometry was defined
with two coplanar sets of vectors: b and p; b corresponds
to the fixed base and p to the movable platform (Lara-
Molina et al., 2011). According to Eq. (1), the Stewart-
Gough mechanism can be defined by five structure design
parameters: rb is the radius of the fixed base, rp is the
radius of the movable platform, φb is the spacing angle of

Fig. 2. Fixed base and movable platform.

the vectors bi, φp is the spacing angle of the vectors pi.
Finally, s sets the length of the lower member as function
of total length of the leg, thus the length of the upper
member is defined as hdi

= s(li) and the length of the lower
member is hui

= (1− s)li. Consequently, the structure of
mechanism can be parametrized by the vector λs ∈ R5×1.

λs = [rp φp rb φb s]
T (2)

2.2 Dynamic Model

The dynamic equations for the 6-UPS Stewart-Gough
manipulator were derived in closed form through the
Newton-Euler approach by (Dasgupta and Mruthyunjaya,
1998).

f = J−1M(q)J−T q̈ + J−1[η(q, q̇)−M(q)J−T u] (3)
where,

• f = [f1 . . . f6]T ∈ R6×1 is the actuator force vector.

• J =
[

s1 . . . s6

p1 × s1 . . . p6 × s6

]
∈ R6×6 is the Jacobian

matrix. si is the unit vector along each leg, for i =
1, . . . , 6 (Fig. 1).
• q = [l1 . . . l6]T ∈ R6×1 is the leg length vector.
• q̈ =

[
l̈1 . . . l̈6

]T ∈ R6×1 is the leg acceleration vector.
• M = Mp +

∑6
i=1 Mli ∈ R6×6 is the total inertia

matrix which considers the inertia of the legs and the
movable platform. This term includes the mass of the
platform mp.
• η = ηplat +

∑6
i=1 ηi ∈ R6×1 is the Coriolis, gravita-

tion, centrifuge force vector of the movable platform
and each leg, and viscous friction forces at the joints
for the 6-UPS where cu, cp, cs are the coefficients
of viscous friction in the universal, prismatic and
spherical joints, respectively.
• u ∈ R6×1 is an expression related to the acceleration

of the legs.

Additional details of the formulation of the dynamic equa-
tions can be obtained in (Dasgupta and Mruthyunjaya,
1998).

The inertial properties of the movable platform and the six
legs are defined as function of the structure parameters
of Eq. (2). The geometric shape of the rigid bodies of
the Stewart-Gough mechanism is defined as cylinders (see
Fig. 1). The inertia matrix and center of mass are defined
based on the structure parameters λs and the density
of each rigid body. The center of mass of the movable



platform is attached to the coordinate frame {P}. The
inertia matrix of the lower and upper member of the legs is
defined with respect to the coordinate frames {U} and {D}
(Fig. 1) and the centers of mass are ru = [−hu 0 0]T and
rd = [−hd 0 0]T , respectively. The following parameters
should be defined in order to describe the inertia of all
rigid bodies as function of the structural parameters λs:
thickness of the movable platform hp, radius of the upper
ru and lower rl members of the legs, density of the material
of the movable platform ρp and legs ρl.

2.3 Tracking position control

Computed Torque Control (CTC) is composed of two
independent loops: an inner-loop to linearize the non-linear
dynamic of the robot by means of the feedback lineariza-
tion and an outer-loop to track a desired trajectory. Thus,
the non-linear dynamic equation of the robot (Eq. (3)) can
be written in a simplified way:

fc = A(q)q̈ + h(q, q̇) (4)
where A(q) = J−1M(q)J−T and h(q, q̇) = J−1[η(q, q̇)−
M(q)J−T u].

The robot equations can be linearized and decoupled by
non-linear feedback. Â(q) and ĥ(q, q̇) are respectively the
estimates of A(q) and h(q, q̇). Assuming that:

Â(q) = A(q)

ĥ(q, q̇) = h(q, q̇) (5)
the problem is reduced to a n linear and decoupled double-
integrators system, where n is the number of degrees of
freedom of the robot.

q̈ = wc (6)
with wc being the new input control vector. Equation (6)
corresponds to the inverse dynamic control scheme, where
the dynamic of the robot is transformed into a double set
of integrators (see Fig. 3).

Fig. 3. The computed torque and PID, block diagram.

Assuming a PID controller on each joint one has:

wc = KP (qd − q) + KD(q̇d − q̇) + KI

∫
(qd − q)dt (7)

The controller gains are KP = diag(kPi
, . . . , kPi

), KD =
diag(kdi

, . . . , kdi
) and KI = diag(kIi

, . . . , kIi
), for i =

1, . . . , 6. The controller gains are tuned in order to have
in continuous-time domain the following closed-loop char-
acteristic equation for each decoupled double-integrator of
Eq. 6: (s+ωr)(s2 +2ξωrs+ω2

r) = 0, where s is the Laplace
variable. Thus, kP = (1+2ξ)ω2

r , kD = (1+2ξ)ωr, kI = ω3
r .

For the tracking position control scheme shown in Fig. 3, it
was assumed in Eq. (5) that the estimated and real terms

are equal. Experimentally, this assumption is not valid
due to the existence of unknown or uncertain parameters
e.g., friction parameters. Moreover, the robot manipulator
should operate within a given range of payload values.
In this way, it is necessary to analyze the effects of
uncertain parameters on the closed-loop dynamics of the
robot system, which includes both the mechanism and the
control system.

3. STOCHASTIC ANALYSIS

Typically the inertial, friction and geometrical parameters
of parallel robot are affected by uncertainties. The inertial
and friction parameters should be identified to compute
the model-based position controller; therefore estimated
values with small error are introduced in the control al-
gorithms. Manufacturing tolerances include small varia-
tions in the geometrical parameters (Paccot et al., 2009).
Therefore, the parameters selected in order to introduce
the uncertainties in the model presented in the previous
section are: the structural parameters (rp, φp, rb, φb, s),
the mass of the movable platform (mp), and the viscous
frictions of the joints (cs, cp, cu).

The uncertain parameters are modeled as random vari-
ables. The corresponding uncertainties are introduced by
using the relation:

a0(θ) = a0 + a0δaξ(θ) (8)
where a0 is the mean value of the parameter, δa is the
dispersion level and ξ(θ) is the unite normal random
variable with θ being a random process.

The so-called Monte Carlo method combined with the
Latin Hypercube sampling (Florian, 1992) is used to
simulate the dynamic response of the robot with the
considered uncertain random parameters. Additionally,
with the aid of a convergence analysis helps determining
the number of Monte Carlo samples ns to obtain an
accurate result in the simulations.

4. SENSITIVITY ANALYSIS

The previous sections presented the robot modeling. The
sensitivity analysis aims at determining the influence of
each structure parameter and dynamic parameter on the
dynamic response of the robot, specifically in terms of
the variation of the position accuracy of the robot. Con-
sequently, this analysis allows to indicate the degree of
influence of each parameter on the variation of the position
accuracy of the robot.

Among the various methods used to analyze the sensi-
tivity, the variance-based sensitivity analysis decomposes
the variance of the output of the model into fractions
which are associated with the variation of each parameter
(Saltelli et al., 2008). This method allows to quantify the
effect of the variation of an individual parameter on the
dynamic response of the robot by means of a probabilistic
framework based on the Monte Carlo Simulation method.
Additionally, this method copes with nonlinear models,
which is suitable to quantify the sensitivity of the parallel
robot.

Considering the model under the form y = f(w), where
y is a scalar output and w = [w1 . . . wk]T ∈ Rk×1 is a



vector of k parameters. These parameters are considered
as independently and uniformly distributed within the
unit hypercube, i.e., wi ∈ [0, 1] for i = 1, . . . , k. f(w) is
decomposed:

y = f(w) = f0 +
k∑

i=1

fi(wi) +
k∑

i<j

fij(wi, wj) + · · ·+ f12...,k

(9)

The decomposition of the variance expression is (Sobol’,
1990):

V (y) =
k∑

i=1

Vi +
k∑

i<j

Vij + · · ·+ V12...k (10)

where Vi = Vwi(Ew∼i(y|wi)), Vij = Vwij (Ew∼ij (y|wij)),
and so on. A variance based first order effect for a generic
design parameter wi is:

Vwi
(Ew∼i

(y|wi)) (11)
where wi is the i-th parameter and w∼i denotes the matrix
of all parameters except wi. The meaning of the inner
expectation operation is that the mean of y is taken over all
possible values w∼i while keeping wi fixed. The associated
sensitivity measure denominated first-order sensitivity in-
dex is defined as:

si =
Vwi

(Ew∼i
(y|wi))

V (y)
(12)

si states the effect of the variation of wi only, however
divided by the variation in other parameters. Nevertheless,
the total effect-index sTi measures the contribution to
the output variance of wi, including all the effects of its
interactions with any other input parameter.

sTi =
Ew∼i

(Vwi
(y|w∼i))

V (y)
= 1− Vw∼i

(Ewi
(y|w∼i))

V (y)
(13)

The Monte Carlo Simulation combined with the Latin
Hypercube sampling (Florian, 1992) is used to calculate
the total-effect indices. The total number of model evalu-
ation to compute the total-sensitivity index is N = ns(k+
1), where ns is the number of the Monte Carlo samples
(Saltelli et al., 2008).

5. SIMULATION RESULTS

The controlled robot model of Fig. 3 was used in
the numerical simulation that was implemented in mat-
lab/simulink. The values of structural and dynamical pa-
rameters of the parallel robot are given in table 1.

Table 1. Parameters of the robot.

Parameter Mean value Parameter Mean value

rp(m) 0.24 rlegu (m) 0.03
φp(o) 110 rlegd

(m) 0.03
rb(m) 0.29 ρp(kg/m3) 2697
φb (o) 32 ρl(kg/m3) 7874
s 0.5 hp(m) 0.01

cu(Ns/m) 0.1 kP 19200
cp (Ns/m) 0.1 kD 240
cs (Ns/m) 0.2 kI 512000

In order to analyze the effect of uncertainties in the
position accuracy of the robot, small variations in some
parameters around their nominal values are introduced in

the model as presented in Eq. (8). Table 2 gives percentage
of the dispersion level with respect to the mean value of
each uncertain parameter considered in the model.

Table 2. Uncertain Parameters and dispersion
levels.

Parameter Dispersion level Parameter Dispersion level

rp 0.1% φp 0.1%
rb 0.1% φb 0.1%
s 0.1% mp 2%
cu 10% cp 10%
cs 10%

Two reference trajectories in the workspaces were consid-
ered in the analysis. First, a circular trajectory is imple-
mented with translational motion of the movable platform
in x−y−z axis (Fig. 4). The second trajectory consists in
a pure rotational motion of the movable platform around
the x−y−z axis with fixed position. It is worth mentioning
that although the workspace trajectories are different,
there is an equivalence in the maximum velocities in the
joint space.

5.1 Uncertainty analysis

In the sequence, the convergence of the response variability
with respect to the number of samples (ns) used in the
Monte Carlo simulation is verified, thus ns=195.

For the circular trajectory, Fig. 4 shows the reference and
the trajectories performed with the uncertain parameters.
As seen, the uncertainties in the parameters produce a
small variation in the trajectory tracked by the movable
platform; consequently this variation increases the position
error was evaluated.
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Fig. 4. Circular workspace trajectory, reference and uncer-
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In order to analyze the relationship between the position
error and the velocity of the reference trajectory the Root
Mean Square of the position joint-space error (RMSE) is
evaluated for a determined range of velocities.

RMSE(e) =
1
6

6∑
i=1

√
eT
i ei (14)



Fig. 5 presents the envelopes of random RMSE as func-
tion of the maximum velocity (Vmax) of the circular trajec-
tory. The mean and the dispersion of the random RMSE
increases in accordance with the increasing of Vmax. This
indicates that the effect of uncertainties has a significant
influence in high velocities.
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Additionally, Fig. 6 shows the random force of the legs
over the motion along the circular trajectory. A consid-
erable variation in the force produced by the uncertain
parameters is observed, e.g. at the instant t=0.47s the
force of the first leg (fc1) has a percentage variation of 31%
with respect to its mean instantaneous value. As seen, the
variation in the force applied by the controller to each leg
is not negligible and it should be considered in the design
of the control system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

50

40

30

20

10

0

Time[s]

f
c
[N

]

 

 
f c1

f c2

f c3

f c4

f c5

f c6

Fig. 6. Random force of the legs (fc), circular trajectory.

For the rotational trajectory, the uncertain analysis of
the random RMSE was also performed for a range of
velocities showed in Fig. 7. Following the tendency of the
previous uncertainty analysis, the mean and the dispersion
of the random RMSE increases with the increase of the
rotational velocity of the movable platform. Nevertheless,
in this case the dispersion of the randomRMSE is smaller.
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Fig. 7. Envelopes of random RMSE as a function of ωmax.

5.2 Sensitivity Analysis

The sensitivity analysis was performed over the circular
and rotational workspace trajectories used in the previous
analysis with the maximum velocity respectively, how-
ever any other trajectory could be considered. The total
effect-indices of the uncertain parameters of table 2 are
computed by using the variance-based sensitivity analysis
presented in section 4.

The number of computation of samples the Monte Carlo
computation required to perform the sensitivity analysis
was fixed at ns=195 to ensure an accurate solution accord-
ing to the convergence analysis. Considering k=9 variables,
the total number of model evaluations is N=1950.

The total effect-indices of the uncertain parameters for the
circular trajectory are showed in Fig. 8. As seen, the posi-
tion accuracy is more sensitive to the mass of the platform
mp than the other variables. This is expected since the
circular trajectory provides a translational motion of the
movable platform, which influences the position accuracy
with an uncertain mp. However, among the uncertain
parameters the structural parameters exhibit a significant
sensitivity. For this trajectory, the uncertain friction force
of the passive and active joints of the legs have a negligible
sensitivity.

The total effect-indices of uncertain parameters for rota-
tional trajectory are showed in Fig. 9. For this trajectory,
the position accuracy is highly sensitive to the structural
parameters of the parallel robot. The radius of the fixed
base, the spacing angles of the movable platform and fixed
base show a considerable sensitivity taking into account
the fact that these parameters introduce small position
errors between the actual and the position computed by
the model based controller. The uncertain coefficients of
the viscous friction of the passive and active joints of the
legs are little sensitive, hence the results obtained agree
with experimental results in which the fiction of the passive
joints is not considered in the identification and control of
the parallel robots(Paccot et al., 2009; Lara-Molina et al.,
2014b). The mass of the movable platform (mp) has a small
sensitivity since the position of the movable platform is
constant.
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6. CONCLUSION

In this contribution the effect of uncertain parameters
on the dynamic behavior of a 6-DOF fully parallel robot
was studied. Specifically, the PID computed torque was
analyzed by considering uncertain structural and dynamic
parameters. The simulation results indicate that the con-
sideration of small parametric uncertainties in the numer-
ical model of the parallel robot manipulator can affect sig-
nificantly the dynamic behavior of the system in terms of
position accuracy. Therefore, uncertain parameters should
be taken into account in numerical simulation to obtain
reliable numerical models for design purposes.

The stochastic analysis used in this contribution demon-
strated to be a straightforward methodology to quantify
the effect of uncertain parameters on the dynamic response
of a parallel robot manipulator. Moreover, the sensitivity
analysis allowed to determine the contribution of each un-
certain parameter on the uncertain response of the robot.
This is important to determine the degree of importance
of the uncertain parameters on the dynamic response of
the robot. Furthermore, the study of robot manipulator
dynamics and control can be enhanced by the performance
of uncertain analysis.

Further work will encompass the study of control tech-
niques and design methods of parallel robots under uncer-
tain parameters and dynamics.
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