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Abstract  

Considering their increasing complexity, industrial systems are, in general, specified in a 

natural language. Especially transportation systems where the design phase results an 

ambiguous and laborious system specification. The objective of this paper is to present 

ScOLA, a formal modeling language based on scenarios and built on railway system 

specifications. Its novelty is based on its restriction to the core concepts of the specification 

and its multiple representations (textual and graphical), and also on its formal semantics. The 

language offers means to understand what the system was supposed to do and to be as well as 

to support a dialog with experts so to be sure that we got everything correctly. The 

methodology is applied on the railway automation solution Trainguard MT CBTC of Siemens. 
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Introduction  

 

Siemens is one of the leaders in the railway automation solutions. Especially France who 

holds an international center of competences for driverless systems, it drives the development 

of fully automated trains of first and second generation (respectively Val and Cityval) and 

Airval for airports transportation. Compared to the systems with drivers, automation allows a 

higher commercial speed and reduced intervals between trains. It also increases the 

operational flexibility with systems running full time. These systems have been deployed over 

more than 30 lines like the line1 and 14 in Paris; line L in New York...etc. 

The railway automation is based on the CBTC system which is based on principle that trains 

determine their positions themselves and transmit it to wayside equipments. CBTC assures 

that the space between trains is always safe [3]. Given the complexity of the system, their 

specifications spread over thousands of pages written in a natural language, which makes it 
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difficult for engineers to develop, validate and maintain. 

In theory, regarding the V-cycle (Figure1) for complex systems, systems must be defined in 

specifications, analyzed seeking for system acceptance and then developed and integrated and 

finally validated. But in practice, the system analysis phase is often let at the very last steps of 

the design which brings a late detection of errors and ambiguities. 

 

Figure 1 - Railway systems V-Cycle according to EN 50126 

At INCOSE [1], they promote multiple model-based system engineering (MBSE) 

methodologies. Their goal is to widen the use of models instead of documents in the system 

engineering process. They define MBSE as the formalized application of modeling to support 

system requirements, design, analysis, verification and validation, beginning in the conceptual 

design phase and continuing throughout development and later life cycle phases. They also 

promote the fact that modeling should be used at multiple levels of the system (operational, 

system and component). 

But often, modeling languages appeared and served as a graphical representation of the 

specification (UML, SysML[2],…). Mainly, two main approaches for system modeling 

appeared, the language centric, where focusing on a specific modeling language, users will 

use all the items provided by the language to model the system, the result was often redundant 

information. We also noticed multiple system centric methods where engineers will modify 

the language to fit the system. The result is a non-generic methodology. Then quickly, 

engineers expressed the need to give a meaning to the graphics. They wanted to reuse them 

for different purposes. But, given the fact than the languages did not clearly rely on a 

formalism made the operation difficult. With ScOLA we wanted to start by defining the 

adequate modeling formalism and then we created its graphical representation. In this article 

we present the language extracted from the formalism and its characteristics. 

  

Presentation of the TGMT CBTC railway system 

TGMT (Trainguard Mass Transit) is a Siemens customized CBTC (Communication Based 
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Train Control) system. A CBTC is railway signaling system that uses wired and wireless 

communications between the train and the track equipments for the traffic and infrastructure 

control. It significantly improved the way trains were localized. 

Old systems used the track occupancy to determine the position of a train while CBTC 

equipped trains determine independently their localization and forwards it to the track 

equipments. According to the IEEE 1474 standard, a CBTC system is a ”continuous, 

automatic train control system using high-resolution train location determination, independent 

of track circuits; continuous, high capacity, bidirectional train-to-wayside data 

communications; and trainborne and wayside processors capable of implementing Automatic 

Train Protection (ATP) functions, as well as optional Automatic Train Operation (ATO) and 

Automatic Train Supervision (ATS) functions.”[3]. 

The Trainguard MT CBTC [4] system is a SIEMENS solution for railway automation. It 

represents the operating system of a train. It is composed of two subsystems; the on-board and 

the wayside (see Figure2). 

The on-board subsystem controls the train doors, the braking, the train position, its speed and 

the stop with the information to the passengers. The wayside mainly determines the train 

movement authority according to their speed and position. 

 

Figure 2 - Trainguard Mass Transit CBTC system 

In the following sections, we present the modeling language based on the TGMT 

specification. 

 

ScOLA, a SCenario Oriented LAnguage for railway systems 

The approach we adopt to define ScOLA is the need for a system conceptualization, meaning 

that often models are created without any other goal than a graphical representation. Complex 

systems are composed of a description of its system architecture composed of the hierarchical 

decomposition of its components and functions, and a behavioral description. 

System architecture provides a description of the different parts of the system. It aims at 

simulating their behaviors and the way they interact. In order to understand the behavior of a 

complex system, different views of its architecture have to be investigated. These are the 
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following: 

 Functional view: the behavior of a complex system can be described through the actions 

or the functions the system has to realize in order to achieve its operational missions. The 

functional view aims at developing a breakdown structure of the system behavior in order 

to derive all its actions (main and subsidiaries) and all the relationships between them. 

 Organic view: using this view, one can describe the system by defining its physical 

components. From the main component, which is the system itself, all its physical 

components are derived. These components are the ones realizing, individually or in 

cooperation, the actions or functions obtained using the functional view. Like the 

functional view, the organic view is a top-down approach which allows an internal and 

concrete analysis of the system. 

 Event-based view: the relationships between the functions and the components of a 

system can be determined using event-based view. In general, the events are responsible 

for the data transmissions in the system. This representation is very useful for further 

system analysis because it allows differentiating between sensitive data and non-sensitive 

ones. 

 

Figure 3 - The System Architecture Definition 

Besides the three previous views, an identification of the stakeholders of the system under 

analysis is necessary. The system can be represented as a black box with different 

connections: 

 The inputs: they are the variables that interfere in the system behavior; 

 The outputs: they are the data and the results of the system’s deployment; 

 The supports: they are all the external stakeholders of the system. 

ScOLA is based on numerous concepts that contain the system structure and its behavior. 

These concepts have been determined through the system architecture and its multiple views 

(functional, organic and event-based). We can then define the system as a set of components C 

which execute functions, either individually or in cooperation. Let F be the set of all the 

functions in the system, and F(C) the set of functions in which component c, c ∈ C, is 

involved. Assuming that each component in C has its own resource to execute a function, a 

shared function f, f ∈ F , between two components c1 and c2 in the system is a function that 

requires the resources of both components to be completed, that is f ∈ F (c1) ∩ F (c2). 

However, if f requires the resource of component c1 solely, then f is not a shared function. 



Modelling the CBTC railway system with ScOLA  

 

5 

Moreover, as a function can be defined as an action which may requires input data, which 

may produce results that may, or may not, be useful for other functions, we consider that a 

function may be of one of the following types: 

  

 S_action: this is a simple action that requires the resources of a single component to be 

completed. This type of action may require input data that may be provided by one or 

several other actions. The input data, if there are any, are analyzed in order to generate an 

output result, after some process and calculation. 

 T_action: this is a shared action between two or more components. Such an action can be 

a data transmission between two components of the system, and thus requires the 

cooperation of both components. 

 Q_action: this type of action allows the system to choose between two or more alternative 

behaviors. Typically, a Q_action can be a test which has to be run on data in order to 

choose which action to proceed with in the next step. 

Often the functions describing the behavior of a system are dependent, and thus have to 

respect a precedence order to receive adequate and coherent information. We consider three 

types of relationships between functions: 

 Precedence: the functions have to be completed sequentially. This implies that a function 

has to wait the completion of another function, before starting. 

 Parallelism: the execution order of two functions is not important. In this case, one can 

proceed before the other, independently. Clearly, such a relationship implies that the 

functions do not share the resources. 

 Preemption: after a Q_action, a function among a set of two or more is chosen to proceed. 

In this case, the other functions are discarded. 

  

Because the different views of the system architecture may provide too detailed functions 

(functional view), components (organic view) and events (event- based view), it becomes 

necessary, during the system engineering process, to structure these information and introduce 

a certain hierarchy between them. Solely, we introduce the notion of abstraction level as one 

of our main language element. 

 

Concept of Abstraction Level 

This concept produces a refinement between actions and components. It helps us distinguish 

between high-level functions that can be useful. For example, in safety analysis, in order to 

define the top events a potential accident that can happen on the system, it is better to have a 

high level description of the system. Later on, we might need; after multiple refinements; 

more detailed functions of the system validation and the description of the hardware failures. 

This notion allows distinguishing between a high-level function with just enough details to 

understand the part of the system behavior it represents, and an atomic function which results 



Modelling the CBTC railway system with ScOLA  

 

6 

from successive refinements of a high-level function into smaller functions of lower level. In 

order to progress from one level to another, ScOLA relies on the information provided by the 

different views of the system and its operational scenarios. 

 

Modeling a CBTC scenario using ScOLA 

We can formally define a complex system with all its parts. A scenario is a set of functions of 

a certain level. Functions are executed in the order defined earlier (precedence, parallelism, 

and test). A function of level ln can also be a set of functions of lower levels (level ln+1). A 

function is executed giving its type by one or many components. These components act 

individually or in cooperation with other ones. In case of a choice, a test determines which 

action is realized. 

In this section, we will explain how, starting from an informal description of a CBTC scenario, 

we define a formal model using ScOLA and having both textual and graphical representations. 

 

The Speed-Dependent Door Supervision Scenario 

 Here we present the scenario of Speed-Dependent Door Supervision. It is a scenario that 

involves the train and the platform. It consists of: When the train is fully berthed at a platform 

and stops, the trains doors are released and opened. Then, the train starts to roll away. The 

emergency brake is applied when the train exceeds a certain minimum speed. The physical 

components involved in the scenario are represented in a tree (Figure 4). Since the 

specification is a low level description, it gives the more detailed components. It is composed 

according to the specification of different steps: 

 

Figure 4 - Architecture of the components involved in the Scenario1 

 Step 1: The train approaches the stopping point, it is already fully berthed. The 

on-board sub-system indicates this to the HMI. 

 Step 2: The train comes to a standstill; the on-board subsystem releases the train doors 

at the correct side. 
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 Step 3: The driver initiates door opening. The on-board subsystem opens the train 

doors. 

 Step 4: The doors open. This is reported to the on-board subsystem. 

 Step 5: The on-board subsystem indicates the open doors to the HMI. It sets the 

recommended speed to zero. 

 Step 6: The train starts to move, the configured minimum speed for the door 

supervision is not yet exceeded. The on-board subsystem reacts by revoking the door 

release. 

 Step 7: While rolling, the train loses the fully berthed status. The on-board subsystem 

revokes the fully berthed indication to the HMI. 

 Step 8: The train exceeds the configured minimum speed for the door supervision. The 

on-board subsystem applies an emergency brake. 

  

This scenario is decomposed regarding the different events that happen in the system. We 

decompose the scenario in a way that highlights the different functions and components of the 

system. We start by a level l0 representation: 

  

 f0,1: The train arrives at the stopping point. 

 f0,2: The train releases the train doors. 

 f0,3: The driver initiates door opening. 

 f0,4: The driver reports the door opening to the train. 

 f0,5: The train sets the speed to zero. 

 f0,6: The train starts to move without exceeding the minimum speed. 

 f0,7: The train loses the fully berthed status. 

 f0,8 : If the train exceeds the configured minimum speed for the door super- 

vision. 

 f0,9 : The train applies an emergency brake. 

Functions can be seen at multiple abstraction levels, if we consider f0,1, it can be decomposed 

into atomic actions of level l1 . In this particular case, level l1 represents the last possible 

abstraction level, but as long as atomicity is not reached, functions can be decomposed. Hence, 

f0,1 is described as: 

f0,1 : The train arrives at the stopping point 

  f1,1 : The on-board subsystem detects that the train is at the stopping point 

  f1,2 : The on-board subsystem indicates the stopping point arrival at the HMI 

 

Textual representation of the scenario 

Figure 5 is a partial view of the textual representation of our case study. It is mainly composed 

of two aspects, the architecture and the scenarios. The architecture depicts the hierarchical 

decomposition of the system’s physical parts. While scenarios using instantiations of 
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components, are an exhaustive description of the system behavior. 

1. Architecture: 

ScOLA is an object-oriented language; we have different types of classes. Component classes 

in order to be used in a scenario must be declared first. A component can be basic (atomic), or 

can also be a set of components or basic components. After the definitions of the hierarchy of 

components, we can describe the behavior of the system. 

In the scenario, the system is composed of two components: train and driver. Train is also 

composed of multiple basic components. We start by declaring the component Train that is 

composed of three (3) basic components OBCU, HMI and Platform. Component Driver is 

also declared. 

2. Scenario structure: 

A scenario is an action realized by a component. Given the modularity of the language, we 

understand that a scenario can be decomposed until reaching an atomic action. Before 

describing the actions, an instantiation of the components involved in the scenario using the 

keyword Block, we note that a scenario can contain multiple instantiations of a component in 

case of redundancy or to represent a complex system involving multiple systems. After that, 

we can start describing the behavior part of the system that contains multiple scenarios of 

different abstraction levels, and then follows a script that explains the kind of link between 

actions. We introduce the following constraints: 

 Simple actions are atomic actions that are realized by only one component. They are 

represented via the keywords Action, followed by its description and the component 

involved introduced by the keyword By. Example: Action f1,1 By OBCU 

 Transfer actions are also atomic, they are represented by the keyword Transfer 

followed by the issuer of the action introduced by the keyword From and the receiver 

with To. Example: Transfer f1,2  From OBCU To HMI 

 Test actions represent a step in the scenario where, regarding a condition, one among 

multiple actions will be realized. Its syntax starts with the keyword Test and followed 

by the actions 
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Figure 5 - Textual representation of the Doors Supervision scenario 

The Script describes the relationship between actions or scenarios, using the following 

symbols: 

 →: Precedence order (f1 → f2) 

 ||: Parallelism (f1 || f2) 

 +: Choice (f1 + f2) 

  

In the example, we model the first three scenarios. We start by declaring the required 

components (train, driver, obcu, hmi). After that, we describe the scenarios using the keyword 

Scenario, the simple actions using the keyword Action and the transfer actions with the 

keyword Transfer. At the end of each scenario, the script (Script) explains for example the 

first scenario f0,1 is in parallel with f0,2 followed by f0,3 with the given notation:  f0,1 || f0,2 → f0,3 

  

Graphical representation of the scenario 

Figure 7 depicts the level l0 description of the door supervision scenario. Functions f0,1 and f0,2 

are starting in parallel. Function f0,8 represents a test followed by f0,9 if true, the scenario ends 

otherwise. 

To graphically model the scenario starting either from its informal description of the textual 

representation, some rules and idiomatic representations must be followed (Figure 6) 
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Figure 6 - Graphical idiomatic representation of ScOLA models 

 

Figure 7 - Door Supervision Scenario at level l0 

  

  

Figure 8 represents the level l1 description of the f0,1 function. 

 

Figure 8 - Function f0,1 level l1 description 

 Conclusion 

In this paper we presented ScOLA, a Scenario Oriented LAnguage, a domain specific 

language for railway systems. We tried to explain the importance on focusing on systems 

concepts in order to have a coherent and non-redundant model. We wanted the language to be 
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simple but efficient in a way that operators represent all the system’s concepts. We also 

focused on the importance to have textual and graphical representations that is one of the 

perks of the formal languages. Instead of crossing by semi-formal languages to build a bridge 

between informal and formal models we decided to simplify a formal description that stays 

relied to a formal semantics. 

Our next objectives are to define a methodology to perform safety analysis. In railway 

systems, safety is still hand-made and relies on the experience of experts. The need for formal 

methods is important to discover dysfunctional scenarios and find mismatches in the system 

specifications. We are confident in the fact that formal functional scenarios will considerably 

help understand the ambiguous specifications, and we also aim at using functional scenarios 

to help define the dysfunctional ones. 
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