
HAL Id: hal-01259451
https://centralesupelec.hal.science/hal-01259451

Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the CBTC railway system with ScOLA
Melissa Issad, Leila Kloul, Antoine Rauzy, Karim Berkani

To cite this version:
Melissa Issad, Leila Kloul, Antoine Rauzy, Karim Berkani. Modeling the CBTC railway system with
ScOLA. ITS World Congress, Oct 2015, Bordeaux, France. �hal-01259451�

https://centralesupelec.hal.science/hal-01259451
https://hal.archives-ouvertes.fr

22nd ITS World Congress, Bordeaux, France, 5–9 October 2015

Paper number ITS-1930

Modeling the CBTC railway system with ScOLA

Melissa Issad
1,3*

, Leila Kloul
2
, Antoine Rauzy

1
 and Karim Berkani

3

1. LGI, Ecole Centrale Paris, France

2. PRiSM, University of Versailles, France

3. Siemens Mobility, France

Abstract

Considering their increasing complexity, industrial systems are, in general, specified in a

natural language. Especially transportation systems where the design phase results an

ambiguous and laborious system specification. The objective of this paper is to present

ScOLA, a formal modeling language based on scenarios and built on railway system

specifications. Its novelty is based on its restriction to the core concepts of the specification

and its multiple representations (textual and graphical), and also on its formal semantics. The

language offers means to understand what the system was supposed to do and to be as well as

to support a dialog with experts so to be sure that we got everything correctly. The

methodology is applied on the railway automation solution Trainguard MT CBTC of Siemens.

Keywords:

System engineering, ScOLA, railway systems.

Introduction

Siemens is one of the leaders in the railway automation solutions. Especially France who

holds an international center of competences for driverless systems, it drives the development

of fully automated trains of first and second generation (respectively Val and Cityval) and

Airval for airports transportation. Compared to the systems with drivers, automation allows a

higher commercial speed and reduced intervals between trains. It also increases the

operational flexibility with systems running full time. These systems have been deployed over

more than 30 lines like the line1 and 14 in Paris; line L in New York...etc.

The railway automation is based on the CBTC system which is based on principle that trains

determine their positions themselves and transmit it to wayside equipments. CBTC assures

that the space between trains is always safe [3]. Given the complexity of the system, their

specifications spread over thousands of pages written in a natural language, which makes it

Modelling the CBTC railway system with ScOLA

2

difficult for engineers to develop, validate and maintain.

In theory, regarding the V-cycle (Figure1) for complex systems, systems must be defined in

specifications, analyzed seeking for system acceptance and then developed and integrated and

finally validated. But in practice, the system analysis phase is often let at the very last steps of

the design which brings a late detection of errors and ambiguities.

Figure 1 - Railway systems V-Cycle according to EN 50126

At INCOSE [1], they promote multiple model-based system engineering (MBSE)

methodologies. Their goal is to widen the use of models instead of documents in the system

engineering process. They define MBSE as the formalized application of modeling to support

system requirements, design, analysis, verification and validation, beginning in the conceptual

design phase and continuing throughout development and later life cycle phases. They also

promote the fact that modeling should be used at multiple levels of the system (operational,

system and component).

But often, modeling languages appeared and served as a graphical representation of the

specification (UML, SysML[2],…). Mainly, two main approaches for system modeling

appeared, the language centric, where focusing on a specific modeling language, users will

use all the items provided by the language to model the system, the result was often redundant

information. We also noticed multiple system centric methods where engineers will modify

the language to fit the system. The result is a non-generic methodology. Then quickly,

engineers expressed the need to give a meaning to the graphics. They wanted to reuse them

for different purposes. But, given the fact than the languages did not clearly rely on a

formalism made the operation difficult. With ScOLA we wanted to start by defining the

adequate modeling formalism and then we created its graphical representation. In this article

we present the language extracted from the formalism and its characteristics.

Presentation of the TGMT CBTC railway system

TGMT (Trainguard Mass Transit) is a Siemens customized CBTC (Communication Based

Modelling the CBTC railway system with ScOLA

3

Train Control) system. A CBTC is railway signaling system that uses wired and wireless

communications between the train and the track equipments for the traffic and infrastructure

control. It significantly improved the way trains were localized.

Old systems used the track occupancy to determine the position of a train while CBTC

equipped trains determine independently their localization and forwards it to the track

equipments. According to the IEEE 1474 standard, a CBTC system is a ”continuous,

automatic train control system using high-resolution train location determination, independent

of track circuits; continuous, high capacity, bidirectional train-to-wayside data

communications; and trainborne and wayside processors capable of implementing Automatic

Train Protection (ATP) functions, as well as optional Automatic Train Operation (ATO) and

Automatic Train Supervision (ATS) functions.”[3].

The Trainguard MT CBTC [4] system is a SIEMENS solution for railway automation. It

represents the operating system of a train. It is composed of two subsystems; the on-board and

the wayside (see Figure2).

The on-board subsystem controls the train doors, the braking, the train position, its speed and

the stop with the information to the passengers. The wayside mainly determines the train

movement authority according to their speed and position.

Figure 2 - Trainguard Mass Transit CBTC system

In the following sections, we present the modeling language based on the TGMT

specification.

ScOLA, a SCenario Oriented LAnguage for railway systems

The approach we adopt to define ScOLA is the need for a system conceptualization, meaning

that often models are created without any other goal than a graphical representation. Complex

systems are composed of a description of its system architecture composed of the hierarchical

decomposition of its components and functions, and a behavioral description.

System architecture provides a description of the different parts of the system. It aims at

simulating their behaviors and the way they interact. In order to understand the behavior of a

complex system, different views of its architecture have to be investigated. These are the

Modelling the CBTC railway system with ScOLA

4

following:

 Functional view: the behavior of a complex system can be described through the actions

or the functions the system has to realize in order to achieve its operational missions. The

functional view aims at developing a breakdown structure of the system behavior in order

to derive all its actions (main and subsidiaries) and all the relationships between them.

 Organic view: using this view, one can describe the system by defining its physical

components. From the main component, which is the system itself, all its physical

components are derived. These components are the ones realizing, individually or in

cooperation, the actions or functions obtained using the functional view. Like the

functional view, the organic view is a top-down approach which allows an internal and

concrete analysis of the system.

 Event-based view: the relationships between the functions and the components of a

system can be determined using event-based view. In general, the events are responsible

for the data transmissions in the system. This representation is very useful for further

system analysis because it allows differentiating between sensitive data and non-sensitive

ones.

Figure 3 - The System Architecture Definition

Besides the three previous views, an identification of the stakeholders of the system under

analysis is necessary. The system can be represented as a black box with different

connections:

 The inputs: they are the variables that interfere in the system behavior;

 The outputs: they are the data and the results of the system’s deployment;

 The supports: they are all the external stakeholders of the system.

ScOLA is based on numerous concepts that contain the system structure and its behavior.

These concepts have been determined through the system architecture and its multiple views

(functional, organic and event-based). We can then define the system as a set of components C

which execute functions, either individually or in cooperation. Let F be the set of all the

functions in the system, and F(C) the set of functions in which component c, c ∈ C, is

involved. Assuming that each component in C has its own resource to execute a function, a

shared function f, f ∈ F , between two components c1 and c2 in the system is a function that

requires the resources of both components to be completed, that is f ∈ F (c1) ∩ F (c2).

However, if f requires the resource of component c1 solely, then f is not a shared function.

Modelling the CBTC railway system with ScOLA

5

Moreover, as a function can be defined as an action which may requires input data, which

may produce results that may, or may not, be useful for other functions, we consider that a

function may be of one of the following types:

 S_action: this is a simple action that requires the resources of a single component to be

completed. This type of action may require input data that may be provided by one or

several other actions. The input data, if there are any, are analyzed in order to generate an

output result, after some process and calculation.

 T_action: this is a shared action between two or more components. Such an action can be

a data transmission between two components of the system, and thus requires the

cooperation of both components.

 Q_action: this type of action allows the system to choose between two or more alternative

behaviors. Typically, a Q_action can be a test which has to be run on data in order to

choose which action to proceed with in the next step.

Often the functions describing the behavior of a system are dependent, and thus have to

respect a precedence order to receive adequate and coherent information. We consider three

types of relationships between functions:

 Precedence: the functions have to be completed sequentially. This implies that a function

has to wait the completion of another function, before starting.

 Parallelism: the execution order of two functions is not important. In this case, one can

proceed before the other, independently. Clearly, such a relationship implies that the

functions do not share the resources.

 Preemption: after a Q_action, a function among a set of two or more is chosen to proceed.

In this case, the other functions are discarded.

Because the different views of the system architecture may provide too detailed functions

(functional view), components (organic view) and events (event- based view), it becomes

necessary, during the system engineering process, to structure these information and introduce

a certain hierarchy between them. Solely, we introduce the notion of abstraction level as one

of our main language element.

Concept of Abstraction Level

This concept produces a refinement between actions and components. It helps us distinguish

between high-level functions that can be useful. For example, in safety analysis, in order to

define the top events a potential accident that can happen on the system, it is better to have a

high level description of the system. Later on, we might need; after multiple refinements;

more detailed functions of the system validation and the description of the hardware failures.

This notion allows distinguishing between a high-level function with just enough details to

understand the part of the system behavior it represents, and an atomic function which results

Modelling the CBTC railway system with ScOLA

6

from successive refinements of a high-level function into smaller functions of lower level. In

order to progress from one level to another, ScOLA relies on the information provided by the

different views of the system and its operational scenarios.

Modeling a CBTC scenario using ScOLA

We can formally define a complex system with all its parts. A scenario is a set of functions of

a certain level. Functions are executed in the order defined earlier (precedence, parallelism,

and test). A function of level ln can also be a set of functions of lower levels (level ln+1). A

function is executed giving its type by one or many components. These components act

individually or in cooperation with other ones. In case of a choice, a test determines which

action is realized.

In this section, we will explain how, starting from an informal description of a CBTC scenario,

we define a formal model using ScOLA and having both textual and graphical representations.

The Speed-Dependent Door Supervision Scenario

 Here we present the scenario of Speed-Dependent Door Supervision. It is a scenario that

involves the train and the platform. It consists of: When the train is fully berthed at a platform

and stops, the trains doors are released and opened. Then, the train starts to roll away. The

emergency brake is applied when the train exceeds a certain minimum speed. The physical

components involved in the scenario are represented in a tree (Figure 4). Since the

specification is a low level description, it gives the more detailed components. It is composed

according to the specification of different steps:

Figure 4 - Architecture of the components involved in the Scenario1

 Step 1: The train approaches the stopping point, it is already fully berthed. The

on-board sub-system indicates this to the HMI.

 Step 2: The train comes to a standstill; the on-board subsystem releases the train doors

at the correct side.

Modelling the CBTC railway system with ScOLA

7

 Step 3: The driver initiates door opening. The on-board subsystem opens the train

doors.

 Step 4: The doors open. This is reported to the on-board subsystem.

 Step 5: The on-board subsystem indicates the open doors to the HMI. It sets the

recommended speed to zero.

 Step 6: The train starts to move, the configured minimum speed for the door

supervision is not yet exceeded. The on-board subsystem reacts by revoking the door

release.

 Step 7: While rolling, the train loses the fully berthed status. The on-board subsystem

revokes the fully berthed indication to the HMI.

 Step 8: The train exceeds the configured minimum speed for the door supervision. The

on-board subsystem applies an emergency brake.

This scenario is decomposed regarding the different events that happen in the system. We

decompose the scenario in a way that highlights the different functions and components of the

system. We start by a level l0 representation:

 f0,1: The train arrives at the stopping point.

 f0,2: The train releases the train doors.

 f0,3: The driver initiates door opening.

 f0,4: The driver reports the door opening to the train.

 f0,5: The train sets the speed to zero.

 f0,6: The train starts to move without exceeding the minimum speed.

 f0,7: The train loses the fully berthed status.

 f0,8 : If the train exceeds the configured minimum speed for the door super-

vision.

 f0,9 : The train applies an emergency brake.

Functions can be seen at multiple abstraction levels, if we consider f0,1, it can be decomposed

into atomic actions of level l1 . In this particular case, level l1 represents the last possible

abstraction level, but as long as atomicity is not reached, functions can be decomposed. Hence,

f0,1 is described as:

f0,1 : The train arrives at the stopping point

 f1,1 : The on-board subsystem detects that the train is at the stopping point

 f1,2 : The on-board subsystem indicates the stopping point arrival at the HMI

Textual representation of the scenario

Figure 5 is a partial view of the textual representation of our case study. It is mainly composed

of two aspects, the architecture and the scenarios. The architecture depicts the hierarchical

decomposition of the system’s physical parts. While scenarios using instantiations of

Modelling the CBTC railway system with ScOLA

8

components, are an exhaustive description of the system behavior.

1. Architecture:

ScOLA is an object-oriented language; we have different types of classes. Component classes

in order to be used in a scenario must be declared first. A component can be basic (atomic), or

can also be a set of components or basic components. After the definitions of the hierarchy of

components, we can describe the behavior of the system.

In the scenario, the system is composed of two components: train and driver. Train is also

composed of multiple basic components. We start by declaring the component Train that is

composed of three (3) basic components OBCU, HMI and Platform. Component Driver is

also declared.

2. Scenario structure:

A scenario is an action realized by a component. Given the modularity of the language, we

understand that a scenario can be decomposed until reaching an atomic action. Before

describing the actions, an instantiation of the components involved in the scenario using the

keyword Block, we note that a scenario can contain multiple instantiations of a component in

case of redundancy or to represent a complex system involving multiple systems. After that,

we can start describing the behavior part of the system that contains multiple scenarios of

different abstraction levels, and then follows a script that explains the kind of link between

actions. We introduce the following constraints:

 Simple actions are atomic actions that are realized by only one component. They are

represented via the keywords Action, followed by its description and the component

involved introduced by the keyword By. Example: Action f1,1 By OBCU

 Transfer actions are also atomic, they are represented by the keyword Transfer

followed by the issuer of the action introduced by the keyword From and the receiver

with To. Example: Transfer f1,2 From OBCU To HMI

 Test actions represent a step in the scenario where, regarding a condition, one among

multiple actions will be realized. Its syntax starts with the keyword Test and followed

by the actions

Modelling the CBTC railway system with ScOLA

9

Figure 5 - Textual representation of the Doors Supervision scenario

The Script describes the relationship between actions or scenarios, using the following

symbols:

 →: Precedence order (f1 → f2)

 ||: Parallelism (f1 || f2)

 +: Choice (f1 + f2)

In the example, we model the first three scenarios. We start by declaring the required

components (train, driver, obcu, hmi). After that, we describe the scenarios using the keyword

Scenario, the simple actions using the keyword Action and the transfer actions with the

keyword Transfer. At the end of each scenario, the script (Script) explains for example the

first scenario f0,1 is in parallel with f0,2 followed by f0,3 with the given notation: f0,1 || f0,2 → f0,3

Graphical representation of the scenario

Figure 7 depicts the level l0 description of the door supervision scenario. Functions f0,1 and f0,2

are starting in parallel. Function f0,8 represents a test followed by f0,9 if true, the scenario ends

otherwise.

To graphically model the scenario starting either from its informal description of the textual

representation, some rules and idiomatic representations must be followed (Figure 6)

Modelling the CBTC railway system with ScOLA

10

Figure 6 - Graphical idiomatic representation of ScOLA models

Figure 7 - Door Supervision Scenario at level l0

Figure 8 represents the level l1 description of the f0,1 function.

Figure 8 - Function f0,1 level l1 description

 Conclusion

In this paper we presented ScOLA, a Scenario Oriented LAnguage, a domain specific

language for railway systems. We tried to explain the importance on focusing on systems

concepts in order to have a coherent and non-redundant model. We wanted the language to be

Modelling the CBTC railway system with ScOLA

11

simple but efficient in a way that operators represent all the system’s concepts. We also

focused on the importance to have textual and graphical representations that is one of the

perks of the formal languages. Instead of crossing by semi-formal languages to build a bridge

between informal and formal models we decided to simplify a formal description that stays

relied to a formal semantics.

Our next objectives are to define a methodology to perform safety analysis. In railway

systems, safety is still hand-made and relies on the experience of experts. The need for formal

methods is important to discover dysfunctional scenarios and find mismatches in the system

specifications. We are confident in the fact that formal functional scenarios will considerably

help understand the ambiguous specifications, and we also aim at using functional scenarios

to help define the dysfunctional ones.

References

1. Sanford Friedenthal, Regina Griego, Mark Sampson INCOSE Model Based Systems

Engineering (MBSE) Initiative INCOSE2007 June 24-27 San Diego

2. Sanford Friedenthal, Alan Moore, Rick Steiner, A Practical Guide to

SysML, The Systems Modeling Language, MK/OMG Press, 2009,

ISBN 978-0-12-378607-4

3. 1474.1-1999 - IEEE Standard for Communication Based Train Control Performance

Requirements and Functional Requirements

4. Trainguard MT CBTC: The moving block communications based train control solutions,

Siemens Transportation Systems.

5. Sunny A. Yaung Foundations of complex system theories in Cambridge University Press

1998

6. M.Stollberg, B.Elvester. A Customizable Methodology for the Model-driven

Engineering of Service-based System Landscapes

7. Klaus Pohl Requirements Engineering: Fundamentals, Principles, and Techniques 1st

Springer Publishing Company, Incorporated 2010 ISBN 978-3642125775

8. E.M. Clarke, J.M. Wing, et al. Formal methods : A state of the art ACM Computing

Surveys, Vol. 28, No. 4, December 1996

9. David Harel and P. S. Thiagarajan Message Sequence Charts, In UML for Real: Design

of Embedded Real-Time Systems

10. Glinz, M., Berner, S., & Joos, S An Object Oriented Modeling with ADORA Information

Systems, 27(6), 425-444.

11. Adolph, S., Cockburn, A., & Bramble, P. Patterns for effective use cases Addison-Wesley

Longman Publishing Co., Inc. (August 30, 2002)

12. Buede, D. M. The Engineering Design of Systems, Models and Methods (Vol. 55). John

Modelling the CBTC railway system with ScOLA

12

Wiley & Sons.

13. Araujo, J., Whittle J., & Kim, D. K. Modeling and Composing Scenario- Based

Requirements with Aspects In Requirements Engineering Conference, 2004. Proceedings.

12th IEEE International (pp. 58-67). IEEE.

14. Issad, M., Kloul, L., & Rauzy, A. (2014) A Model-Based Methodology to Formalize

Specifications of Railway Systems In Model-Based Safety and Assessment (pp. 28-42).

Springer International Publishing.

15. France, R. B., Kim, D. K., Ghosh, S., & Song, E. (2004). A UML-based pattern

specification technique. Software Engineering, IEEE Transactions on, 30(3), 193-206.

