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Carlos Salle Moreno3, Thibaut Rocheron3, Joan Rojas Lombarte3

Abstract— In the context of radar applications using

small UAVs (Unmanned Aerial Vehicles), this paper

focuses on the dynamic modeling and the analysis of

an octorotor in view of control design. As part of a

research and educational project aiming at designing a

VTOL (vertical take-off and landing) flying robot with an

embedded radar system, this paper presents a complete

multivariable nonlinear model of the rigid body motion

of a commercially available octorotor, fully parametrized

considering the geometry and mass properties of the

octorotor and the load. This model is completed to take

into account the effects of air drag due to the friction

between the drone and the air. To meet the control

objectives for radar applications, a PID (Proportional

Integral Derivative) controller for altitude and attitude

control, then a Linear Quadratic controller for trajectory

tracking are designed. The proposed control laws are

validated through simulation results and exhibit effective

performance.

I. INTRODUCTION

Traditional aerial platforms for radar applica-
tions are airplanes and satellites [1]. With the
advent of moderately low-cost UAVs (quadrotos,
hexarotors), the possibility to use small UAVs as
platforms for radars is substantially considered [2],
[3]. Small UAVs are easy to deploy providing a
cost-effective way of testing airborne sensors and
related techniques. The objective of the present re-
search and educational project is to design a VTOL
(vertical take-off and landing) flying robot with
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an embedded radar system for civilian applications
like crop field monitoring, rescue operations after
avalanches, damage evaluation after natural disas-
ters etc. For the efficiency of such radar missions,
a critical point that will affect the collected data is
the stability of the flying platform and its ability
to precisely follow a prescribed trajectory.

The long term goal of this project is to build
an efficient multirotor helicopter through a simul-
taneous and optimized design of the mechanical
structure of the flying platform and of its control
system. As a first step toward this goal, this
paper presents the modeling, analysis and con-
trol of a commercially available octorotor (ARF-
MikroKopter OktoXL, Mikrokopter, HiSystems
GMBH). The characteristics of this open-source
platform are compatible with the required payload,
and the redundancy provided by the eight rotors
increases the drone’s stability. A survey on pub-
licly available open-source projects on UAVs can
be found in [4] and some elements of comparison
between plateforms are presented in [5]. A com-
parison between different multirotors architectures
in view of a model-based design is presented in [6].
Other uses of Mikrokopter platforms for research
purposes are reported in [7] and [8]. To meet
the requirements of radar applications, the con-
trol system must guarantee an efficient trajectory
tracking, at a constant and relatively high speed,
and despite possible external wind disturbances
[9]. Recently, various control schemes for attitude
control or trajectory tracking have been presented
for quadrotors [10], as well as other redundant
drone’s configurations like hexarotors [11], [12],
[13] or octorotors in various configurations (4Y-
shaped octorotor in [14], [15], coaxial octorotor in



[16], [17], star-shaped octorotor in [18], [19]). De-
pending on the application, different levels of mod-
eling are used, from classical rigid-body dynamics
to detailed aerodynamic effects [20], [21]. Linear
control design (PID or optimal state-feedback) is
investigated in [10], [16], [18], [17], while the
other previously cited works explore non linear
control methods.

In the context of radar applications using the
octorotor ARF-MikroKopter OktoXL, this paper
focuses on the dynamic modeling and the analysis
of the proposed drone in view of control design.
A complete multivariable nonlinear model of the
rigid body motion is derived, fully parametrized
considering the geometry and mass properties of
the octorotor and the load. This model is com-
pleted to take into account the effects of air drag
due to the friction between the drone and the air.
A simulator is build to implement this complete
nonlinear model, while a simplified model is used
for control design for radar applications. Finally,
in order to meet the desired specifications for radar
applications, two control laws are implemented: a
PID controller for altitude and attitude control and
a Linear Quadratic (LQ) controller for trajectory
tracking. These linear control laws are selected
in order to i) first evaluate the performance and
robustness of simple control structures (set of
SISO controllers and control allocation in case of
PID control, MIMO state-feedback controller in
case of LQ control), ii) serve later for comparison
with other linear or nonlinear control strategies
which may be envisaged in future work.

The studied octorotor and the desired control
objectives in view of radar applications are first
presented in Section II. Section III is dedicated
to the modeling of the dynamic behavior of the
octorotor, including the air drag effect. Attitude
control and optimal control for trajectory tracking
are detailed in Section IV, and are illustrated in
Section V by simulation results.

Mathematical notations. Throughout the pa-
per, the symbols cφ and sφ denote cosφ and sinφ,
respectively. The notation 1..n represents the first
n non zero natural numbers. The 2-norm of the
vector v is denoted ‖v‖. The transpose of the
matrix M is denoted MT . The pseudo-inverse of
the matrix M is denoted M+ = (MTM )−1MT .

II. SYSTEM DESCRIPTION AND CONTROL

SPECIFICATIONS

In this section, the specific requirements due to
the envisaged radar applications are exposed and
translated in control objectives. The experimental
platform, the octorotor ARF-MikroKopter OktoXL
[22], is then briefly presented.

A. Requirements for radar applications

Synthetic Aperture Radar (SAR) image forma-
tion is based on the coherent sum of the scattered
waves due to the periodic illumination of a scene
by the radar [23]. For stripmap mode, sideway
illumination (relative to the UAV movement) of
the scene with constant inclination, altitude, speed
and linear trajectory, is desired. The radar spec-
ifications for the X band FM Continuous Wave
Synthetic Aperture Radar to be used are summa-
rized in Table I. Deviations from the ideal known
linear trajectory induce changes in the expected
phase history of the scatterers (objects in the
scene), producing errors in the synthesis of the
SAR image. These errors can be compensated
with signal processing autofocus techniques, in
combination with the information of the sensors
of the UAV, up to a certain degree [24]. In
order to comply with the radar specifications, by
limiting the phase history errors due to trajectory
deviations, the desired control performances of the
UAV’s movement are specified in Table I.

B. Experimental platform

The studied multirotor (Fig. 1) is equipped with
eight brushless motors with twin-bladed propellers,

TABLE I: Radar and control specifications.

Radar specifications

Platform speed 10 m/s

Ground resolution 0.8x1 m

Height of flight 100 m

Ground range 250 - 550 m

Control specifications

Translation speed 10 m/s ± 0.2 m/s

Maximum trajectory deviation less than 1 m

Operational altitude 100 m

Stabilized attitude



arranged in a star-shaped way. The motors are
attached to the central block with arms of different
and alternating length (L for longer arms, l for
shorter arms). Longer arms correspond to odd-
numbered motors which rotate in the clockwise di-
rection, whereas shorter arms correspond to even-
numbered motors which rotate in the counter-
clockwise direction. The motors placed on the
longer arms have the advantage of providing higher
torques because of the longer distance from the
vertical axis. On the other hand, the motors
placed on the short arms generate less momentum.
Thus, this solution is a trade-off between the
two configurations (i.e. only four long arms or
only four short arms) and improves the handling
ability of the drone. Choosing opposite directions
of rotation between the odd- and even-numbered
motors is the solution to compensate the drag
torque. The motors are fixed with a 3˚ inclination
with respect to the vertical axis Z. The sign of the
angle depends on the direction of rotation of the
motor as indicated in Fig. 2. The main dimensions
and masses of the drone are provided in Table II
(see Appendix VII-B).
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Fig. 1: Schematic of the considered octorotor and
reference frames.

III. OCTOROTOR DYNAMIC MODELING AND

ANALYSIS

The dynamic modeling of a multirotor includes
the description of the rigid body dynamics in
space, the aerodynamic effects, the propellers ro-
tation, and the motor model. In this section, the
rigid body dynamic equations of motion are first
provided, then the air drag effect is included. Other
aerodynamic effects and the model of the brushless

Fig. 2: Inclination of the rotor axes with respect
to Z.

motors with their controller will be considered in
future work.

A. Notations and assumptions

To derive the rigid body dynamic equations, the
inertial frame R0 (X, Y, Z) and the body fixed
frame R (x, y, z) are defined in Fig. 1 and 3.

The orientations are described using the Euler
angles convention with ϕ the roll angle, θ the pitch
angle, ψ the yaw angle. The nonlinear equations
of motion in the state-space form are written using
the following state vector:

X = (X Y Z ϕ θ ψ Vx Vy Vz ωx ωy ωz)
T (1)

where X, Y, Z are the position of the drone in the
Earth’s frame, and Vx, Vy, Vz their time derivatives,
ϕ, θ, ψ the Euler angles defining the orientation of
the drone in the Earth’s frame, and ωx, ωy, ωz the
rotational speeds of the drone in its own frame.
The origin of the body fixed frame is placed in the
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Fig. 3: Dimensions and notations - detailed view.



center of mass G of the octorotor with its payload
(Fig. 3).

The rotation matrix R from the inertial frame
R0 to the drone’s frame R is defined as:

R =



cψcθ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ
sψcθ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ
−sθ cθsϕ cθcϕ


 (2)

The angular speed ωR = (ωx ωy ωz)
T of the

drone around its axis expressed in its own frame is
related to the derivatives of the Euler angles ΘR0 =
(ϕ θ ψ)T by:

ωx = ϕ̇− ψ̇sθ (3)

ωy = θ̇cϕ+ ψ̇sϕcθ (4)

ωz = −θ̇sϕ+ ψ̇cϕcθ (5)

To model the rigid body motion of the drone,
several assumptions are made:

A1 The structure of the drone and the propellers
are rigid.

A2 The center of the body fixed frame R is always
concurrent with the center of gravity G of the
drone (and thus depends on the load).

A3 The drone’s inertia is symmetrical, and its
center of gravity lies on the Z axis.
A4 The thrust force (T ) and drag torque (D)
generated by the i-th propeller are assumed to be
proportional to the squared propeller’s speed Ωi

Ti = bΩ2
i , Di = dΩ2

i for i = 1..8 (6)

where b and d are respectively the thrust and drag
coefficients.

A5 The brushless motor model is not added at
this stage, and the considered control inputs to the
system are the rotors rotational speeds Ωi, i=1..8.
Taking into consideration that the studied octorotor
has its motors fixed with a small inclination α of 3
degrees with respect to the vertical axis, the thrust
and drag contributions are decomposed in vertical
(TVi

, DVi
) and horizontal components (THi

, DHi
):

TVi
= Ticα, THi

= Tisα, DVi
= Disα, DHi

= Dicα
(7)

The efforts applied in G (see Fig. 3) resulting
from the propeller forces F R

x,y,z and torques τR
x,y,z

on the drone can be expressed in the drone’s frame
by:

FR
x = TH3

− TH7
+ (TH6

+ TH8
− TH2

− TH4
)/
√
2 (8)

FR
y = TH1

− TH5
+ (TH4

+ TH6
− TH2

− TH8
)/
√
2 (9)

FR
z =

8∑

i=1

TVi
(10)

τRx = DV3
−DV7

+ (DV2
+DV4

−DV6
−DV8

)/
√
2

+ L(TV7
− TV3

) + l(TV6
+ TV8

− TV2
− TV4

)/
√
2 (11)

+ zG(TH5
− TH1

) + zG(TH2
+ TH8

− TH4
− TH6

)/
√
2

τRy = DV1
−DV5

+ (DV2
+DV8

−DV4
−DV6

)/
√
2

+ L(TV5
− TV1

) + l(TV4
+ TV6

− TV2
− TV8

)/
√
2 (12)

+ zG(TH3
− TH7

) + zG(TH6
+ TH8

− TH2
− TH4

)/
√
2

τRz = DH1
+DH3

+DH5
+DH7

−DH2
−DH4

−DH6
−DH8

+ L(TH1
+ TH3

+ TH5
+ TH7

) (13)

− l(TH2
+ TH4

+ TH6
+ TH8

)

with zG defined as the distance along the Z-axis
between the rotor plane and the center of mass of
the drone, which is also the origin of the drone’s
reference frame.

B. Nonlinear simulation model

Based on the notations and assumptions detailed
in the previous section, the complete nonlinear
model describing the dynamics of the drone can
be derived:

Ẋ = Vx (14)

Ẏ = Vy (15)

Ż = Vz (16)

ϕ̇ = ωx + sϕ
sθ

cθ
ωy + cϕ

sθ

cθ
ωz (17)

θ̇ = cϕ ωy − sϕ ωz (18)

ψ̇ =
sϕ

cθ
ωy +

cϕ

cθ
ωz (19)

mV̇x = (cψcθ)FR
x + (cψsθsϕ− sψcϕ)FR

y

+ (cψsθcϕ+ sψsϕ)FR
z + F air

x (20)

mV̇y = (sψcθ)FR
x + (sψsθsϕ+ cψcϕ)FR

y

+ (sψsθcϕ− cψsϕ)FR
z + F air

y (21)

mV̇z = (−sθ)FR
x + (cθsϕ)FR

y + (cθcϕ)FR
z

+ F air
z −mg (22)

Ixxω̇x = (Iyy − Izz)ωyωz + τRx (23)

Iyyω̇y = (Izz − Ixx)ωxωz + τRy (24)

Izzω̇z = (Ixx − Iyy)ωxωy + τRz (25)



This model has eight inputs (rotational speed of
each motor Ωi) entering the equations through FR

x ,
FR
y , FR

z and τRx , τRy , τRz detailed in the previous
section. It is implemented in Matlab/Simulink for
further control laws validation. The mass m and
the inertia components Ixx, Iyy, Izz of the drone are
determined from the masses and the inertias of the
motors, the main bloc, the battery and the load.
This model takes account of the load (small radar
system for example) and the number of batteries
with the calculation of zG.

Additional terms F air
x , F air

y , F air
z are included

to represent the components of the air drag force
F air on the drone’s structure. The air drag effects
are assumed to be proportional to the square of
the speed of the object relative to the air Vrel =
(Vrelx Vrely Vrelz)

T :

F air = −dair ‖Vrel‖Vrel (26)

At the present point of this research and educa-
tional project, a simple model is selected based
on the capacity to reproduce the resistant aspects
of the air that are observed in a real case. A
first simplification assumes that the resultant air
drag force is applied to the drone’s center of
mass. From aerodynamics, dair = ρSCD/2 with ρ
the density of the air, S the reference area and
CD the drag coefficient which depends on the
shape of the object and the Reynolds number. A
complete model of the air drag effects requires the
identification of the parameters CD and S, which
requires wind tunnel tests and numerical methods.
Here, the term dair is assumed to be constant and
the same in all directions. This simplification is
however legitimate in the considered operational
conditions. In the following, the value of dair =
0.03 m−1·kg is used, but further identification need
to be performed to obtain a reliable model.

C. Simplified nonlinear model for control design

For control design, linearized models are de-
rived in Section IV. Before this step, the nonlinear
equations (20) to (25) are simplified, based on the
relative contributions of TH , TV , DH , DV .

S1 In (20)-(22), FR
x and FR

y are negligible com-

pared to FR
z , since THi

<< TVi
.

S2 In (11)-(12) and therefore in (23)-(24), DVi
is

negligible compared to LTVi
.

S3 In (13), DHi
and LTHi

or lTHi
are of the same

order of magnitude.
In the following, ideal still weather condition

is supposed (no wind), and a displacement along
X is considered, leading to Vrelx = Vx, and
Vrely = Vy = 0. Even if Vz 6= 0 during the take-
off phase, no air-drag contribution is considered in
the Z direction. These simplifications result in the
following simplified nonlinear model, in which the
neglected terms will be treated as disturbances:

mV̇x = (cψsθcϕ+ sψsϕ)

8∑

i=1

TVi
− dairV 2

x (27)

mV̇y = (sψsθcϕ− cψsϕ)
8∑

i=1

TVi
(28)

mV̇z = (cθcϕ)

8∑

i=1

TVi
−mg (29)

Ixxω̇x = (Iyy − Izz)ωyωz + L(TV7
− TV3

)

+ l(TV6
+ TV8

− TV2
− TV4

)/
√
2 (30)

Iyyω̇y = (Izz − Ixx)ωxωz + L(TV5
− TV1

)

+ l(TV4
+ TV6

− TV2
− TV8

)/
√
2 (31)

Izzω̇z = (Ixx − Iyy)ωxωy +DH1
+DH3

+DH5

+DH7
−DH2

−DH4
−DH6

−DH8

+ L(TH1
+ TH3

+ TH5
+ TH7

)

− l(TH2
+ TH4

+ TH6
+ TH8

) (32)

IV. CONTROL DESIGN

As part of this educational project in the context
of radar applications, two control designs are pro-
posed - a PID controller for altitude and attitude
control (Section IV-B), and a LQ controller for tra-
jectory control allowing a translational movement
at a constant velocity (Section IV-C), both based
on a linearized model of the octorotor presented
in Section IV-A. Wind influence is not explicitly
taken into account at this point, and is treated as
a disturbance.

A. Linearized model

A general linearized model is computed based
on the equations (14)-(19) and (27)-(32), valid at
an equilibrium point or trajectory of the nonlinear
system. The model is written using the state vector
(1), and the following control vector:

U =
(
Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

)T
(33)



The linearization point is characterized by: null
or constant velocity V̄x, null velocities V̄y, V̄z, null
or constant angle θ̄, null angles ϕ̄, ψ̄, and null
rotational velocities ω̄x, ω̄y, ω̄z. The notations ·̄
and ·̃ denote respectively the equilibrium value of
the variables, and the small deviations from this
operating point:

X̃ = X − X̄, Ω̃i = Ωi − Ω̄i, Ũ = U − Ū (34)

The linearized model can be written as follows:

˙̃
X = AX̃ +BŨ (35)

The details of the matrices are presented in the
Appendix VII-A. The hovering model (stationary
flight at constant height) can be obtained from this
generic model by replacing θ̄ and V̄x by 0.

B. Altitude and attitude control (PID)

In this section, a decoupled PID controller is
designed based on the hovering model to control
separately the altitude Z̃ and the attitude angles
ϕ̃, θ̃, ψ̃. A reduced state vector X ′ composed of
the four considered variables and their derivatives
is used. Instead of the rotor rotation speed vector
(33), a fictitious input vector U ′ directly related to
the generated forces and torques is used:

X̃′ =
(
Z̃ ϕ̃ θ̃ ψ̃ Ṽz ω̃x ω̃y ω̃z

)T
(36)

Ũ ′ =
(
F̃z ũx ũy ũz

)T
(37)

The new model can be written as follows:

˙̃
X′ = A′X̃′ +B′Ũ = A′X̃′ +B′′Ũ ′ (38)

where the matrices A′ and B′ denote the subma-
trices extracted from the complete model A and
B provided in (49). The matrix B′′ denotes the
new input matrix. In hovering mode, the following
matrices are considered:

A′ =

(
04 I4
04 04

)
(39)

B′′ =

(
08×4

B′′

2

)
,B′′

2 = diag

(
1

m
,

1

Ixx
,
1

Iyy
,
1

Izz

)
(40)

The obtained model is a set of four decoupled
double integrator systems. In the Laplace domain,
with �(s) denoting the Laplace transform of �(t),
the input-output transfer functions are:

Z(s) =
1

ms2
Fz(s), ϕ(s) =

1

Ixxs2
τx(s), (41)

θ(s) =
1

Iyys2
τy(s), ψ(s) =

1

Izzs2
τz(s) (42)

Four different SISO (Single-Input Single-
Output) PID controllers are designed for altitude,
pitch, roll and yaw control:

CPIDi
(s) = KPi

(
1 +

1

TIis
+

TDi
s

1 + τDi
s

)
, i = 1..4

(43)

The classical tuning parameters are KPi
(the

proportional term), TIi (the integral term) and TDi

(the derivative term filtered with a smaller time
constant τDi

= TDi
/10). All the four controllers

are tuned to achieve similar dynamics in the four
considered variables, with about 55˚ of phase mar-
gin, 10rad/s open-loop cut-off frequency resulting
in 28% overshoot at about 0.3s. Therefore, only
the gain KPi

varies between the four controllers,
depending of the inertia or mass values of the
different systems.

The actual input vector U can be computed from
the fictitious one U ′ as follows:

B′Ũ = B′′Ũ ′ ⇒ Ũ = (B′)+B′′

︸ ︷︷ ︸
Mu

Ũ ′ (44)

where (·)+ denotes the pseudo-inverse of the
matrix B′. Other solutions for control allocation
may be found in [25]. As discussed in [26] and
illustrated in [27], [19], such a modular control
design with a separate control allocator provides
some benefits in case of actuator constraints. The
resulting control scheme appears in Fig. 4.

Mu 
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Fig. 4: PID for altitude and attitude control

C. Trajectory tracking control (LQ)

Trajectory tracking control can be achieved i)

either by completing an attitude and altitude con-
troller by an outer loop providing the necessary
angle references, ii) or by directly designing a
MIMO controller based on the complete linearized
model which controls the altitude, the attitude and
the position at the same time. For the complete
linearized model (35), the LQ (Linear Quadratic)
method was selected. Indeed, it can easily deal
with MIMO (Multi Input Multi Output) systems,



provides a good level of robustness with respect
to model uncertainties (several parameters in the
model such as the drag and lift coefficients are not
precisely known), and is tuned via an optimization
method, assuring optimal stability margins.

LQ state feedback control supposes that the
full state vector is accessible. On the considered
octorotor, three gyroscopes, three accelerometers
and a magnetometer are available for attitude
estimation and provide the angular velocities in
the drone’s frame. An altimeter and the GPS
make possible the estimation of the positions and
translational velocities. The design of a detailed
procedure for the state estimation is left for future
work, and the necessary measurements of the state
vector are assumed to be available in what follows.

The considered control scheme is represented in
Fig. 5, where KLQ is the feedback gain matrix,
and Kref the reference gain matrix. Optimal state

feedback Ũ = KrefX̃ref −KLQX̃ is classically
computed to minimize the cost:

J =

∫ +∞

0

(X̃TQX̃ + ŨTRŨ)dt (45)

Q = diag(qi,i=1..12), R = I8 (46)

The weightings on the state Q are selected to
emphasize the trajectory control objectives, i.e. the
variables X, Y, θ a,d Vx: q1,2,5 = 10000, q3 =
1000, q4,6..12 = 1. The matrix Kref = −((A −
BKLQ)

−1B)+ ensures a zero static error with
respect to the reference. To cancel the static error
in presence of disturbances, a Linear Quadratic
Integral (LQI) controller can be considered in
future work.
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Fig. 5: Linear quadratic control for trajectory
tracking

V. SIMULATION RESULTS

The previously designed control laws are ap-
plied to the complete nonlinear model. PID
control is applied for the take-off (0-20s), then

0 20 40 60 80 100 120

0

200

400

X
 (

m
)

reference

position

0 20 40 60 80 100 120
0.5

0

0.5

Y
 (

m
)

reference

position

0 20 40 60 80 100 120
0

50

100

Z
 (

m
)

reference

position

0 20 40 60 80 100 120
0

20

40

Time (s)

W
in

d
 v

e
lo

c
it
y
 (

k
m

/h
)

V
wind

y

V
windx

Fig. 6: Positions X, Y, Z and wind disturbance
profile
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the trajectory tracking and disturbance rejection
is assured by the LQ controller (20-120s). Step
disturbances representing wind gusts of 40 km/h
in the −Y direction (from 40 to 50s), and 10 km/h
in the −X direction (from 60 to 70s) are applied
(Fig. 6).

The performed simulations on the complete non-
linear model validate the proposed design with
respect to the radar specifications. A constant
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linear speed is achieved along X with an error no
bigger than 2 cm/s in presence of the tested wind
disturbances (Fig. 7), and position deviation from
the imposed trajectory is smaller than 1m on Y
and Z (Fig. 6). Attitude angles are represented in
Fig. 8. Control signals are of reasonable amplitude
(Fig. 9).

VI. CONCLUSION

This paper presented the modeling of an octoro-
tor for radar applications. A nonlinear model of the
rigid body motion and air drag effect has been de-

veloped and used to build a Matlab/Simulink simu-
lator. This mathematical model of an existing UAV
platform serves as the starting point of the study,
and will be used to jointly optimize the mechanical
and control design for radar applications. Prelimi-
nary control design based on Proportional Integral
Derivative and Linear Quadratic controllers fulfills
the requirements related to the envisaged Synthetic
Aperture Radar image acquisitions.

In future work, further modeling effort will be
dedicated to the modeling of the motor dynamics
and the identification of air drag model. The
design of a state estimator taking into account
the availability of the measurements at different
sampling times will be studied, aiming to an
experimental evaluation of the proposed control
laws. Particular attention will be dedicated to the
energy efficiency of the designed control laws in
order to optimize the battery use and thus the flight
time.

VII. APPENDIX

A. Linearized model matrices

The matrices in the linearized model can be
written as:

A =




03 03 I3 03

03 03 03 A24

03 A32 A33 03

03 03 03 03


 , B =



06×8

B1

B2


 (49)

A24 =



1 0 tan θ̄
0 1 0
0 0 1

cθ̄


A32 =




0 gcθ̄ 0
−g 0 gsθ̄
0 −gsθ̄ 0


(50)

A33 =



−2dairV̄x 0 0

0 0 0
0 0 0


 (51)

where B1 and B2 are detailed in (47), g is the
gravity acceleration, (48) with p1 = dcα + blsα
and p2 = dcα + bLsα.

In (47)-(48), the equilibrium values of the rotor
speeds Ω̄i correspond to a stationary flight at a
constant altitude (hovering without wind, with no
yaw torque). In these conditions, the nonlinear
equations (14)-(19) and (27)-(32) reduce to:

mg = FR
z (52)

0 = τRz (53)

Denoting k the factor between the rotation speeds
such that Ωodd = kΩeven with Ωodd=̂Ωi, i=1,3,5,7



B1 =




2bcα
m
sθ̄Ω̄1

2bcα
m
sθ̄Ω̄2

2bcα
m
sθ̄Ω̄3

2bcα
m
sθ̄Ω̄4

2bcα
m
sθ̄Ω̄5

2bcα
m
sθ̄Ω̄6

2bcα
m
sθ̄Ω̄7

2bcα
m
sθ̄Ω̄8

0 0 0 0 0 0 0 0

2bcα
m
cθ̄Ω̄1

2bcα
m
cθ̄Ω̄2

2bcα
m
cθ̄Ω̄3

2bcα
m
cθ̄Ω̄4

2bcα
m
cθ̄Ω̄5

2bcα
m
cθ̄Ω̄6

2bcα
m
cθ̄Ω̄7

2bcα
m
cθ̄Ω̄8


 (47)

B2 =




0 − 2bcα
Ixx

l√
2
Ω̄2 − 2bcα

Ixx
LΩ̄3 − 2bcα

Ixx

l√
2
Ω̄4 0 2bcα

Ixx

l√
2
Ω̄6

2bcα
Ixx

LΩ̄7
2bcα
Ixx

l√
2
Ω̄8

− 2bcα
Iyy

LΩ̄1 − 2bcα
Iyy

l√
2
Ω̄2 0 2bcα

Iyy

l√
2
Ω̄4

2bcα
Iyy

LΩ̄5
2bcα
Iyy

l√
2
Ω̄6 0 − 2bcα

Iyy

l√
2
Ω̄8

2

Izz
p2Ω̄1 − 2

Izz
p1Ω̄2

2

Izz
p2Ω̄3 − 2

Izz
p1Ω̄4

2

Izz
p2Ω̄5 − 2

Izz
p1Ω̄6

2

Izz
p2Ω̄7 − 2

Izz
p1Ω̄8


 (48)

and Ωeven=̂Ωi, i=2,4,6,8, the previous equations be-
come:

mg = 4(1 + k2)bcαΩeven (54)

0 = (4(k2 − 1)dcα+ 4bsα(Lk2 − l))Ωeven (55)

Finally, the rotor speeds at equilibrium Ω̄i in
stationary flight are computed using the following
relationships:

k =
Ωodd

Ωeven

=

√
dcα+ blsα

dcα+ bLsα
(56)

Ω2
even =

mg

4(1 + k2)bcα
(57)

B. Numerical values

The numerical values used in this study are
summarized in Table II.

TABLE II: Dimensions and masses.

Parameter Notation and value (units)

Mass of 1 motor mm = 0.1 (kg)

Mass of 1 battery mb = 0.534 (kg)

Mass of central block mc = 1.226 (kg)

Total mass with 1 battery M = 2.56 (kg)

Motor dimensions

(radius, height) rm = 0.0175, hm = 0.038 (m)

Central block dimensions

(radius, height) rc = 0.09, hc = 0.095 (m)

Battery dimensions wc = 0.132,

(width, length, height) lc = 0.09, hc = 0.02 (m)

Arm lengths (short, long) L = 0.455, l = 0.349 (m)
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thesis, Linköping University, Automatic Control, The Institute

of Technology, 2014.

[12] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inver-

sion based direct position control and trajectory following for

micro aerial vehicles,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2013, pp. 2933–2939.

[13] S. Omari, M.-D. Hua, G. Ducard, and T. Hamel, “Hardware

and software architecture for nonlinear control of multiro-

tor helicopters,” IEEE/ASME Transactions on Mechatronics,

vol. 18, no. 6, pp. 1724–1736, 2013.

[14] V. G. Adir, A. M. Stoica, and J. F. Whidborne, “Sliding mode

control of a 4Y octorotor,” UPB Sci. Bull., Series D, vol. 74,

no. 4, pp. 37–51, 2012.

[15] I. Khabbazi and R. Ghasemi, “Designing back-stepping slid-

ing mode controller for a class of 4y octorotor,” Int. Journal



of Mechanical, Aerospace, Industrial and Mechatronics En-

gineering, vol. 8, no. 11, pp. 1852 – 1857, 2014.

[16] S. J. Haddadi and P. Zarafshan, “Attitude control of an

autonomous octorotor,” in RSI/ISM Int. Conf. on Robotics and

Mechatronics (ICRoM). IEEE, 2014, pp. 540–545.

[17] F. Rinaldi, A. Gargioli, and F. Quagliotti, “PID and LQ

Regulation of a Multirotor Attitude: Mathematical Modelling,

Simulations and Experimental Results,” Journal of Intelligent

and Robotic Systems, vol. 73, no. 1-4, pp. 33–50, 2014.

[18] V. G. Adir and A. M. Stoica, “Integral LQR control of a

star-shaped octorotor,” INCAS Bulletin, vol. 4, no. 2, 2012.

[19] H. Alwi and C. Edwards, “Fault tolerant control of an

octorotor using LPV based sliding mode control allocation,”

in IEEE American Control Conf. (ACC), 2013, pp. 6505–

6510.

[20] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial

vehicles: Modeling, estimation, and control of quadrotor,”

IEEE Robotics & Automation Magazine, no. 19, pp. 20–32,

2012.

[21] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J.

Tomlin, “Precision flight control for a multi-vehicle quadrotor

helicopter testbed,” Control engineering practice, vol. 19,

no. 9, pp. 1023–1036, 2011.

[22] HiSystems GmbH, “ARF-MikroKopter OktoXL Manual,”

2014.

[23] S. Kingsley and Q. S., Understanding Radar Systems. UK:

McGraw-Hill, 1992.

[24] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight

Synthetic Aperture Radar: Signal Processing Algorithms.

MA., USA: Artech House, 1995.

[25] G. Ducard and M.-D. Hua, “Discussion and practical aspects

on control allocation for a multi-rotor helicopter,” in Conf. on

Unmanned Aerial Vehicle in Geomatics, 2011, pp. 1–6.
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