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On Task-decoupling by Robust Eigenstructure Assignment
for Dexterous Manipulation

A. Caldas1, A. Micaelli1, M. Grossard1, M. Makarov2, P. Rodriguez-Ayerbe2, D. Dumur2

Abstract— This paper presents a new control scheme for
dexterous manipulation of an object by a multifingered hand.
The aim of this control is to ensure the tracking by the
object of specific trajectories depending on the task. More
specifically, we consider a decoupling control according to the
motion directions in the task space. The control scheme is
based on a new eigenstructure assignment method, where the
placement of the closed-loop eigenvalues ensures the stability of
the system hand/object, and strict placement of the object-level
eigenvectors ensures the system decoupling. A parallel is made
between task specifications and synergies. Current synergy
controllers are often bio-inspired and based on the analysis
of synergies in the human hand. The proposed algorithm
allows the specification of precise object level performance
according to the task, and to find the related synergies.
Moreover, robustness to uncertainties on the contact point is
an additional objective of the control law, and the effect of
these uncertainties on the decoupling is investigated. Simulation
results are presented and illustrate the decoupling effect of the
control law on the system hand/object in the 2D-cartesian space.

I. INTRODUCTION

In the last few decades, robotics has evolved into ever
more complex systems working on ever more complex
manipulation tasks. From these emerging needs, roboticists
have proposed new mechanical designs and multifingered
hands have been developed. Various strategies have been
proposed to control these mechanical systems and dexterous
manipulation is an active field of research [1]–[3].

Among all the proposed approaches, studies on the hand
synergies are particularly interesting [4][5]. Synergies reduce
the complexity of the control law by correlating the degrees
of freedom of the hand, which reduces the dimension of
the controller. Most of studies on synergies focus on the
problem of grasping an object with a multifingered hand,
and just few consider synergistic controllers for dexterous
manipulation. In grasping researches, the proposed synergies
are bio-inspired and deduced from a human grasp database
[6][7]. In dexterous manipulation, an optimal feedback con-
trol is applied in [8] and only a subspace of the available
control space is utilized according to a given task, i.e. the
actuators are synergistically coupled and obeying to the
minimal intervention principle [9]. To our knowledge, no
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other works relate task specifications and synergies with the
control law for dexterous manipulation. Moreover, no other
works deal with a decoupling objective for the closed-loop
hand/object system according to task specifications, as for
instance moving the object in the x-axis of the 2D cartesian
space without affecting the translation along the y-axis or
the rotation in the (x,y) plan (Fig. 1). In this paper, a control
scheme with eigenstructure assignment is proposed, allowing
to decouple the system at the object level. The link between
task decoupling and synergies is shown.

Fig. 1. Example of task specifications.

In control theory, eigenstructure assignment consists in de-
signing a state feedback which places the closed-loop eigen-
values (poles) and eigenvectors (defining the distribution of
the modes for each state) of a Multi-Input Multi-Output
(MIMO) system at some prescribed locations according to
the closed-loop specifications. Most of the eigenstructure as-
signment methods consider the placement of the closed-loop
eigenvectors when the eigenvalues are fixed to predefined
values [10]. When only pole placement is needed without
any eigenvector assignment, constraints on the system can
be defined to place the closed-loop poles in a stable D-
region of the complex space [11]. Loose assignment allows to
define D-regions to place the poles in the complex space, and
cones to define the direction of the eigenvectors [12]. To our
knowledge, no algorithm allows to define strict directions for
the eigenvectors while placing the eigenvalues in a D-region.
In this paper, an optimization problem involving Linear
Matrix Inequalities (LMIs) and Bilinear Matrix Inequalities
(BMIs) is defined to address this issue and find a state-
feedback to control the linearized hand/object MIMO system.
This algorithm allows us to ensure the stability of the object
motion with the closed-loop pole placement and decouple the
system according to task specifications with the eigenvectors
assignment.

One difficulty in dexterous manipulation tasks is to deal
with uncertainties. To better comply with practical experi-
mental conditions, the proposed control law for dexterous
manipulation can be improved by including considerations
about geometric uncertainties on the contact point based on



[13].
To sum up, the present paper proposes:
• A control law which ensures the stability of the object

motion and decoupling the system according to task
specifications.

• A new eigenstructure assignment algorithm allowing to
place the eigenvectors without a strict assignment of the
eigenvalues.

• Robustness to uncertainties on the contact point which
can be specified in the algorithm.

The paper is organized as follows: in section II, a state-
space representation of the system is presented. Section III
describes the proposed control law. Numerical examples and
simulations of the controller are presented in section IV.
Section V gives the conclusions and perspectives.

II. MULTIFINGERED HAND REPRESENTATION
This part presents the multifingered hand model, based on

the screw theory [14], and introduces useful notations.

A. State-Space Formulation

The multifingered hand model is obtained by combining
the dynamics of the fingers and the object:{

Mh(q)q̈+Ch(q, q̇)q̇+Nh(q, q̇)− Jh(q,xo)
T fc = τ

Mo(xo)ẍo +Co(xo, ẋo)ẋo +No(xo, ẋo)+G fc = 0 (1)

• For the first equation, q =
[
q f1 q f2 ... q fk

]T ∈ Rnq

is the actuated joint position vector for the k fingers of
the hand, q fi ∈R

n fi being the actuated joint positions of
the finger i, τ ∈Rnq is the corresponding torque vector,
and Mh, Ch and Nh are respectively the stacked inertia
matrix, Coriolis, centrifugal and viscous friction matrix
and gravity vector of the k fingers of the hand, Jh ∈
Rnc×nq the hand Jacobian (with nc the dimension of the
contact frame), and fc ∈ Rnc the contact forces applied
to the object.

• For the second equation, xo ∈ Rno a local coordinate
of the object, with no = 6 in 3D (no = 3 in 2D) the
dimension of the object coordinate, Mo ∈ Rno×no the
inertia matrix, Co ∈ Rno×no the Coriolis and centrifugal
matrix, No ∈ Rno the gravity vector, G ∈ Rno×nc the
grasp map relating the contact frames to the object
frame.

The grasping of the object by the fingers is defined by the
following constraint:

Jh(q,xo)q̇ = GT ẋo (2)

According to (1)-(2), the system motion can be formulated
at the object level as follows (see [14] for more details):

M(q,xo)ẍo +C(q,xo, q̇, ẋo)ẋo +N(q,xo, q̇, ẋo) = GJ−T
h τ (3)

with:

M = Mo +GJ−T
h MhJ−1

h GT (4)

C =Co +GJ−T
h ChJ−1

h GT +GJ−T
h Mh

d
dt
(J−1

h GT ) (5)

N = No +GJ−T
h Nh (6)

In the following, the dependency on q, q̇, xo, ẋo is dropped
in the notations for ease of reading. Equations (2)-(6) are
valid under the following assumptions:
A1 The system is not redundant, i.e. there is no internal

movement of the fingers for a fixed position of the
object. In this case, the hand Jacobian Jh is square
and invertible. This assumption could be relaxed with a
model taking into account the joint redundancy [14].

A2 The contact points are fixed, which implies that G
is constant. This assumption is naturally made with
(2), and will be relaxed later in the paper by taking
into consideration the uncertainties on the contact point
location.

A3 The contact forces remain in the friction cone. This
requirement must be satisfied by the control law.

A4 The grasp is manipulable, i.e. the desired motion can be
generated by the fingers. In this case, the hand Jacobian
is full row rank [14].

A5 The influence of the gravity term N is negligible or
compensated by the control law.

The linearization of (3) around an equilibrium point[
xoeq ẋoeq

]T leads to an LTI state-space representation [14]:

d
dt

[
x̃o
˙̃xo

]
=

[
Ono×no Ino×no

Ono×no −M−1
eq Ceq

][
x̃o
˙̃xo

]
+

[
Ono×nq

M−1
eq GJ−T

heq

]
τ (7)

where constant matrices Meq, Ceq and Jheq define respectively
the inertia matrix, Coriolis and centrifugal matrix, and the
hand Jacobian calculated at the equilibrium point. x̃o repre-
sents variation of xo around the equilibrium point. Equations
(7) and (2) are valid at the equilibrium point xoeq and qeq.

The control inputs of the proposed state-space represen-
tation (7) are the joint torques τ . These signals can be
expressed at the object level, allowing a direct connection
between the object position error and the joint torques
expressed at the object level. The transform between the
object and the joint spaces depends on the hand Jacobian
Jh and the grasp map G, and can be expressed by:

τ = ĴT
heq

G+u︸ ︷︷ ︸
τmotion

+ ĴT
heq

NGλ︸ ︷︷ ︸
τinternal

(8)

where Ĵheq is the estimate of the hand Jacobian at the
equilibrium point, and u the control input at the object level,
(.)+ defines the pseudo-inverse, which is not unique for the
grasp map G. The term NGλ ∈Ker(G), with NG a base of the
null space of G, is introduced, expressing the non-uniqueness
of the pseudo-inverse, and introducing a degree of freedom
λ , that can be used to fulfill the constraints A3.

The transform Jheq links the joint level to the contact
level and the transform G links the contact level to the
object level. The first contribution τmotion generates the
object motion, expressed at the object level, and the second
contribution τinternal generates internal forces, which do not
generate movement in the nominal case, but introduce an
additional degree of freedom to fulfill the constraints. This



decomposition of the torque vector is well known and was
proposed since the 1980s [15].

Injecting (8) in (7) leads to:

d
dt

[
x̃o
˙̃xo

]
=

[
Ono×no Ino×no

Ono×no −M−1
eq Ceq

][
x̃o
˙̃xo

]
+

[
Ono×nq

M−1
eq GJ−T

heq

]
ĴT

heq
G+u+

[
Ono×nq

M−1
eq GJ−T

heq

]
ĴT

heq
NGλ

(9)

If the estimation of the hand Jacobian is perfect, i.e. Ĵheq =
Jheq , the model becomes:

d
dt

[
x̃o
˙̃xo

]
=

[
Ono×no Ino×no

Ono×no −M−1
eq Ceq

]
︸ ︷︷ ︸

A

[
x̃o
˙̃xo

]
+

[
Ono×no

M−1
eq

]
︸ ︷︷ ︸

B

u (10)

In this specific case, the object motion is only affected by
the control input u. Equation (10) will be used for the design
of the control law.

B. Model of the Contact Uncertainties

Uncertainties on the contact point are due to modeling
errors and can be of different types [13], which affects the
grasp map G as follows:

G = G(δ ) (11)

with δ ∈ Pδ the vector of uncertainties. δ can be structured
as a translation and/or a rotation error, linear or nonlinear,
with Pδ being the set of all the uncertainties considered in
the system (linear dependence of G on δ is investigated in
[16]).

III. CONTROL SCHEME

Before presenting the control law, the task specifications
are formulated using invariant subspaces and related to syner-
gies. The objectives of the control law and the eigenstructure
assignment are then presented.

A. Task Specifications, Invariant Subspaces and Synergies

Fig. 2. Task specification: motion only on y-axis.

A task specification can be described as a motion of the
object, that can be mathematically defined as a subspace of

the object space. To clarify, we take an example in the 2D
cartesian space, In this case, the object-level positions are:

x̃o =
[
x̃x x̃y x̃θ

]T (12)

with x̃x, x̃y and x̃theta the difference between the equilibrium
point and the actual position in respectively the x-axis, the
y-axis and the orientation θ of the object.

Let us consider a case where the task consists in moving
the object through the y-axis without displacement through
the x-axis and without rotating (Fig. 2). Only x̃y should be
affected by this motion but not the other positions. This
decoupling objective can be defined as a subspace of the
object space:  x̃x

x̃y
x̃θ

 ∈ Tasky⇔

 x̃x
x̃y
x̃θ

=

0
1
0


︸︷︷︸

Sby

σy (13)

with σy the magnitude of the movement, Sby the subspace
of the object space selecting the x̃y state.

Thus, a task can be described as a subspace of the object
space. Specifications on the velocities can be added by con-
sidering σ̇ (as in section IV). To ensure a perfect trajectory
tracking of the task, its corresponding subspace should be
orthogonal to any other movement subspaces with respect to
the closed-loop hand/object system. This specification can be
defined as follows:

Sb
T

ACL Sb = 0 (14)

with Sb the complement set of Sb in the object space, and ACL
the state space matrix of the closed-loop system hand/object.

Let us note that a parallel can also be made with synergies.
The joint displacement vector q can be represented as a
function of fewer elements, collected in a synergy intensity
vector σ , which effectively constrain hand configuration in
a ns-dimensional manifold [4]:

q = Sσ (15)

with S ∈Rnq×ns the matrix of synergies, with ns the number
of synergies.

To clarify the concept of the synergies, we consider the
example in Fig. 2. The joint angles of the hand can be linked
to apply the movement of the object along the y-axis. This
motion is a subspace of the object space and in the linear
case, the transform J−1

heq
GT links the joint level to the object

level, so this motion is a subspace of the joint space, and
deducing from (13):

q ∈ Tasky⇔ q = (J−1
heq

GT )+Sby︸ ︷︷ ︸
Sy

σy (16)

Thus, Sy can be one line of the matrix S and σy can be one
component of the synergy intensity vector σ , and the synergy
space can be specified from task objectives.



B. Objectives of the Control Law

With respect to the proposed control input (8), the control
objectives are:
• Stability of the object. This objective consists in placing

the eigenvalues of the closed-loop system in a stable
region of the complex space.

• Trajectory tracking of the object. As seen in III-A, this
objective can be achieved by decoupling the system
according to the task specifications, by including the
constraints (14) in the specification of the controller.
The constraints can be fulfilled by placing the closed-
loop eigenvectors.

• Satisfying the system constraints, e.g. ensuring that the
contact forces remain in the friction cone. This objective
is achieved with the control input τinternal that generates
internal forces. In this paper, this part of the control law
is not considered (see [13] for more details).

• The previous objectives must be performed in presence
of contact uncertainties. The proposed control design
can be applied for a set of systems, which is equiva-
lent to achieve the previous objectives for the system
affected by a set of uncertainties.

In the view of the previous objectives, we choose a control
law by static feedback gain which will be designed by
eigenstructure assignment (Fig. 3).

+-

Fig. 3. General control scheme.

C. Eigenvalue Placement

As seen before, the motion control is ensured by the signal
u. The proposed state feedback is:

u = e−Lcx (17)

with e the input of the closed-loop system and Lc the state
feedback matrix.

The closed-loop state-space equation becomes:

ẋ = (A−BLc)x+Be (18)

with A and B from (10).
The object motion dynamics is specified by pole place-

ment, i.e. by choosing the eigenvalues of the matrix A−BLc.
This can be achieved by defining a stable D-region in the
complex space. Classically, three different forms can be used
to specify the stable D-region [11]: the left half-plane, the
cone and the disc (Fig. 4).

The D-region can be described by LMI constraints de-
pending on P=PT � 0 a square positive-definite matrix (”�”
stands for positive definite), which defines the Lyapunov

stability, A the state matrix to stabilize, Y = LcP defining
the state feedback, and the parameters α , r and Φ defining
respectively the left half-plane, the disc and the cone [11].
The LMI problem consists in finding P and Y under the
following constraints:
• The left half-plane defined by α:

(AP−BY )+(PAT −Y T BT )+2αP≺ 0 (19)

The choice of α > 0 avoids instability and sets minimal
dynamics convergence.

• The disc centered in 0 with a radius r:[
−rP AP−BY

PAT −Y T BT −rP

]
≺ 0 (20)

The disc radius is chosen according to the maximal
dynamics of the system, e.g. due to the hardware
sampling period constraint or minimal noise influence.

• The cone centered in 0 with an angle Φ (with X ′ =
AP−BY ):[

sin(Φ)(X ′+X ′T ) cos(Φ)(X ′−X ′T )
cos(Φ)(X ′T −X ′) sin(Φ)(X ′+X ′T )

]
≺ 0 (21)

This sector allows to constrain the damping ratio.

Fig. 4. LMI Regions [11].

The pole placement can be achieved by solving the fea-
sibility problem: finding P and Y such that (19) to (21) are
true. Then, the state-feedback matrix is deduced:

Lc = Y P−1 (22)

D. Eigenstructure Assignment
The eigenstructure assignment aims to place the eigenval-

ues and the eigenvectors of the closed-loop system. As seen
in the previous section, the placement of the eigenvalues
ensure the stability of the system, and the eigenvectors,
the last degree of freedom in the feedback synthesis, is
used to fulfill the second objective: decoupling the system
according to task specifications. This can be done by defining
invariant subspaces Sbi related to the task specifications and
the problem can be expressed as follows:

find Lc
s.t. for all i

Sb
T
i (A−BLc)Sbi = 0

end for

(23)



(23) means the subspaces Sbi are invariant through A−BLc,
but does not ensure a stable feedback control.

To solve the stability issue, the pole placement with (19)-
(21) and the decoupling (23) should be satisfied under the
constraint Y = LcP. Thus, this problem can be solved by:

min
Y,P,Lc

ε

s.t. ä (19)− (21) are satisfied
ä for all i

Sb
T
i (A−BLc)Sbi = 0

end for
ä − ε ≤ Y −LcP≤ ε

(24)

The first constraint finds a controller Y P−1 that ensures
the stability of the closed-loop system, the for-loop finds
a controller Lc that ensures the decoupling of the subspaces,
and the last constraint ensures the convergence between Lc
and Y P−1. This problem is nonlinear and the algorithm
contains LMIs and BMIs.

E. Algorithm Coping with Uncertainties

If uncertainties affect the system linearly, the classical
method could be to write it in a Linear Parametric Varying
(LPV) form. Here, the uncertainties on the contact points
affect the grasp map, and the system representation (10)
is not linear according to the matrix G, thus it is not
straightforward to formulate the model as a LPV system.
Instead, the following approach is used.

A set PΣ of all possible state-space representations Σ =
(A,B,C,D) depending on the uncertainties is defined:

Σ ∈ PΣ⇔{∀δ ∈ Pδ ,Σ := {ẋ = A(δ )x+B(δ )u}} (25)

Knowing that the uncertainties do not affect linearly this
set, no assumption can be made about the convexity of PΣ.
The uncertainties can be taken into account by discretizing
the set Pδ , implying a discretization of PΣ and defining set
of systems that is called thereafter discretized-PΣ systems.

As the state matrix A(δ ) varies according to the uncer-
tainties, it is impossible to find decoupled subspaces for all
the discretized-PΣ systems. Therefore, the algorithm proposed
here considers invariant subspaces Sbi only with the system
unaffected by uncertainties, but stability is ensured for all
the discretized-PΣ systems. The optimization problem can be
formulated as follows:

min
Y,P,Lc

ε

s.t. ä for all δi ∈ Pδ

(19)− (21) are satisfied for A(δ ),B(δ )
end for

ä for all Sbi

Sb
T
i (A0−B0Lc)Sbi = 0

end for
ä − ε ≤ Y −LcP≤ ε

(26)

The first for-loop finds a controller Y P−1 that ensures the
stability of all the discretized-PΣ systems, the second for-
loop finds a controller Lc that ensures the decoupling of

the subspaces for the nominal system (A0,B0), and the last
constraint ensures the convergence between Lc and Y P−1.

IV. NUMERICAL EXAMPLES AND SIMULATIONS

This section presents the simulation results of the proposed
control scheme for different examples. Simulations are done
on Matlab R© 2013a and the optimization problem is formu-
lated with the YALMIP toolbox using the SeDuMi 1.3 and
PENBMI 2.1 solvers [17].

A. 2D uncertain manipulation system

The following 2D example relates to a grasp with two
contact points. The contact forces fc = [ fc1x

fc1y
fc2x

fc2y
]T ∈

R4 have to satisfy the following Coulomb friction constraints
(Fig. 5): 

−1 −µ 0 0
1 −µ 0 0
0 0 −1 −µ

0 0 1 −µ




fc1x
fc1y

fc2x
fc2y

<


0
0
0
0

 (27)

with the friction coefficient µ = 1. The grasp map is:

G0 =

 0 −1 0 1
1 0 −1 0
ro 0 ro 0

 (28)

with the length of the rectangular object fixed to ro = 20mm.
Two types of uncertainties are considered:
E1 Translation error (Fig. 5a). The direction of the contact

force is considered as known, but the location of the
contact point is uncertain. The grasp map becomes:

Gr =

 0 −1 0 1
1 0 −1 0
ro 0 ro δ

 (29)

where δ =±5mm represents the translation uncertainty
of the second contact point.

E2 Orientation error (Fig. 5b). The location of the contact
point is considered as known but the orientation of the
contact force is uncertain. The grasp map becomes:

Gr =

 0 −1 sin(θδ ) cos(θδ )
1 0 cos(θδ ) sin(θδ )
ro 0 rocos(θδ ) −rosin(θδ )

 (30)

with θδ =±10◦ being the orientation error of the second
contact point.

B. Control Design

The motion control was designed with the following D-
region parameters (first objective):
• α = 0.4, which ensures Re(pole) < −0.4, providing a

stability constraint and minimal dynamics with maxi-
mum overshoot at 7.5 seconds for the slowest modes.

• Φ = 0.52 rad, which guarantees a minimum damping
ratio of ξ ' 0.86.

• r = 7, which sets the maximal dynamics with maximum
overshoot at 0.43 seconds for the fastest modes.
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Fig. 5. Proposed example: a) translation error and b) rotation error

The second proposed objective consists in decoupling
the movement in the cartesian space. Researches in neuro-
sciences have proved that human reaching movements tend
to follow roughly straight lines in the cartesian space [18],
so decoupling the movement in this space seems to be a nat-
ural way to manipulate dexterously. Moreover, sensitivity to
uncertainties is minimized when state decoupling is searched
in linear systems [10]. The corresponding subspaces are:

Sbx =


1 0
0 0
0 0
0 1
0 0
0 0

 ; Sby =


0 0
1 0
0 0
0 0
0 1
0 0

 ; Sbθ =


0 0
0 0
1 0
0 0
0 0
0 1

 (31)

In each subspace Sbi, the position is related to its correspond-
ing velocity and decorrelated from the other axis positions
and velocities.

C. Results

The algorithm (26) is tested for E1 and E2. A solution
can be found in 3 to 45 seconds (the algorithm is applied
offline), and multistart evaluation should be done to find the
best decoupling system. In E1 and E2, ε is minimized to
10−13.

First, the controller obtained with the algorithm (26) is
tested on the nominal system (linearized system without
uncertainties) (Fig. 7). Different movements are applied to
the system: a combined movement (d), a movement on the
x-axis (a), on the y-axis (b), and a last one with just a rotation
of the object (c). This simulation shows that the system is
stable and that the motions are perfectly decoupled in the
cartesian space.

Secondly, the control law is tested on the nonlinear system
where only a motion on the x-axis is specified (Fig. 8 and
6). The first simulation (blue curve in Fig.8 and 6.a) is
achieved without uncertainties on the contact point. Both
show the effect of the linearization on the decoupled system.
When the system moves away from the equilibrium point,
the decoupling is less efficient. In Fig. 6.a, we see clearly that
near the equilibrium point, the motion is performed along the
x-axis only, but when the system approaches its final desired
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Fig. 7. Evaluation of the decoupling on the linearized system without
uncertainties

position, it is affected by a re-orientation and a motion on
the y-axis.

The second and third simulations (dashed red and dotted
green lines in Fig.8 and 6.b-c) are done in presence of
uncertainties on the contact points (E1 and E2). In Fig.6.b,
the contact surface is affected by the uncertainties and in
Fig.6.c, the contact point is uncertain. The two examples
affect the system decoupling. Fig. 8 shows that orientation
and motion on the y-axis diverge from zero sooner than
when the system in not affected by uncertainties. Thus,
the decoupling becomes less efficient sooner in presence of
uncertainties. However, the error along the y-axis is smaller
than 4 mm for a translation of 30 mm in the x-axis, and the
error in rotation is less than 0.2 rad. This result could be
expected since the algorithm considers only the decoupling
of the nominal system.

However, even in presence of uncertainties, the object
motion is always stable, as specified in the design of the
controller.
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V. CONCLUSIONS

The paper presents a new control law that enables trajec-
tory tracking according to task specifications. The objectives
at the object level are related to invariant subspaces through
the closed-loop system and the link with the synergies is
shown. From these relations, the design of a controller is
proposed based on a new eigenstructure assignment, where
the pole placement allows to stabilize the system hand/object
with given closed-loop dynamics and robustness properties,
and the eigenvectors placement allows to decouple the sys-
tem.

Results show a perfect decoupling for the linearized sys-
tem. When evaluating on the complete nonlinear system, the
effect of the linearization becomes visible and the decoupling
becomes less efficient when the system moves away from the
equilibrium point or when it is affected by uncertainties. Next
work should include nonlinearities in the formulation of the
decoupling problem or consider different linearized points.
However, stability is always ensured, even in presence of
uncertainties.

Next step will be in the implementation and evaluation of
the proposed controller in a practical case.

REFERENCES

[1] J. Martin and M. Grossard, “Design of a fully modular and backdriv-
able dexterous hand,” The International Journal of Robotics Research
(IJRR) Special Issue on ’Mechanics and Design of Robotic Hands’,
vol. 33, no. 5, pp. 783–798, 2014.

[2] A. Bicchi, “Hands for dexterous manipulation and robust grasping: A
difficult road toward simplicity,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 6, pp. 652–662, 2000.

[3] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview
of dexterous manipulation,” in IEEE International Conference on
Robotics and Automation, 2000, vol. 1. IEEE, 2000, pp. 255–262.

[4] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the
role of hand synergies in the optimal choice of grasping forces,”
Autonomous Robots, vol. 31, no. 2-3, pp. 235–252, 2011.

[5] M. Gabiccini, E. Farnioli, and A. Bicchi, “Grasp analysis tools for
synergistic underactuated robotic hands,” The International Journal of
Robotics Research, 2013.

[6] M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” The Journal of Neuroscience, vol. 18, no. 23, pp. 10 105–
10 115, 1998.

[7] T. Wimbock, B. Jahn, and G. Hirzinger, “Synergy level impedance
control for multifingered hands,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2011, pp. 973–979.

[8] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory
of motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226–
1235, 2002.

[9] E. Todorov and Z. Ghahramani, “Analysis of the synergies underlying
complex hand manipulation,” in Annual International Conference of
the Engineering in Medicine and Biology Society, vol. 2. IEEE, 2004,
pp. 4637–4640.

[10] J. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment
in linear state feedback,” International Journal of Control, vol. 41,
no. 5, pp. 1129–1155, 1985.

[11] M. Chilali and P. Gahinet, “Hinf design with pole placement con-
straints: an LMI approach,” IEEE Transactions on Automatic Control,
vol. 41, no. 3, pp. 358–367, 1996.

[12] A. Satoh and K. Sugimoto, “An lmi approach to gain parameter
design for regional eigenvalue/eigenstructure assignment,” in IEEE
Conference on Decision and Control. IEEE, 2006, pp. 5778–5783.

[13] A. Caldas, A. Micaelli, M. Grossard, M. Makarov, P. Rodriguez-
Ayerbe, and D. Dumur, “Object-level impedance control for dex-
terous manipulation with contact uncertainties using an LMI-based
approach,” in IEEE International Conference on Robotics and Au-
tomation, 2015. (accepted).

[14] R. M. Murray and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC press, 1994.

[15] J. Kerr and B. Roth, “Analysis of multifingered hands,” The Interna-
tional Journal of Robotics Research, vol. 4, no. 4, pp. 3–17, 1986.

[16] A. Caldas, A. Micaelli, M. Grossard, M. Makarov, P. Rodriguez-
Ayerbe, and D. Dumur, “New metric for wrench space reachability
of multifingered hand with contact uncertainties,” in IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
July 2014, pp. 1236–1242.

[17] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
matlab,” in IEEE International Symposium on Computer Aided Control
Systems Design, 2004, pp. 284–289.

[18] J. R. Flanagan and A. K. Rao, “Trajectory adaptation to a nonlinear
visuomotor transformation: evidence of motion planning in visually
perceived space,” Journal of neurophysiology, vol. 74, no. 5, pp. 2174–
2178, 1995.


