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Voltage Stability of Distributed Generators by means of Discrete
Abstraction*

Marjorie Cosson1,3, Hervé Guéguen2, Didier Dumur1, Cristina Stoica Maniu1,
Vincent Gabrion3 and Gilles Malarange3

Abstract— Among the consequences of massive distributed
generation development, voltage rise is a major concern. The
local reactive power control laws considered to solve this
issue might lead to voltage instability. In this context, the
current paper proposes a methodology to study voltage stability
of a distribution feeder hosting distributed generation. The
approach relies on the construction of an equivalent discrete
abstraction of the continuous transition system by bisimulation
calculation. The stability of the system is assessed conducting
a reachability analysis of the equivalent discrete abstraction.
An illustrative application of the proposed approach to a real
medium-voltage 124 buses network with a single distributed
generator reveals unstable operating regions of the network and
helps designing a measurement filter ensuring system stability
without loss of rapidity.

I. INTRODUCTION

With the increasing number of Distributed Generators
(DGs), distribution networks have seen their power flows
substantially modified over the past decade [1] - [3]. One of
the consequences is the increase of the voltage along dis-
tribution feeders hosting generation. To be able to maintain
the voltage within specified limits while avoiding network
reinforcement costs, several solutions have been investigated
in the literature [4] - [6]. Among these ideas, local control
laws of DGs reactive power (Q) as a function of their voltage
(U ) have been considered.

Preliminary studies conducted by a French distribution
system operator [7] - [9] have led to choose the shape of
Q(U) law shown by Fig. 1 along with a discrete measure-
ment filter. In [9], the impact of one Q(U) law on existing
grid assets – such as On-Load Tap Changers (OLTC) or
capacitor banks – is studied. This experimentation concludes
that Q(U) law might interact with substation equipment
increasing the occurrence of material solicitation and so
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herve.gueguen@centralesupelec.fr

2Gilles Malarange and Vincent Gabrion are with EDF R&D,
Department Economic and Technical Analysis of Energy Systems
(EFESE), F-92410 Clamart, France, {gilles.malarange;
vincent.gabrion}@edf.fr

causing technical fatigue depending on control law parame-
ters. Other experimental investigations have been conducted
to study interactions between several DGs of the same
feeder [10], [11]. Indeed, interactions between Q(U) law and
existing control laws – such as OLTC or capacitor banks
– can appear causing voltage instability. In this context,
a formal analysis is necessary to generalize the empirical
results on the stability of networks involving one or several
DGs equipped with Q(U) laws.

In this paper, a methodology is developed to study voltage
stability of distribution feeders with Q(U) laws. Due to
the nonlinearity of the Q(U) law, classical stability analysis
cannot be used here. To assess system stability, the system
is modeled as a continuous transition system using hybrid
system tools [12]. Because of the infinite number of possible
operating voltages, unsafe regions are still difficult to study.
Starting from a continuous system, the authors of [12]
propose an equivalent finite discrete transition system which
simplifies the analysis of safe operations.

The aim of this paper is to use discrete abstraction
techniques to construct a finite discrete transition system
equivalent to the continuous model of a medium-voltage
(MV) feeder connecting a single distributed generator. The
main contribution consists in developing a method to conduct
a formal stability analysis of the system allowing to set
measurement filter and Q(U) law parameters in order to
ensure voltage stability.

First of all, the system modeling as a continuous transition
system is presented in Section II. Then, Section III details
the construction of the equivalent discrete transition system
and the study of its stability. In Section IV, this method is
applied to a real case study. System stability is discussed and
a measurement filter ensuring system stability is proposed.
Conclusions and perspectives are presented in Section V.
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Fig. 1. Proposed closed-loop model for the voltage stability study



II. SYSTEM MODELING

A. System Description

A medium-voltage feeder connecting several consumers
and a single distributed generator equipped with the Q(U)
law presented in Fig. 1 is modeled to study the possible
voltage instability caused by this control law. Such phenom-
ena are generally slower than the DG control law sample
time [13]. As the DG sample time is about one second,
unstable phenomena would have a time constant from a few
seconds to a few tens of seconds. Thus the study of these phe-
nomena does not require to model transient states of faster
phenomena. As network lines transients are electromagnetic
phenomena, their dynamics are faster than one second [14].
So they are modeled in steady-state. By sensitivity analysis,
the variation of DG voltage magnitude can be expressed as
a function of the variations of controlled and uncontrolled
variables [5]. In the studied case, the only controlled variable
is the DG reactive power (QDG). Other variables (such as
DG active power, active and reactive consumption or busbar
voltage) will be treated as disturbances (Ud). The magnitude
of a complex Z will be denoted Z. The linearized DG voltage
magnitude deviation ∆UDG can be expressed as follows [5]:

∆UDG = KQ ∆QDG + ∆Ud, (1)

where KQ is the sensitivity coefficient of DG’s voltage
magnitude deviation to control variable variation (∆QDG)
and ∆Ud represents the disturbance variations magnitude
modeling the impact of the uncontrolled variables variations.

The DG is supposed to be connected to the grid through
power electronics as most of the DGs are [13]. As power
electronics reach steady-state in less than one second [13],
they are also modeled in steady-state. To conclude, the
only dynamics considered are the DG measurement filter
dynamics.

B. Closed-Loop System

As described in the previous sub-section, the MV-feeder
hosting a single DG equipped with Q(U) law can be modeled
in closed-loop as represented in Fig. 1.

In order to study the impact of the filter on the stability
of a MV-feeder, a generic discrete time-invariant state-
space model (Af , Bf , Cf , 0) is chosen to describe the
measurement filter. In this model, xk ∈ Xx ⊆ RNx – with
Nx the dimension of the vector x – is the state vector,
∆UDGk

∈ R is the input and ∆Uf
DGk

∈ R is the output.{
xk+1 = Af xk + Bf ∆UDGk

∆Uf
DGk

= Cf xk
(2)

The DG control law is a discrete-time law with a sample
time TS of one second. The Q(U) law considered in this
paper is not linear but it can be noticed that it is piecewise
linear. The Q(U) law can be represented by:

∆QDGk
= αi ∆Uf

DGk
+ βi if ∆Ui−1≤∆Uf

DGk
≤∆Ui,

for all i in {1, . . . , 5}. Please note that ∆U0 and ∆U5 are
respectively defined by ∆UDGmin

and ∆UDGmax
.

For instance, if the output of the filter (∆Uf
DGk

) is greater
than U4, then the reactive power variation is determined
by the equation ∆QDGk

= −QM , which represents the
maximum of reactive power the DG can absorb from the
network (see Fig. 1), thus α5 = 0 and β5 = −QM . The
network is modeled by (1) and so it is represented by the
gain KQ. To represent both the filter state (xk ∈ Xx) and the
network influence (∆Udk

∈ XUd
), an extended discrete time

state-space representation is chosen introducing a new state
vector Xk =

[
xTk ∆Udk

]T ∈ X ⊂ RNx+1. Please note that
network dynamics are neglected: ∆Udk+1

= ∆Udk
= ∆Ud.

The continuous transition system associated to the closed-
loop system is composed of five modes each of them asso-
ciated with constraints and a linear dynamics. For instance,
the fifth mode constraints K5Xk ≤ L5 are obtained from:

{∆U4 ≤ Cfxk} ∩ {xk ∈ Xx} ∩ {∆Udk
∈ XUd

}. (3)

The linear dynamics of the fifth mode is obtained from Fig. 1:
xk+1 = Afxk +Bf∆UDGk

∆UDGk
= KQ∆QDGk

+ ∆Udk

∆QDGk
= α5∆Uf

DGk
+ β5

∆Uf
DGk

= Cfxk

(4)

From (4), the linear dynamics of the extended state vector
Xk, in the fifth mode, can be written as follows:

Xk+1 =

[
Af + α5KQBfCf Bf

0 1

]
︸ ︷︷ ︸

A5

Xk +

[
β5KQBf

0

]
︸ ︷︷ ︸

F5

.

(5)
To conclude, the continuous transition system can be ex-
pressed by:

Xk+1 = AiXk + Fi if KiXk ≤ Li ∀i = 1, . . . , 5. (6)

The purpose of this study is to assess voltage stability of this
continuous transition discrete-time system. A stable system
is considered to be a system reaching steady-state after
any variation of the perturbations ∆Udk

∈ XUd
. So, to

check system stability, a reachability analysis from any initial
condition is necessary to verify that the perturbation does not
end into a cycling trajectory. From the continuous transition
system described by (6), reachability computations cannot
be carried out. In order to be able to study stability, a finite
discrete abstraction of this continuous transition discrete-time
system is developed in the next section.

III. EQUIVALENT DISCRETE ABSTRACTION AND
STABILITY ANALYSIS

A. Sufficient Discrete Abstraction

In this subsection, a discrete transition system is abstracted
from the continuous transition system described by (6).
First, five discrete states (M0

i )i=1,...,5 are constructed from
the continuous transition system. Each discrete state M0

i

corresponds to a domain D0
i of the continuous state-space

(X) defined by the corresponding constraints:

D0
i = {∀s ∈ X : Kis ≤ Li} , (7)



and a linear dynamics defined by Ai and Fi from (6). Let
note D0 the set of domains (D0

i )i=1,...,5. A discrete transition
between M0

i and M0
j is possible if it exists s ∈ D0

i such as
after applying M0

i dynamics to s, the domain D0
j is reached,

i.e. Ais+ Fi ∈ D0
j .

So far, it is considered that, from each of the five discrete
modes, a transition toward every discrete mode is possible.
Thus, the discrete abstraction can be represented as a graph
with a five number of nodes (corresponding to the discrete
states (M0

i )i=1,...,5) and edges (corresponding to transitions).
This discrete automaton is represented in Fig. 2.

Stability is studied by reachability analysis which is easier
to conduct on the discrete abstraction than on the continuous
transition system as the number of discrete states is finite and
the discrete trajectories are obtain by the discrete transitions.

In this initial discrete abstraction, all discrete trajectories
have been considered as possible without verifying if it
actually exists s ∈ X verifying it. Thus all continuous
trajectories are represented by a discrete trajectory but all
discrete trajectories do not correspond to a continuous tra-
jectory. The discrete abstraction is said to be sufficient but not
equivalent to the continuous transition system. Thus, stability
of the discrete abstraction implies stability of the continuous
transition system but instability of the discrete system does
not necessarily imply instability of the continuous transition
system. To be able to conclude on continuous system stabil-
ity, the sufficient discrete abstraction must be stable.

In this case, it can be seen in Fig. 2 that there exist discrete
transitions corresponding to cycles and thus unstable discrete
trajectories. For instance, a discrete cycle exists between
M0

1 and M0
3 but it is not proven yet that the subset of

D0
1 leading to D0

3 can be reached from D0
3 . To be able to

conclude on system stability, the subsets of D0 have to be
divided according to their successor in order to remove from
the graph discrete trajectories which do not correspond to
continuous ones.

These calculations are done for every discrete state of
the sufficient discrete abstraction until a discrete abstraction
equivalent to the continuous transition system is found. Sec-
tion IV illustrates this on a simple 2-dimensional example.

B. Equivalent Discrete Abstraction

The discrete abstraction is equivalent to the continuous
transition system if every discrete transition corresponds to

M0
1 M0

2 M0
3 M0

4 M0
5

Fig. 2. Discrete automaton associated with the initial discrete
abstraction

a continuous one. Then, stability of the discrete abstraction
is equivalent to continuous transition system stability. As in
practice, only one transition is possible from a given s ∈
X, the equivalent discrete abstraction is obtained when each
discrete state corresponds to a single transition, i.e. if it exists
a transition between two discrete states Mi and Mj , then,
for all s ∈ Di, Ais+ Fi ∈ Dj .

To obtain this equivalent abstraction, bisimulation calcula-
tions are applied [15]. The main idea of this method is to test,
for all i = 1, . . . , 5, if it exists (s1, s2) ∈ (D0

i )2 such as after
applying the dynamics associated with D0

i , two different
domains of D0 are reached. If so, D0

i is divided according
to its destinations. To perform this study, the predecessor of
a domain D0

i ⊂ D0 is defined as follows:

Pre(D0
i ) = {s ∈ X|(As s+ Fs) ∈ D0

i } (8)

For every pair of subsets (D0
i , D

0
j ) of (D0)2, D0

j ∩Pre(D0
i )

is compared to D0
j . If they are equal then all s ∈ D0

j leads
to D0

i , if they are disjoint, no discrete state of D0
j leads to

D0
i . Otherwise, part of D0

j (D1
ji) leads to D0

i and the rest
(D1

jī
) leads elsewhere.

D1
ji = D0

j ∩ Pre(D0
i ) and D1

jī = D0
j\D1

ji (9)

So if D0
j has several destinations, the bisimulation algorithm

divides it into two subsets: one with a single destination
(D1

ji) and one with potentially several destinations (D1
jī

).
If so, D1

jī
is divided again until it can be expressed as the

union of domains, all of them being equal to the predecessor
of another subset of D0. This partition is done for every
domain of D0 and the new set of domains is called D1. To
each domain D1

i ⊂ D1, a discrete state M1
i is associated.

A discrete transition from M1
i to M1

j is created if it exists
s ∈ D1

i such as Ais+Fi ∈ D1
j . the domains composing D1

might need to be divided again if a discrete state leads to
several discrete states. For instance, if D0

i has been divided,
then D1

ji will need to be divided again.
This calculation ends when all discrete states of the

abstraction correspond to a single transition, then, the set
of continuous space domains is called DB . It satisfies:

∀(D,D′) ∈ (DB)2, D ∩ Pre(D′)=∅∨D ∩ Pre(D′)=D.
(10)

C. Stability Analysis

To study the continuous transition system stability, reach-
ability analysis is conducted on the equivalent discrete ab-
straction. Let us note Post(D) the domain of successors of
a domain D. Postn(D) represents the continuous states of
X reachable from D in n ∈ N transitions. A domain D ∈ X
is considered stable if every continuous trajectory starting
from D reaches, after a given number n of transitions, an
invariant domain which can be written:

∃n ∈ N, Postn+1(D) ⊆ Postn(D) (11)

Coming back to the studied system, the continuous transi-
tion system is stable if none of the disturbances ∆Ud ∈ XUd

corresponds to a trajectory ending into a cycle. The system



is stable if each Db
i ∈ DB satisfies (11). The reachability

analysis is carried out on the equivalent discrete abstraction
constructed by bisimulation. As each discrete state of the
equivalent discrete abstraction is the origin of a single
discrete transition, the successor of the corresponding contin-
uous state-space domain is already calculated. So following
the discrete transitions, discrete paths are studied.

To conclude, the nonlinear dynamics of the Q(U) law
chosen leads to model the system as a continuous transition
system (6) upon which no formal stability analysis can be
carried out. To overcome this issue, an equivalent discrete
abstraction is constructed by bisimulation calculation. Thus,
stability of the continuous transition system can be equiva-
lently assessed by conducting reachability analysis on the
equivalent discrete abstraction. This method proposes the
formal stability analysis of a feeder knowing its topology
(KQ), filter and Q(U) law parameters assuming that the
bisimulation calculation converges.

IV. CASE-STUDY: STABILITY OF A REAL
MEDIUM VOLTAGE FEEDER AND DISCUSSION

ON FILTER DESIGN

A. Real Case-Study Description

The considered system is a real MV-feeder of the ERDF
(”Électricité Réseau Distribution France”) network. It is
exploited at 20 kV and contains approx 20 km of aerial
distribution lines. This feeder hosts about 300 kW of con-
sumption and a single DG: a wind farm of 5 MW. This DG
is considered to be equipped with the control law presented
in Fig. 1. The goal is to study its intrinsic stability and
the impact of the filter on system stability and rapidity. To
discuss intrinsic stability, preliminary calculations are done
considering a pure delay filter. It can be described by:{

xk+1 = ∆UDGk

∆Uf
DGk

= xk
. (12)

So the corresponding state-space model is (0, 1, 1, 0). The
dimension (Nx) of the filter state-space vector is one. So
the extended system state-space dimension will be two. This
allows us to represent subsets of the discrete state-space in
the 2-dimensional plane (xk,∆Udk

). These variables satisfy
the following constraints:

∀k ∈ N,
{
xk ∈ [∆UDGmin ; ∆UDGmax ]
∆Udk

∈ [∆Udmin ; ∆Udmax ]
. (13)

For instance, the fifth mode constraints obtained in (3) can
be written:

∆U4 ≤ xk
∆UDGmin

≤ xk
xk ≤ ∆UDGmax

∆Udmin
≤ ∆Udk

∆Udk
≤ ∆Udmax

⇔ K5Xk ≤ L5. (14)

Physical limits of the network are represented by the
minimum and maximum DG variations (∆UDGmin

and
∆UDGmax

) which corresponds to voltages at which the
network is not supposed to be operated. To avoid operations

outside of these limits, circuit breakers automatically open
the circuit in which the fault has been detected. In the case of
this 20kV network, ∆UDGmax

and ∆UDGmin
are set such

as stability of the DG control law has to be ensured for
operating points from 18kV to 22kV.

So, the matrices K5 and L5 can be determined.

K5 =


−1 0

1 0
−1 0

0 1
0 −1

 ; L5 =


−∆U4

∆UDGmax

−∆UDGmin

∆Udmax

−∆Udmin

 (15)

In this case, the fifth mode closed-loop equation is:

xk+1 = ∆Ud −QMKQ. (16)

This leads to define the continuous transition system fifth
dynamics as follows:

A5 =

[
0 1
0 1

]
; F5 =

[
−QMKQ

0

]
. (17)

This calculation can be done in every mode in order to make
explicit the continuous transition model as described by (6).
A formal stability analysis cannot be directly conducted on
the continuous transition system. However, stability can be
inferred from dynamical simulations.

In this case, it may be inferred with empirical simulations
that the system is stable without a filter. This result can
be verified from the reachability analysis of the equivalent
discrete abstraction, as detailed in the next sub-section. Then,
simulation results will be presented to illustrate the results.

B. Stability Study

1) Initial Discrete Automaton: From the continuous tran-
sition system, a discrete abstraction can be constructed.
A discrete state is associated to each linear dynamics of
the continuous transition system. Thus five discrete states
(M0

i )i∈{1,..,5} and transitions in between them are defined
such as explained previously. Fig 2 represents the discrete
automaton associated with this discrete abstraction.

Fig. 3 (a) presents the initial partition (D0
i )i∈{1,..,5} of the

continuous state-space projected in the 2-dimensional space
defined by the two components of the state-space vector.
In Fig. 3 (a), the five domains (D0

i )i=1,..,5 ⊂ D0 of the
initial state-space division can be seen. For instance, the fifth
domain is defined by (14). So it corresponds to every possible
disturbance variation in XUd

and a DG voltage variation in
Xx and larger than ∆U4.

As it can be seen in Fig. 2, there exist cycles on this
discrete abstraction. As the abstraction is not equivalent
to the continuous system, the existence of discrete cycles
does not prove anything about continuous transition system
stability. To be able to conclude on system stability, at each
iteration of the calculation, the subsets of the state-space
leading to several destinations are divided using bisimulation
calculation. The first iteration of this approach is detailed
below.
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Fig. 3. (a) Initial discrete abstraction and (b) discrete abstraction
after one iteration of the bisimulation calculation

2) First Iteration of the Bisimulation Calculation: As
every discrete state M0

i corresponding to the continuous
space domain D0

i is associated with five possible transitions,
each domain D0

i will be divided into at most five subsets
(D1

ij)i,j=1,...,5 defined by :

D1
ij = D0

i ∩ Pre(D0
j ) ∀i, j = 1, . . . , 5. (18)

If a domain D1
ij is empty, then it means that no continuous

transition corresponds to the discrete transition from M0
i to

M0
j . Fig. 3 (b) represents the partition of the state-space after

the first iteration of the bisimulation calculation. As it can
been seen on Fig. 3 (b), some regions of the state-space are
infeasible. For the states in the shaded area of Fig. 3 (b), a
given state Xk ∈ X leads to – after the application of the
corresponding dynamics – a state Xk+1 outside the state-
space X. This corresponds to a voltage outside of the circuit
breaker tolerance range so the circuit will be switched off by
circuit breakers. Then these regions are considered infeasible.

At the end of the first iteration, the continuous state-space
is divided into 15 subsets. It means that 10 of the 25 initial
discrete transitions were not corresponding to a continuous
transition. Some discrete states are still associated to several
transitions as their destinations have been divided. More
iterations of the bisimulation calculation are needed to obtain
a discrete abstraction equivalent to the continuous system.

3) Reachability Analysis: After three iterations (see
Fig. 4 (a)), only the crosshatched domains have several
successors. Thus, trajectories which do not include one of
these domains can be analyzed without further calculations.
Indeed, such domains will not be divided in any further
iteration of the calculation, so they belong DB . This is the
case of the colored domains. For instance, DB

1 leads entirely

R
(a)

(b)

Fig. 4. (a) Results of the stability analysis in the state vector
plane and (b) verification with dynamical analysis

to DB
2 and DB

2 leads entirely to DB
1 . So they will not

be divided in any further iteration of the calculation, they
belong to DB . So every trajectory leading to DB

1 or DB
2

ends into a cycle. The study of these domains reveals the
existence of three cycles (colored domains of Fig.4). So,
without reaching convergence, it can be concluded that the
continuous transition system is unstable.

Unlike what was observed with the empirical study , the
system appears to be unstable: cycles appear for ∆Ud ∈
[−600V, 0V]. Fig 4 (b) presents examples of dynamical
simulations illustrating the unstable behavior of the system.
The first trajectory is the response to a −400V disturbance
step. According to Fig. 4 (a), it corresponds to a cycling
trajectory in between two subsets: one corresponding to a
voltage in DB

1 and the other one in DB
2 . These results

corresponds to the simulation example of Fig. 4 (b). The
second trajectory shown by Fig. 4 (b) corresponds a cycling
trajectory for a ∆Ud = −150V in accordance with Fig. 4 (a).
The third trajectory shown by Fig. 4 (b) corresponds to the
initial empirical study showing stable behavior for ∆Ud =
−700V. Using this formal stability analysis, it is possible to
conclude on continuous transition system stability.

C. Discussion on Filter Parameters

As this case study is unstable, the parameters of the DG
control law have to be changed. Changing the Q(U) law
parameters will impact the DG control capability. Thus,
whenever possible, it is preferable to adapt measurement
filter parameters in order to ensure system stability with-
out reducing its control capability. European standards [16]
prescribe a first-order low-pass filter with a time constant
between three to sixty seconds as measurement filter. For



M

(a) (b)

Fig. 5. Step response of the system including a first-order low-pass
filter with a time constant of ten (a) and three (b) seconds

instance, Siemens inverters with a 10-second time constant
are studied in [17]. A discrete first-order low-pass filter with
a 10-second time constant is tested on this case-study. The
formal analysis confirms stable operation with this filter.
Fig. 5 (a) illustrates the response of the system for given
initial conditions. It can be noticed that the 95 % response
time of the system is about 19 seconds.

With the formal stability analysis tool, a better trade-off
between stability and rapidity can be found. Indeed, it is
now possible to determine the filter smallest time constant
ensuring system stability. Thus stability will be guaranteed
with the minimum impact on system rapidity. In this case,
the smallest prescribed time constant (3 seconds) is sufficient
to ensure system stability. As it can be seen on Fig. 5 (b),
the response time has been reduced from 19 seconds to 6
seconds. Please note that a first-order low-pass filter with a
two-second time constant has also been tested and ensures
system stability of this particular case-study.

To conclude, thanks to the formal analysis developed, the
system stability can be assessed for all operating conditions.
This allows to set measurement filter parameters in order to
ensure system stability without slowing it down unnecessar-
ily. Therefore, the DG control law is set to mitigate voltage
deviation as fast as possible. In this particular case, a three-
second time-constant filter satisfies the requirements but this
result is highly dependent on network parameters and DG
installed capacity.

V. CONCLUSIONS

Due to massive insertion of distributed generators, the
Q(U) laws are expected to develop rapidly on distribution
feeders. This multiplication might lead to voltage stability
issues. As the proposed control law is nonlinear, its stability
is difficult to study. The proposed methodology relies on the
construction of an equivalent discrete abstraction of the con-
tinuous transition system. This abstraction is calculated using
bisimulation algorithm. Then a reachability study allows
to conclude on system stability. This method is illustrated
on a real 124 nodes distribution feeder hosting one DG.
The case study seems stable after a rapid empirical study.
The proposed method reveals unstable operating regions.

A measurement filter is added to stabilize the system. The
proposed method is also used to choose a filter ensuring
system stability without degrading rapidity.

Further work will focus on the validation of this approach
on several case studies. In particular, the choice of a first-
order low-pass filter and its time constant has to be investi-
gated on various network architectures. Moreover, the impact
of existing controls laws such as on-load tap-changers or
capacitor banks should be studied. To do so, further work
will be carried out including disturbances dynamics.

The main interest of the proposed approach is to extend it
to feeders including multiple DGs. Indeed, as DGs multiply
on feeders, stability issues will increase and particularly
interactions in between DGs control laws might appear.
An interesting challenge is to extend the proposed results
for networks with several DGs per feeder while keeping
acceptable computation load.
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