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Abstract

A new power flow for DC grids is presented in this paper. With this new methodology
to have more than one node where the voltages are known is possible, in contrast to
old methods where there was a node where the voltage was specified (the slack bus).
A complete proof is given, which guarantees the unique existence of solutions. This
new algorithm could be easily adapted for AC systems with the explained philosophy
in this paper. Some simulations are tested in order to show the power of this new
tool. In addition, a detailed study of the variation of the power and voltages when
these variables change is shown.
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1 Introduccion

In electrical networks with real load and generation, the use of the power
flow is crucial for the proper functioning of the system. The goal of a power
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1 Introduccion 2

flow study, basically, is to obtain complete voltage and power informations
for each bus in the grid in steady state. However it may perform other
types of analysis, such as short-circuit fault analysis, stability studies, unit
commitment or economic dispatch.

Energy transmission has historically been carried out in alternative cur-
rent (AC). However high voltage direct current (HVDC) transmission is
investigated in this study due to several advantages it possesses over AC
lines.First of all, reactive power makes AC transmission losses greater in
offshore locations than on land. Additionally, transmission capacity is also
greater in HVDC lines due to the non-existence of the skin effect, and also
the efficiency and controllability of DC converters are higher [1–4]. Another
advantage of using HVDC is that the use of fewer cables in DC lines also im-
plies lower costs and weight enabling therefore the possibility of operating in
remote marine regions where wind conditions are even more favorable [5,6].

In AC power systems, power flow problem is defined by nonlinear and
non-convex equations. In HVDC systems where there is no reactive power
involved, the power flow problem is less complex but still retains its nonlinear
characteristic when voltages control are included in the formulation.

There are several different methods of solving the resulting nonlinear
system of equations. The most popular is the well known Newton-Raphson
method [7]. This method presents an important property: the solutions can
be easily obtained trough the equations’ linearization. An important dis-
advantage is that the convergence of the method is not always guaranteed.
Furthermore, in the case of power systems it is necessary to consider a slack
bus to apply this method. This fact entails risks for the proper operation
of the system, such as the loss of the slack bus (for example a communica-
tion lost), that would cause the loss of the reference and consequently the
abandon of the equilibrium because the method is not applicable. With this
new algorithm this risk disappears, because more than one node could be
voltage reference.

In [8] an optimal power flow problem for HVDC systems with predictive
control tools is shown. It uses a geometrical proof for the case of a system
with 3 nodes, but it lacks a strict mathematical proof for the case of n nodes,
which is shown in our paper.

This paper is outlined as follows: in section I an introduction and the
background information of the study is presented. Section II presents
some definitions and basic relations which will help us to define better our
problem. In section III the two main properties will be shown, as well
as their respective proofs. In section IV some simulations are shown. In
section section V the conclusions are explained. Finally in annex some
mathematical relations uses in this work are shown.
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2 Definitions and basic relations.

We have considered a passive network with n nodes (n ≥ 2). This grid is
connected because any two nodes of the network are connected by at least
one path formed by branches of the network. The lines are bipolar since
they have two phases (+ and -) as shows figure 1.

Fig. 1: Figure

Definition 1. ∀j, k ∈ {1, 2, . . . , n}, j 6= k, yj,k is the admittance of the
branch which connects node j with node k. It corresponds with the two
conductors (positive and negative). When the branch exits then yj,k > 0,
whereas if there is no branch yj,k = 0. It holds that yj,k = yk,j.

Definition 2. ∀j ∈ {1, 2, . . . , n}, yj,j is the sum of the admittances of the
network which converge at node j.

yj,j =
n∑

k=1(k 6=j)

yj,k (1)

Definition 3. uj is the voltage between positive and negative terminals of
node j.

Definition 4. ij is the current which comes in the network through the
positive terminal of node j. (Its value is negative when the current leaves
the grid).

Definition 5. Pj is the power which comes in the network at node j. (Its
value is negative when the power leaves the grid).

Next some basic relationship are explained. The first one is that, in
steady state, the system of equations shown in 2 are satisfied:
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
y1,2 · (u1 − u2) + y1,3 · (u1 − u3) + . . .+ y1,n · (u1 − un) = i1
y1,2 · (u2 − u1) + y2,3 · (u2 − u3) + . . .+ y2,n · (u2 − un) = i2
...
yn,2 · (un − u2) + yn,3 · (un1− u3) + . . .+ yn−1,n · (un − 1− un) = i1

(2)

which is equivalent to system shown in (3)


y1,1 · u1 − y1,2 · u2 − y1,3 · u3 − . . .− y1,n · un = i1
−y1,2 · u1 + y2,2 · u2 − y2,3 · u3 − . . .− y2,n · un = i2

...
−y1,n · u1 + y2,n · u2 − y3,n · u3 − . . .+ yn,n · un = in

(3)

In matrix form:

Y · u = i (4)

Moreover:

P1 = u1 · i1 , P2 = u2 · i2 , . . . , Pn = un · in (5)

and consequently


y1,1 · u2

1 − y1,2 · u1 · u2 − y1,3 · u1 · u3 − . . .− y1,n · u1 · un = P1

−y1,2 · u1 · u2 + y2,2 · u2
2 − y2,3 · u2 · u3 − . . .− y2,n · u2 · un = P2

...
−y1,n · u1 · un + y2,n · u2 · un − y3,n · u3 · un − . . .+ yn,n · u2

n = Pn

(6)

Moreover, it is also true that:

ut ·Qju = Pj ∀j ∈ {1, 2, . . . , n} (7)

and consequently,

ut ·Yu =
n∑
j=1

Pj (8)

where i=[i1, i2, . . . , in]t, u=[u1, u2, . . . , un]t, P=[P1, P2, . . . , Pn]t, Y is the
admittance matrix:
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Y =


y1,1 −y1,2 . . . −y1,n

−y1,2 y2,2 . . . −y2,n
...

...
. . .

...
−y1,n −y2,n . . . yn,n

 (9)

and Qj has the form:

Qj =



0 . . . 0 −y1,j
2 0 . . . 0

...
. . .

...
... . . .

...
...

0 . . . 0 −yj−1,j

2 0 . . . 0

−y1,j
2 . . . −yj−1,j

2 yj,j −yj,j+1

2

... −yj,n
2

0 . . . 0 −yj,j+1

2 0 . . . 0
...

...
...

... . . .
. . .

...
0 . . . 0 −yj,n

2 0 . . . 0


(10)

2.1 Basic properties

Next some basic properties are explained and detailed.

Basic property 1. If we know the voltages on all nodes, we can find all
currents and powers.

Basic property 2. As i1 + i2 + . . .+ in = 0, then if we know the entering
currents in n − 1 nodes, we can find the entering current in the remaining
node.

Basic property 3. P1 + P2 + . . .+ Pn ≥ 0 (P1 + P2 + . . .+ Pn is the lost
power in the network)

If u1 = u2 = . . . = un, then i1 = . . . = in = 0 and P1 +P2 + . . .+Pn = 0.
If ∃j, k ∈ {1, 2, . . . , n} such that uj 6= uk then P1 + P2 + . . .+ Pn ≥ 0.

Basic property 4. The matrix Y is positive semidefinite of rank n− 1.
∀j ∈ {1, 2, . . . , n} the matrix of order n− 1 that results to remove row j

and column j of Y is positive definite.
∀j ∈ {1, 2, . . . , n − 1} matrix Yk, formed by the elements of the first k

rows and first k columns of Y, and matrix Λn−k formed by the elements of
the last n− k rows and last n− k columns of Y, are definite positive.

Yk =


y1,1 . . . −y1,n

−y1,2 . . . −y2,n
...

. . .
...

−y1,n . . . yn,n

 Λn−k =


yk+1,k+1 . . . −yk+1,n

−yk+1,2 . . . −yk+2,n
...

. . .
...

−yk+1,n . . . yn,n

 (11)
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Basic property 5. ∀j ∈ {1, 2, . . . , n} matrix Qj is indefinite of order 2.
That means, Qj has a positive eigenvalue, other negative, and the remaining
n− 2 are null.

Basic property 6. If we know the entering currents in k nodes, with 0 <
k < n, and the voltages in the other n−k nodes, the voltages in all nodes are
uniquely determined, and hence also the currents and powers. Since, known
i1, . . . , ik, uk+1, . . . , un, values of u1, . . . , uk are solutions of linear system
shown in (12) whose coefficient matrix Yk is invertible.


y1,1 · u1 − y1,2 · u2 − . . .− y1,k · uk = i1 + y1,k+1 · uk+1 + . . .+ y1,n · un
−y1,2 · u1 + y2,2 · u2 − . . .− y2,k · uk = i2 + y2,k+1 · uk+1 + . . .+ y2,n · un

...
−y1,k · u1 − y2,k · u2 − . . .+ yk,k · uk = ik + yk,k+1 · uk+1 + . . .+ yk,n · un

(12)

Basic property 7. If we know the entering powers in k nodes, with 0 <
k < n, and the voltages in the other n−k nodes, for sufficiently high values of
voltages, we can find the remaining voltages, and therefore also the currents
and powers in all nodes.

Effectively, if the known voltage values uk+1, ..., un are close to nominal
voltage value Un of the network, and this is sufficiently high, the unknown
voltage values u1, . . . , uk are also close to Un, and they will be unique. In
effect, if we know P1, . . . , Pk, uk+1, . . . , un, the values of u1, . . . , uk are the
solution of the following system:


y1,1 · u1 − y1,2 · u2 − . . .− y1,k · uk = P1

u1
+ y1,k+1 · uk+1 + . . .+ y1,n · un

−y1,2 · u1 + y2,2 · u2 − . . .− y2,k · uk = P2
u2

+ y2,k+1 · uk+1 + . . .+ y2,n · un
...

−y1,k · u1 − y2,k · u2 − . . .+ yk,k · uk = Pk
uk

+ yk,k+1 · uk+1 + . . .+ yk,n · un

(13)

and applying the following Property 1 the mentioned results in this basic
property 7 are obtained.

3 Main properties

In this section the two main results of this paper are formulated and proven.

Property 1.

• Let k ∈ N be such that 0 < k < n.
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• Let Yk ∈ Rk×k be such that:

Yk =


y1,1 . . . −y1,k

−y1,2 . . . −y2,k
...

. . .
...

−y1,k . . . yk,k

 (14)

• Let Γk ∈ Rk×(n−k) be such that:

Γk =


y1,k+1 y1,k+2 . . . y1,n

y2,k+1 y2,k+2 . . . y2,n
...

...
. . .

...
yk,k+1 yk,k+2 . . . yk,n

 (15)

• Let Λn−k ∈ R(n−k)×(n−k) be such that:

Λn−k =


yk+1,k+1 . . . −yk+1,n

−yk+1,2 . . . −yk+2,n
...

. . .
...

−yk+1,n . . . yn,n

 (16)

• Let Y ∈ Rn×n be such that:

Y =

[
Yk −Γk

−Γt
k Λn−k

]
(17)

• Let P1 . . . , Pk be the entering power in the first k nodes, and let P be
P = max{|Pj | / 1 ≤ j ≤ k}.

• Let c, ε, δ ∈ R be such that, 0< c <1, 0< ε and 0 < δ ≤ ε
2‖Yk·Γk‖∞

.

• Let u0, uN ∈ R be such that u0 ≥ max

{
2·P ·‖Y−1

k ‖∞
ε ,

√
P ·‖Y−1

k ‖∞
c

}
,

with u0 > 0 and uN > u0 + ε > u0.

• D=
{

(u1, . . . , uk)
t ∈ Rk : u1 ≥ u0, . . . , uk ≥ u0

}
• Let Ψ : D → Rk be the function defined by Ψ

(
(u1, . . . , uk)

t
)

=
(
P1
u1
, . . . , Pk

uk

)t
• Let VN , WN be such that

VN =

uN...
uN

 ∈ Rk, WN =

uN...
uN

 ∈ Rn−k (18)
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With these conditions is true that for any W = (wk+1, ..., wn)t ∈ B̄∞(WN , δ)
1

there exists a unique V = (v1, ..., vk)
t ∈ D such that hold:

1.-


y1,1 · v1 − y1,2 · v2 − . . .− y1,k · vk = P1

v1
+ y1,k+1 · wk+1 + . . .+ y1,n · wn

−y1,2 · v1 + y2,2 · v2 − . . .− y2,k · vk = P2
v2

+ y2,k+1 · wk+1 + . . .+ y2,n · wn
...

−y1,k · v1 − y2,k · v2 − . . .+ yk,k · vk = Pk
vk

+ yk,k+1 · wk+1 + . . .+ yk,n · wn

(19)

2.- V ∈ B̄∞(WN , ε)
3.- If (sj)j∈N is a succession defined by: sj+1 = Y −1

k ·Ψ(sj)+Y −1
k ·Γk ·W ,

where s0 ∈ D and ∀j ∈ N, it holds:
3.1.- V=lim

j→0
sj

3.2.- ‖sj − V ‖∞ ≤ ‖s2 − s1‖∞ ·
cj−1

1−c ≤ 2 · ε · cj−1

1−c ∀j ∈ N∗

Proof
1.- If we term v = (u1, . . . , uk)

t ∈ D, and let g be the mapping such
that g : D → D, g(v) = Y−1

k · Ψ(v) + Y−1
k · Γk ·W ∀v ∈ D, then when we

know the voltages uk+1 = wk+1, . . . , un = wn the system shown in (19) is
equivalent to:

Yk · v = Ψ(v) + Γk ·W (20)

which is equivalent to

v = Y−1
k ·Ψ(v) + Y−1

k · Γk ·W (21)

and this is equivalent to

v = g(v) (22)

so v is a solution of (20) if and only if it is a fixed point of the mapping g.
Let us check that g is a contractive application in D. First we check that

∀v ∈ D, g(v) ∈ D, because

g(v) = Y−1
k ·Ψ(v) + Y−1

k · Γk ·W (23)

from (2) and (3) is easy to realize that it fulfills:

Yk · VN = Γk ·WN (24)

and consequently:

VN = Y−1
k · Γk ·WN (25)

1 See annex.
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from (23) and (25) we obtain:

g(v)− VN = Y−1
k ·Ψ(v) + Y−1

k · Γk · (W −WN ) (26)

and consequently:

‖g(v)− VN‖∞ ≤
∥∥Y−1

k

∥∥
∞ · ‖Ψ(v)‖∞ +

∥∥Y−1
k · Γk

∥∥
∞ · ‖W −WN‖∞ (27)

from (27), and taking into account that:

‖Ψ(v)‖∞ = max

{
|Pj |
uj

: 1 ≤ j ≤ k
}
≤ P

u0
≤ ε

2 ·
∥∥Y−1

k

∥∥
∞

(28)

and also that:

‖W −WN‖∞ ≤ δ ≤
ε

2 ·
∥∥Y−1

k · Γk
∥∥
∞

(29)

we may deduce that

‖g(v)− VN‖∞ ≤ δ ≤
ε

2
+
ε

2
= ε (30)

which is equivalent to:

g(v) ∈ B̄∞(VN , ε) (31)

and taking into account that:

B̄∞(VN , ε) ⊂ D (32)

it is true that:

g(v) ∈ D (33)

Secondly, ∀x, y ∈ D it is clear that ‖g(x)− g(y)‖∞ ≤ c · ‖x− y‖∞, due
to:

g(x) = Y−1
k ·Ψ(x) + Y−1

k · Γk ·W (34)

g(y) = Y−1
k ·Ψ(y) + Y−1

k · Γk ·W (35)

and therefore:

‖g(x)− g(y)‖∞ =
∥∥Y−1

k · (Ψ(x)−Ψ(y))
∥∥
∞ ≤

∥∥Y−1
k

∥∥
∞ · ‖Ψ(x)−Ψ(y)‖∞(36)
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beside

Ψ(x)−Ψ(y) =


P1·(y1−x1)

x1·y1
...

Pk·(yk−xk)
xk·yk

⇒ ‖Ψ(x)−Ψ(y)‖∞ ≤ c · ‖x− y‖∞ (37)

and as 0 < c < 1 it holds that g is a contractive mapping in D.
Taking into account that D is a closed set, the fixed-point theorem

of a contractive application ensures that there exists a single point V =
(v1, ..., vk)

t ∈ D such that g(V ) = V , that means, V is fixed point of g, and
by the above explanation this is the unique solution vector from equation
(20) and system (19).

2.- Result 2 of property 1 is satisfied because V = g(V ) ∈ D and g(v) ∈
B̄∞(VN , ε) according to (31).

3.- The fixed-point theorem of contractive application also ensures that
if (sj)j∈N is a succession defined by: s0 ∈ D and ∀j ∈ N, sj+1 = g(sj), the
only fixed point V holds:

a) V=lim
j→0

sj

b) ‖sj − V ‖∞ ≤ ‖s2 − s1‖∞ ·
cj−1

1−c ≤ 2 · ε · cj−1

1−c ∀j ∈ N∗
Taking into account also that s1 = g(s0) ∈ B̄∞(VN , ε) and s2 = g(s1) ∈

B̄∞(VN , ε), we verify that:

‖s2 − s1‖∞ ≤ 2 · ε (38)

so it is true that:

‖sj − V ‖∞ ≤ ‖s2 − s1‖∞ ·
cj−1

1− c
≤ 2 · ε · c

j−1

1− c
∀j ∈ N∗ (39)

�

Property 2. If P1, P2, . . . , Pk remain constant in 19, considering the appli-
cation that goes from W to V and calling Π = (Pk+1, . . . , Pn)t,

∂V

∂W
=


∂V1
∂wk+1

∂V1
∂wk+2

. . . ∂V1
∂wn

∂V2
∂wk+1

∂V2
∂wk+2

. . . ∂V2
∂wn

...
...

. . .
...

∂Vk
∂wk+1

∂Vk
∂wk+2

. . . ∂Vk
∂wn

 ∂Π

∂W
=


∂Pk+1

∂wk+1

∂Pk+1

∂wk+2
. . .

∂Pk+1

∂wn
∂Pk+2

∂wk+1

∂Pk+2

∂wk+2
. . .

∂Pk+2

∂wn

...
...

. . .
...

∂Pn
∂wk+1

∂Pn
∂wk+2

. . . ∂Pn
∂wn

(40)

it is also true that:

• The jacobian matrix ∂V
∂W holds the following premise:

[
Yk −Ψ′(V )

]
· ∂V
∂W

= Γk (41)
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where Ψ′(V ) = ∂Ψ
∂V the jacobian matrix of Ψ. Besides if [Yk −Ψ′(V )]

is invertible then:

∂V

∂W
=
[
Yk −Ψ′(V )

]−1 · Γk (42)

• The jacobian matrix ∂Π
∂W is determined by the following expression:

∂Π

∂W
= [Φ] + [W ] ·

[
Λn−k − Γtk ·

∂V

∂W

]
(43)

where [Φ]=diag
(
Pk+1

wk+1
,
Pk+2

wk+2
, . . . , Pn

wn

)
and [W ] = diag (wk+1, wk+2, . . . , wn),

so if [Yk −Ψ′(V )] is invertible then:

∂Π

∂W
= [Φ] + [W ] ·

[
Λn−k − Γtk ·

[
Yk −Ψ′(V )

]−1 · Γk
]

(44)

Proof
The system (19) is equivalent to:

Yk · V = Ψ(V ) + Γk ·W (45)

and if Ψ(V ) = ∂Ψ
∂V is the jacobian matrix of Ψ, it holds that:

Yk ·
∂Ψ

∂V
= Ψ′(V ) · ∂Ψ

∂V
+ Γk (46)

which is equivalent to equation (41), and if in addition [Yk −Ψ′(V )] is
invertible equation (42) is verified.

When u1 = v1, . . . , uk = vk, uk+1 = wk+1, . . . , un = wn, from system (6)
we obtain:


−y1,k+1 · v1 · wk+1 − . . .− yk,k+1 · vk · wk+1 + yk+1,k+1 · w2

k+1 − . . .− yk+1,n · wk+1 · wn = Pk+1

...
−y1,n · v1 · wn − . . .− yk,n · vk · wn − yk+1,n · wk+1 · wn − . . .+ yn,n · w2

n = Pn

(47)

ans due to wk+1 > 0, . . . , wn > 0, the system (47) is equivalent to:
−y1,k+1 · v1 − . . .− yk,k+1 · vk + yk+1,k+1 · wk+1 − . . .− yk+1,n · wn =

Pk+1

wk+1

...

−y1,n · v1 − . . .− yk,n · vk − yk+1,n · wk+1 − . . .+ yn,n · wn = Pn
wn

(48)

and writing (48) in matrix form, we obtain:

− Γtk · V + Λn−k ·W = Φ(W ) (49)
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where

Φ(W ) = Φ((wk+1, wk+2, . . . , wn)t) =

(
Pk+1

wk+1
,
Pk+2

wk+2
, . . . ,

Pn
wn

)t
(50)

here, it should be pointed out that Pk+i are function of wk+i, so Φ(W ) =(
Pk+1(wk+1)

wk+1
, . . . , Pn(wn)

wn

)t
.

From expression (49), we deduce:

− Γtk ·
∂V

∂W
+ Λn−k = Φ′(W ) (51)

where

Φ′(W ) =
∂Φ

∂W
=


1

wk+1

∂Pk+1

∂wk+1
− Pk+1

w2
k+1

1
wk+1

∂Pk+1

∂wk+2
. . . 1

wk+1

∂Pk+1

∂wn

1
wk+2

∂Pk+2

∂wk+1

1
wk+2

∂Pk+2

∂wk+2
− Pk+2

w2
k+2

. . . 1
wk+2

∂Pk+2

∂wn

...
...

. . .
...

1
wn

∂Pn
∂wk+1

1
wn

∂Pn
∂wk+2

. . . 1
wn

∂Pn
∂wn
− Pn

w2
n

(52)

and consequently:

[W ] · Φ′(W ) =


∂Pk+1

∂wk+1
− Pk+1

wk+1

∂Pk+1

∂wk+2
. . .

∂Pk+1

∂wn
∂Pk+2

∂wk+1

∂Pk+2

∂wk+2
− Pk+2

wk+2
. . .

∂Pk+2

∂wn

...
...

. . .
...

∂Pn
∂wk+1

∂Pn
∂wk+2

. . . ∂Pn
∂wn
− Pn

wn

 (53)

and therefore:

[W ] · Φ′(W ) + [Φ] =


∂Pk+1

∂wk+1

∂Pk+1

∂wk+2
. . .

∂Pk+1

∂wn
∂Pk+2

∂wk+1

∂Pk+2

∂wk+2
. . .

∂Pk+2

∂wn

...
...

. . .
...

∂Pn
∂wk+1

∂Pn
∂wk+2

. . . ∂Pn
∂wn

 =
Π

∂W
(54)

From equations (51) and (54), we deduce the expression (43), and if
[Yk − Φ′(V )] is invertible, then equation (44) is verified.

�
It is important to point out that ∆V ≈ ∂V

∂W ·∆W , and ∆Π ≈ ∂Π
∂W ·∆W ,

so that means that we can know how much vary some variables when the
other change, because all of this information is in the respective Jacobian
matrix.



4 Application example. Four-terminal system. 13

4 Application example. Four-terminal system.

In order to show how our algorithm operates, a multi-terminal HVDC grid
model shown in figure 2 is presented. In this model there are two wind
producers nodes(1 and 2), two consumptions nodes (5 and 6). Also there are
two interconnection nodes (3 and 4) which no power is injected or consumed.
Table 1 lits the parameters values of this model.

Fig. 2: General benchmark.

Tab. 1: Simulation values.
Vnom Nominal voltage 400 kV

Pnom−1 Nominal power wind farm node 1 200 MW

Pnom−2 Nominal power wind farm node 2 300 MW

Rcable Cable resistance 0.0121 Ω/km

L13 Length line 1-3 180 km

L24 Length line 2-4 200 km

L34 Length line 3-4 150 km

L35 Length line 3-5 100 km

L46 Length line 4-6 70 km

For these data, the admittance matrix of the network Y is:

Y =



0.46 0 −0.46 0 0 0
0 0.41 0 −0.41 0 0

−0.46 0 1.84 −0.55 −0.83 0
0 −0.41 −0.55 2.14 0 −1.18
0 0 −0.83 0 0.83 0
0 0 0 −1.18 0 1.18

 (Ω−1) (55)

As the nodes 5 and 6 are consumed nodes, we select these as nodes where
the voltage is known. We will consider the power injected by the wind farms
and the power in interconnection nodes as a input data for our algorithm.
It could be noted that the power in interconnection nodes will be always
zero in according with explained above. So according with the formulation
explained in sections above, the variable k, the number of known power will
be k = 4, and the matrix Yk = Y4, and matrix Γ will be:
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Y4 =


0.46 0 −0.46 0

0 0.41 0 −0.41
−0.46 0 1.84 −0.55

0 −0.41 −0.55 2.14

 Γ =


0 0
0 0

0.83 0
0 1.18

 (56)

So, if for example, in a certain moment the wind farm 1 produces 200
MW and the wind farm 2 produces 100 MW, and we desire that the voltage
at node 5 will be 399.5 kV, and the voltage at node will be 400 kV, the
result of our algorithm, in steady state, will be shown in table 2:

Tab. 2: Power flow result
Algorithm inputs

P1 P2 P3 P4 u5 u6

200 MW 100 MW 0 MW 0 MW 399.5 kV 400 kV
Results

u1 u2 u3 u4 P5 P6

401.22 kV 400.79 kV 400.14 kV 400.19 kV -210.3 MW -88.63 MW

We observe as the voltages in nodes 1,2,3 and 4 are close to the nominal
value of the grid (400 kV), and also as the consumed power in nodes 5 and
6 are within the limits. For these results the power losses in the grid due to
cable resistances are 1.07 MW.

If we want to know how much varies the voltages and the power if one
or some variables change, we use the Property 2. So if for example a change
in the variables ∆u5 = 0.5 and ∆u6 = −0.3, and using expressions ∆V ≈
∂V
∂W ·∆W , and ∆Π ≈ ∂Π

∂W ·∆W :

∆W =

[
0.5
−0.3

]
⇒ δV

δW
=


0.68 0.31
0.22 0.78
0.69 0.31
0.22 0.78

 and
∂Π

∂W
=

[
102.89 −103.02
−103.16 103.28

]
(57)

⇒ [u] =



401.54
400.67
400.45
400, 08
400.1
399.7

 (kV ) and P =



200
100
0
0

−127.94
−171.19

 (MW ) (58)

5 Conclusions

A new method to solve nonlinear equation systems in DC grids is exhibited.
The main difference with old methods (power flows) is that there is no a
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unique node where the voltage is known (slack bus), and it will make safer
the grid, because the voltages not only will depend on an unique node, but
several nodes.

The results shown in this paper will be easily generalized for AC systems,
where the reactive power appears, proceeding in analogous form with the
same philosophy. new method to solve nonlinear equation systems in DC
grids is exhibited. The main difference with old methods (power flow) is
that there is no a unique node where the voltage is known (slack bus).

In addition, a detailed study of the variation of the power and voltages
when these variables change is proved and tested, by means of the Jacobian
matrix functions.

6 Annex

• If x = (x1, x2, . . . , xn) ∈ Rn

‖x‖1 = |x1|+ |x2|+ . . .+ |xn|

‖x‖2 =
√
x2

1 + x2
2 + . . .+ x2

n

‖x‖∞ = max{|x1|+ |x2|+ . . .+ |xn|}
‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1

• If a ∈ Rn and 0 < r ∈ R (with p=1,2 or ∞)

Bp(a, r) =
{
x ∈ Rn : ‖x− a‖p < r

}
B̄p(a, r) =

{
x ∈ Rn : ‖x− a‖p ≤ r

}
B1(a, r) ⊂ B2(a, r) ⊂ B∞(a, r)

B̄1(a, r) ⊂ B̄2(a, r) ⊂ B̄∞(a, r)

• If A ∈ Rm,n (with p=1,2 or ∞)

‖A‖p = maxx 6=0
‖Ax‖p
‖x‖p

= max‖x‖p=1 ‖Ax‖p

‖A ·B‖p ≤ ‖A‖p · ‖B‖p where B ∈ Rn,l

‖A‖1 = max {‖A1‖1 , ‖A2‖1 , . . . , ‖An‖1} (the maximum of norm one
of the columns of A).

‖A‖∞ = max
{∥∥A1

∥∥
1
,
∥∥A2

∥∥
1
, . . . , ‖An‖1

}
(the maximum of norm one

of the rows of A).

• Ψ((v1, v2, . . . , vk)
t) =

(
P1
v1
, P2
v2
, . . . , Pk

vk

)t
= (i1, i2, . . . , ik)

t
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Ψ′(V ) =


−P1

v21
0 . . . 0

0 −P2

v22
. . . 0

...
...

. . .
...

0 0 . . . −Pk

v2k

 , Yk −Ψ′(V ) =


y1,1 + P1

v21
−y1,2 . . . −y1,k

−y1,2 y2,2 + P2

v22
. . . −y2,k

...
...

. . .
...

−y1,k −y2,k . . . yk,k + Pk

v2k


• The equation (41) could be written as:

y1,1 + P1

v21
−y1,2 . . . −y1,k

−y1,2 y2,2 + P2

v22
. . . −y2,k

...
...

. . .
...

−y1,k −y2,k . . . yk,k + Pk

v2k

 ·


∂v1
∂wk+1

. . . ∂v1
∂wn

∂v2
∂wk+1

. . . ∂v2
∂wn

...
. . . . . .

∂vn
∂wk+1

. . . ∂vn
∂wn

 =


y1,k+1 . . . y1,n

y2,k+1 . . . y2,n
...

. . . . . .
yk,k+1 . . . yk,n



• Φ((w−k + 1, wk+2, . . . , wn)t) =
(
Pk+1

wk+1
,
Pk+2

wk+2
, . . . , Pn

wn

)t
= (ik+1, ik+2, . . . , in)t,

where:

[Φ] =


−Pk+1

w1
0 . . . 0

0 −Pk+2

w2
. . . 0

...
...

. . .
...

0 0 . . . −Pn
wn

 , [W ] =


wk+1 0 . . . 0

0 wk+2 . . . 0
...

...
. . .

...
0 0 . . . wn


• The equation (43) could be written as:


∂Pk+1

∂wk+1
. . .

∂Pk+1

∂wn

...
. . .

...
∂Pn
∂wk+1

. . . ∂Pn
∂wn

 =


Pk+1

wk+1
. . . 0

...
. . .

...

0 . . . Pn
wn

+

wk+1 . . . 0
...

. . .
...

0 . . . wn

 · [Γn−k − Λtk ·
∂V

∂W

]
,

where:

[
Γn−k − Λtk ·

∂V

∂W

]
=

yk+1,k+1 . . . −yk+1,n
...

. . .
...

−yk+1,n . . . yn,n

−
y1,k+1 . . . yk,k+1

...
. . .

...
y1,n . . . yk,n

 ·


∂v1
∂wk+1

. . . ∂v1
∂wn

...
. . .

...
∂vk

∂wk+1
. . . ∂vk

∂wn


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