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Abstract: A method to globally optimize the parameters of the controller of an inertially
stabilized platform is presented. This platform carries an electro-optical system. The quality of
the produced image is obviously influenced by the capacity of the controller to compensate for
the unwanted motion of the platform. The motion Modulation Transfer Function (motion MTF)
measures the amount of blur brought into the image by those parasite movements. The controller
is tuned by minimizing a criterion which includes the motion MTF. However, evaluating this
criterion is time-consuming. Using an optimization method that needs numerous evaluations
of the criterion is not compatible with industrial constraints. Bayesian optimization methods
consist in combining prior information about the criterion and previous evaluation results
in order to choose efficiently new evaluation points and reach the global minimizer within a
reasonable time. In this paper, a Bayesian approach is used to optimize the motion MTF-based
criterion. The results are compared with a local optimization of the same MTF-based criterion,
initialized with an acceptable initial point. Similar performances are achieved by the proposed
methodology, without requiring an initialization point.

Keywords: Expensive to evaluate functions, Global optimization, Image motion compensation,
Inertial Platform, Modulation Transfer Function, Parameter optimization

1. INTRODUCTION

The image quality of an electro-optical system such as
an Inertially Stabilized Platform (ISP) can be measured
using the Modulation Transfer Function (MTF). The
MTF represents the degradation of the contrast over
spatial frequencies (see Holst (2008)). Several phenomena
contribute to the image degradation and each of them is
associated with an MTF. The system MTF is the product
of these elementary incoherent MTFs. In the Line of Sight
(LoS) stabilization field, the quantity of interest is the
motion MTF.

1.1 The considered plant

The LoS is the direction an optical sensor is aiming at.
The role of the ISP is to hold the LoS of the optical
sensor relative to inertial space. Missile guidance and
astronomical telescopes are examples of ISP applications
(Hilkert (2008)). The system considered here consists of
two orthogonal gimbals allowing two rotations in pitch
and yaw, see Fig. 1. These two rotations are supposed
to isolate the imager from the external movements of the
platform. Nevertheless, in spite of a careful mechanical
design, disturbances appear. A feedback loop including a
gyrometer is thus added to each rotational axis to counter

Fig. 1. Drawing of the studied ISP (two rotational axes)

these disturbances. Both the imager and the gyrometer
are mounted directly on the inner gimbal. For sake of
simplicity, the two rotational movements are considered to
be decoupled. Thus, only the rotation in pitch is studied
in the sequel.

The block diagram in Fig. 2 shows the model of the
system used for the study: ωref is the absolute rate
reference input. For our stabilization application, it is



Fig. 2. Block diagram of the studied ISP (single rotational
axis)

set to 0. The friction disturbance Td is modelled as a
Dahl friction torque which is representative enough of the
friction phenomon observed in the studied system while
requiring less coefficients to identify than a LuGre model
(see Olsson (1998)). The disturbance input ωd is a rate
disturbance caused by the flexibility of the structure which
amplifies part of the vibrating environment. The model
includes motor back-EMF, though its influence is strongly
reduced by the current loop described below. The output
θLoS is the angular position of the system. Its desired value
is taken equal to 0 here.

In what follows, s is the Laplace variable. Note that for
sake of confidentality, numerical values are normalized in
the sequel: s is divided by a constant.

The actuator is a DC motor. Its current output is con-
trolled in a closed-loop set-up. The current controller is a
PID with a roll-off filter whose coefficients will not vary
during the tuning process. The transfer function of the
closed-loop motor Hm is:

Hm(s) =
A(s)

A(s) +B(s)
, (1)

where A(s) = 0.012(1 + 0.088s)(1 + 0.001s)(1 + 0.126s),
and B(s) = (1 + 0.095s)(1 + 0.031s)× 0.088s× 0.001s.

The parameter KT is the torque constant (0.9 N·m/A) of
the motor. The mechanical transfer function comes down
to a pure inertia, as shown in (2). Mechanical resonant
modes are not taken into account at this stage of the study:

Hmec(s) =
1

0.4s
. (2)

The gyrometer is modelled as a second-order low-pass filter
with a 0.7 damping. A white noise with a Q rad/s/Hz2

PSD is present up to the gyrometer bandwidth.

Finally, the controller has a transfer function given by:

KP (s) = K × 1 + aTs

1 + Ts
×

s2

ω2
i

+ 2ξis
ωi

+ 1

s2 × ( s2

ω2
ro

+ 2ξros
ωro

+ 1)
. (3)

Among the specifications is the necessity to have a zero
steady state error for the angular position in response to
a torque disturbance step used as a friction model at first
approximation. According to the final value theorem, a
double integrator is required in the controller to ensure
such a zero position error. A second-order numerator,
adjusted with ωi and ξi is added to smooth the influence
of the double integrator and preserve sufficient stability
margins. The lead phase function obtained by choosing
a > 1 is used to increase the stability margins. The roll-off
filter with parameters ωro and ξro is added to reduce the
effect of high-frequency noise and increase the robustness
towards neglected dynamics.

The vector x = [K ωi ξi a T ωro ξro] gathers the controller
parameters to tune.

1.2 The motion MTF

The motion MTF associated with a given controller is
calculated using the simulated LoS movements over time
and a characteristic time constant τ , related to the inte-
gration time or the thermal constant of the optical sensor,
depending on the sensor technology. During sequences of
duration τ , a Dirac function is animated with the LoS
movements on a matrix. This forms a histogram called the
Point Spread Function (PSF). The modulus of the PSF
Fourier transform is the MTF. As the simulation time of
the plant is usually longer than τ , a network of MTFs is
obtained. The choice is made here to build one single curve
from this network such that ρ percents of the MTFs are
above it. This curve will be considered as the motion MTF
for the x chosen in the simulated system.

However, this way of evaluating the motion MTF from
the LoS movements does not take into account the low-
frequency content of the movement. That component cre-
ates lag between the different images, which alters the
overall visual quality of the output. This lag could be
treated by adding a criterion Cd on the movement of the
LoS to tune the controller. The criterion is built on the
following principle: the human eye has an integration time
τeye of approximately 0.1s (see Holst (2008)). The frame-
to-frame motion during this time interval will create blur
for the eye. The chosen criterion consists in limiting the
peak-to-peak angular motion during intervals of τeye sec-
onds to half the angular sector seen by one pixel. The very
low frequency movement will be seen as a movement of the
image and could be dealt with using signal processing.

The LoS controllers are usually tuned on classical con-
trol specifications as in Ghaeminezhad et al. (2014) and
Roshdy et al. (2012) or on criteria derived from MTF high-
level specifications (see ECOM (1975)). These derived cri-
teria may be conservative. The motion MTF is then merely
used as a verification tool for already tuned controllers. In
this article, the choice is made to build and optimize an
image-quality-based criterion including the motion MTF
as in Anderson (2010), as well as a criterion Cd to take
into account the integration time of the human eye. In the
next section, the optimization formulation is described.
In section 3, the adopted Bayesian approach is detailed,
and in section 4, numerical results are displayed. Section
5 concludes with the results and deals with future works.

2. THE OPTIMIZATION FORMULATION

2.1 The principle of the tuning process

The principle of the tuning process is illustrated in Fig.3

The system described in Fig. 2 is initialized with one point
x0 or a set of NI points xi, i = 1, ..., NI depending on
the optimization method employed. A Simulink simulation
provides the LoS movement over time for the initial con-
troller(s). A motion MTF is calculated from this movement
and fed into the cost function as well as d (the maximum
peak-to-peak LoS displacement during intervals of τeye



Fig. 3. Principle of the tuning process of the LoS controller

seconds), u and i, respectively the input and the output
of the motor. An optimization algorithm then chooses
the next set of parameters for the conbtroller KP . The
tuning process goes on until the stopping criterion of the
optimization algorithm is met.

2.2 The cost function

The image-quality based cost function consists of two main
parts. The first part is formed by the criterion on MTF,
CMTF , which accounts for the level of blur introduced
into the image during τ and the criterion Cd on frame-
to-frame motion. The CMTF idea is to bring the motion
MTF above a given reference curve. The motion MTF is
discretized in N points over the spatial frequency range
and compared to the reference curve. Once the motion
MTF is above the reference curve on a particular spatial
frequency fs, CMTF is set to zero for fs. The idea of Cd is
to limit the amplitude of the low-frequency motion of the
LoS during τeye. Once the maximum peak-to-peak angular
motion of all sequences of length τeye is less than half of the
Instantaneous Field Of View of the sensor (IFOV), that is
to say less than half of the angular sector seen by one pixel,
Cd becomes negligible. The second part of the cost function
is formed of penalties: as the studied ISP is an on-board
system, mean and instantaneous power consumptions are
taken into account. Moreover, the controller should ensure
stability robustness towards parametrical variations or
neglected dynamics. The modulus margin mm is chosen
to quantify stability margins. Its expression is:

mm = min
ω
‖1 +HOL(jω)‖ =

1

‖ 1
1+HOL

‖∞
, (4)

where HOL is the transfer function of the open-loop
system.

The calculation of the total cost function is detailed below.

Specifications

• imax < Imax with Imax = 2A
• p = mean(u× i) < P with P = 20W
• mm > MM with MM = 0.5
• d < 1

2θ0 with θ0 the IFOV
• MTF > MTFMIN with MTFMIN the reference

curve

Calculation of the cost function

EV = max(Re(eigenvalues of the closed-loop system))

If EV < 0

(1) Simulation of the system
(2) Penalty functions calculation

• peni = exp( imax−Imax

Imax
)

• penp = exp(p−PP )

• penmm = exp(MM−mm
MM )

(3) Image-quality criterion calculation
• Cd = exp( 2d−θ0

θ0
)

• CMTF =
∑N
i=1(MTFi −MTFMINi)

2
+

with z+ = max(0, z)
(4) Cost function calculation

Cf = − 1
Cd+CMTF+peni+penp+penmm

Else Cf = EV

2.3 The optimization algorithm

A local optimization algorithm is obviously dependent on
the chosen initial point which has to be cleverly designed to
hope to be close to the global optimum of the cost function.
The choice of a ”good” initial candidate requires an experi-
enced control engineer. Moreover, as the cost function may
have several local optima, a local optimization algorithm
may miss the global optimum.
Using a global optimization algorithm like a genetic al-
gorithm would allow to explore the space of parameters.
Evolutionary algorithms have proved efficient in optimiz-
ing complex criteria to tune controllers (see Feyel (2013),
Sandou (2013)). However, a global algorithm often needs
many evaluations of the cost function in order to con-
verge and the more optimization parameters, the higher
the number of evaluations needed. Simulating a simplified
system and calculating the MTF associated with a given
controller takes from 30s up to 1 minute. Taking the
population size (Ps =200) and the maximum number of
allowed generations (Ga =20) in Anderson (2010), the
number of evaluations of the cost function is in the order of
magnitude of Ps ×Ga. Considering the evaluation time of
the cost function to be 30s, running an optimization with
a genetic algorithm would take about a day. Increasing
the number of parameters of the controller would mean
increasing the computational time even more.
Bayesian optimization methods are used to optimize black-
box, expensive-to-evaluate functions. It offers the possibil-
ity to globally optimize a function with a reduced budget
of evaluations by using a surrogate model, while assessing
the uncertainty linked with the use of a model.

3. THE BAYESIAN APPROACH

In the Bayesian approach, the cost function Cf is given a
prior distribution, in the form of a random process ζ. This
prior distribution is combined with previous evaluation
results of Cf , (x1, Cf (x1), ..., xn, Cf (xn)), noted Fn, to
form a sampling criterion. This criterion is supposed faster
to compute than Cf . The maximizer of this sampling
criterion is the new evaluation point for Cf , and it will
be added to the evaluation results. The algorithm goes on
as long as the evaluation budget B of Cf is not exhausted.

The Expected Improvement (EI) criterion ρn, is chosen
to be the sampling criterion. It offers a tradeoff between
exploration of the parameter space and exploitation of
promising areas while being easily calculable under some
assumptions (Jones (1998), chapter 2 in Benassi (2012)).
Its definition is given in (5):

ρn(x) = En((mn − ζ(Xn+1))+|Xn+1 = x), (5)



where mn is the current minimum known value of the cost
function and En the conditional expectation given Fn.

The random process ζ is chosen to be Gaussian; ζ, condi-

tionned with Fn, has a mean ζ̂n(x) and a variance s2n(x).

One advantage to choose ζ to be Gaussian is that ζ̂n(x)
and sn(x) are easy to compute using Kriging theory. Their
expressions are given in Jones (2001). Another advantage
is the existence of an analytical form for ρn (6), expressed
with Φ, the normal cumulative distribution function:

ρn(x) = sn(x)Φ′( δn(x)sn(x)
) + δn(x)Φ( δn(x)sn(x)

) (6)

with δn(x) = mn − ζ̂n(x), the improvement with respect
to the current minimum.

The principle of the approach is summed up in Fig.4.

In practice, a covariance function k for ζ has to be
defined. As information on Cf is not readily available,
the covariance function is taken in a parametrized class
of covariance functions. The class of Matérn covariance
functions is chosen for this paper. The Matérn covariance
functions are widely used in Bayesian kriging methods
because of the possibility they offer to model a wide class
of problems (Pilz (2008)). The measure of the distance
between two vectors of parameters xa and xb is noted h:

h(xa, xb) =

√√√√ D∑
i=1

(xai − xbi )2
β2
i

, (7)

where D is the length of xa and xb and is equal to 7 here.

The positive scalars βi are range parameters of the co-
variance, that is to say characteristic correlation lengths:
the smaller the βi, the more the cost function is supposed
likely to vary in the ith direction.

The covariance function k is given by:

k(xa, xb) =
σ2

2ν−1Γ(ν)
(2ν1/2h)νKν(2ν1/2h), (8)

where, for the sake of conciseness, h(xa, xb) is abbreviated
in h.

Γ represents the Gamma function and Kν is the modified
Bessel function of the second kind, of order ν. σ2 is a
variance parameter. The parameter ν is linked with the
smoothness of the cost function. The parameter ν is chosen
fixed here, equal to the usual value of 5/2.

The parameters (σ, β1, ..., βD) are estimated by restricted
maximum likelihood of the observed data (see Santner et
al. (2003) for more details on the restricted maximum
likelihood). This estimation is performed after each new
evaluation of the cost function Cf , according to the prin-
ciple of the EGO algorithm (see Jones (1998)).

The Kriging operations to compute ζ̂n(x) and sn(x), as
well as the estimation of the parameters (σ, β1, ..., βD) are
performed with STK (see Bect, Vazquez et al. (2014)),
that can be distributed and modified under the terms of
the GPLv3 licence.

For more details on Kriging and on the Bayesian approach,
see Jones (1998), Benassi (2012) and references therein.

Fig. 4. Principle of the Bayesian optimization

The EI criterion has to be maximized to find the next
evaluation point of Cf . Several methods, listed in chapter
4 of Benassi (2012) have been tested on this problem.
The method presented here was chosen for its ease of
implementation: the EI criterion is simply maximized over
a maximin Latin Hypercube Sampling (maximin LHS)
grid of 105 points. Details on the maximin LHS are
given in Santner et al. (2003). The chosen number of
points in the grid is a tradeoff between representativity
and available computer memory. A local optimization,
using the Matlab fmincon interior-point algorithm is then
launched, initialized with the best point found on the grid.
The next point of evaluation of Cf is the best point found
by the local optimization of the EI criterion.

4. NUMERICAL RESULTS

The initial design is a maximin LHS grid. Usually, the
number of points included in the initial design is equal
to 10 times the dimension of the optimization parameters
(see Benassi (2012)). Thus, here, the initial LHS grid
consists of 70 points. 500 evaluations of the cost function
are further allowed in the budget of evaluations B. The
results of the optimization are compared with the result
of a local optimization method, previously presented in
(Frasnedo (2015)). The aim of the local optimization was
to use the image-quality based criterion to improve a
”good” controller, tuned beforehand on classic control
specifications. This method will be named ”Method 1”
whereas ”Method 2” will refer to the global optimization
algorithm using a Bayesian approach, which is run without
any knowledge of an initial available controller.

The final set of parameters xM1 of the controller optimized
by using Method 1 is given by:

xM1 = [43880 0.30 0.89 1.8 0.377 274 0.73]. (9)

The final set of parameters xM2 of the controller optimized
by using Method 2 is given by (10):

xM2 = [45068 0.27 0.33 1.15 0.297 62 0.33]. (10)

xM1 and xM2 coefficients are close, except for the roll-off
pulsation ωro, which is lower in the vector of parameters
found by Method 2 and the damping coefficients ξi and
ξro.

The MTFs of both systems respect the requirement of
being above the reference curve (see Fig. 5). The MTF of
the system with the controller tuned by Method 2 (noted
MTF2) is slightly better than the MTF of the system
whose controller was tuned by Method 1 (noted MTF1).
The level of blur resulting from the LoS movement during
the time constant τ of the sensor is thus lower with the
controller optimized by Method 2.



Fig. 5. MTF1 and MTF2 and the reference MTF over
spatial frequency

Fig. 6. LoS movements associated with Method 1 and
Method 2 over time

Image quality for the human eye is also impacted by
the frame-to-frame motion during the integration time
τeye. The LoS displacements associated with the controller
issued from Method 1 and with the controller issued from
Method 2 are displayed in Fig. 6. In this stabilization
problem, the θLoS desired value is arbitrarily taken to
0. The displacements shown in Fig. 6 thus represent
the position error over time. The difference between LoS
movements associated with Method 1 and Method 2 is
represented in Fig. 7 (note that the amplitude of the
LoS movements is normalized for confidentiality reasons
in Fig. 6 and Fig. 7). The initial controller used to
initialize Method 1 strongly violated the specification on
maximum peak-to-peak movement with d equal to 7.3 θ02
instead of the desired θ0

2 . The final controller significantly
reduced the gap between the obtained value for d and
the specified value (see Frasnedo (2015)). Though the
controller optimized through Method 2 still does not
comply with the given specification on d, it further reduces
this gap (see table 1).

Both controllers comply with the constraint on the stabil-
ity margin. The open-loop system with parameters xM1

and the open-loop system with parameters xM2 are repre-

Fig. 7. Difference between LoS movements associated with
Method 1 and with Method 2 over time

Fig. 8. Open-loop system with xM1 controller and open-
loop system with xM2 controller

sented in Fig. 8. The gain and phase margin are displayed
in Fig. 9: the gain margin is equal to 9.37dB and the phase
margin is equal to 29.9 degrees for the open-loop system
with the xM1 controller while the xM2 controller allows
a 5.82 dB gain margin and a 43.4 degrees phase margin.
On the whole, the xM2 controller allows a better modulus
margin than the xM1 controller (see table 1).

The instantaneous power consumption, measured by imax
and the mean power consumption, quantified by p are
below the constraints in both cases (see table 1).

The execution time of Method 1 is 3h10 on an Intel(R)
Core(TM) i7-26005 CPU (2.8GHz), with 378 evaluations
of the cost function. The execution time of Method 2
is 2h40 on the same computer, with 570 evaluations of
the cost function. The fact that more evaluations of the

Table 1. Penalty and image criteria values

Penalties and image criteria Goal Method 1 Method 2

imax <2A 0.36 A 0.33 A
mm >0.5 0.50 0.52
p <20W 0.07 W 0.07 W

d < 1
2
θ0 1.8× θ0

2
1.6× θ0

2
CMTF 0 0 0



Fig. 9. Gain and phase margins with xM1 controller and
with xM2 controller

cost function have been carried out with Method 2 within
less time than with Method 1 can be simply explained:
when the algorithm finds a controller that stabilizes the
system, ”expensive” operations are launched (the Simulink
simulation of the system and the calculation of the motion
MTF) whereas it is not the case when the controlled
system is not stable. In the first case, 347 evaluations over
378 represent stabilizing controllers. In the second case,
among the 570 evaluations of the cost function, only 143
of them turn out to be stabilizing controllers. Method 2
explores the space of parameters and finally produces a
better controller in terms of cost function (see table 1)
than Method 1.

5. CONCLUSION

A method to globally optimize the position controller of
an ISP on an image-quality-based criterion has been pre-
sented. The final controller complies with the constraints
on power consumption and stability. Regarding the image-
quality-based performances, the controller reaches better
levels than a controller tuned with a local optimization
method, while taking less time to tune. Moreover, the op-
timization method based on a Bayesian approach does not
need to be initialized with an acceptable point, that has
been previously tuned by a control engineer. The results
seem promising and show the interest of the approach in
terms of computational time and quality of the solution.
However the specification on d is not reached whereas the
specification on MTF is largely met. In order to satisfy
both specifications, the next step could be to reformulate
the optimization problem as a multi-objective problem.
Another step could be to work with a more complex
controller, involving more parameters.
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