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Observer Design for a Class of Nonlinear ODE-PDE Cascade Systems

The problem of state-observation is addressed for nonlinear systems that can be modelled by an ODE-PDE series association. The ODE subsystem assumes a triangular structure while the PDE element is of heat diffusion type. The aim is to accurately estimate online the state vector of the ODE subsystem and the distributed state of the PDE element. One major difficulty is that the state observation must only rely on the global system output i.e. the PDE state at the terminal boundary. In particular, the connection point between the ODE and the PDE blocs is not accessible to measurements. The observation problem is dealt with by designing a high-gain type observer. Sufficient conditions involving the PDE domain length are formally established that ensure the observer exponential convergence.

Introduction

In the last decades, the problems of nonlinear system observability and observer design has intensively been investigated for systems that can be described by ordinaries differential equations (ODEs). Several types of observers have been proposed, for several classes of nonlinear systems, including the high-gain observer e.g. [START_REF] Gauthier | A simple observer for nonlinear systems, application to bioreactors[END_REF][START_REF] Deza | High gain estimation for nonlinear systems[END_REF][START_REF] Khalil | Semiglobal stabilization of a class of nonlinear systems using output feedback[END_REF][START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF], sliding-mode observers e.g. [START_REF] Slotine | On sliding observers for nonlinear systems[END_REF][START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Fridman | Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems[END_REF], Luenberger-like observers e.g. [START_REF] Andrieu | On the existence of Kazantzis-Kravaris/Luenberger Observers[END_REF]. Additional references can be found in recent monographs e.g. [START_REF] Besançon | Nonlinear Observers and Applications[END_REF][START_REF] Khalil | Nonlinear Control[END_REF].

The problem of infinite dimensional system (IDS) observability and observer design has also been given a great deal of interest, especially in recent years. The earliest works have focused on linear IDSs and a relatively complete theoretical framework exists since the nineties, including the infinite dimensional Luenberger observer, e.g. [START_REF] Curtain | An Introduction to Infinite Dimensional Linear Systems Theory[END_REF][START_REF] Lasiecka | Control Theory for Partial Differential Equations: Continuous and Approximation Theories[END_REF] and reference list therein. Boundary observer design of bilinear IDSs have been studied in e.g. [START_REF] Xu | An observer for infinite-dimensional dissipative bilinear systems[END_REF][START_REF] Bounit | Observers for infinite dimensional bilinear systems[END_REF]Hammouri, 1997, Vries et al., 2007). A unifying study of both interior and boundary observation for linear and bilinear systems is found in [START_REF] Amann | Feedback stabilization of linear and semilinear parabolic systems[END_REF]. In [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], backstepping techniques have been used to design exponentially convergent boundary observers for a class of parabolic partial integrodifferential equations. The problem of initial state recovery has also been given interest. In [START_REF] Ramdani | Recovering the initial state of an infinitedimensional system using observers[END_REF], an iterative algorithm is proposed to recover the initial state of a linear infinite dimensional system. The proposed algorithm generalizes various algorithms, proposed earlier for specific classes of systems, and stands as an alternative to methods based on Gramian inversion [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]. The ideas of [START_REF] Ramdani | Recovering the initial state of an infinitedimensional system using observers[END_REF] have been extended to some nonlinear infinite dimensional systems, using LMI techniques [START_REF] Fridman | Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method[END_REF].

In this paper, we are interested in state observation of cascade systems including a ODE subsystem followed in series with PDE subsystem (Fig. 1). The aim is to recover the (finitedimension) state of the ODE part and the (infinite-dimension) state of the PDE part. One major difficulty of this problem lies in the fact that the connecting point between the two parts is not accessible to measurements. In [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF][START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] a boundary observer has been developed for a cascade involving a linear ODE and a (linear) heat PDE equation that may represent a distributed state sensor. In turn, the observer assumes a cascade structure with a finite-and infinite-dimensional parts. The observer design relies upon an infinite-dimensional transformation, inspired from the backstepping principle, and an exponentially stable target system. The observer thus obtained is shown to be exponentially convergent in the sense of a quadratic norm. Inspired by [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF][START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF], a new observer design is presently developed to address ODE-PDE systems that involve a triangular nonlinear ODE subsystem (the PDE part remains a heat equation).

The novelty of the present design approach is twofold: (i) it combines the backstepping infinitedimensional transformation of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] and the high-gain observer design principles [START_REF] Gauthier | A simple observer for nonlinear systems, application to bioreactors[END_REF][START_REF] Khalil | Semiglobal stabilization of a class of nonlinear systems using output feedback[END_REF][START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF]; (ii) it involves a quite different target system (as the ones used in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] are not usable for the present problem).

The paper is organised as follows: first, the observation problem under study is formulated in Section 2; then, the observer design and analysis are dealt with in Section 3; a conclusion and reference list end the paper. To alleviate the presentation, some technical proofs are appended. 

Notations.
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Problem Formulation

Analytically, the system under study is modelled by a finite-order nonlinear ODE connected in series with a PDE (Fig. 1). The former could represents the plant dynamics which presently assume the following triangular-form state-space representation:
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with:
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vector field with the triangular form:
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The system PDE part represents a diffusive sensing system modelled by the following heat equation and associated boundary condition:
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where D is a known scalar representing the length of the PDE domain. The whole system is observed through the output signal,

) , 0 ( ) ( t u t y def = (2c)
The aim is to design an observer that provides accurate online estimates of both the finite- is not supposed to be accessible to measurements.

Note that, a similar state observation problem has been dealt with in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] for ODE-PDE systems where the ODE subsystem is linear i.e. the vector field (.) f is identically null.

Before proceeding with the observer design and analysis, let us check that the system described by (1a-e)-(2a-c) is well posed. This is the subject of following statement proved in Appendix A.

Proposition 1. The system (1a-e)-(2a-c) has a unique classical solution
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Observer Design and Analysis

Observer Design

Inspired by the high-gain observer design approach, the following observer structure is considered for the system (1a-d)-(2a-c):
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where the scalar 1 > θ is a design parameter. The vector and scalar gains,

n K R ∈ and R ∈ ) (x k
, have yet to be defined. To this end, introduce the state estimation errors:
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Then, subtracting each of the system equations (1a-b)-(2a-c) from the corresponding equation in the observer (3a-d), one gets the following error system:
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Inspired by [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF], the following backstepping transformation is considered:

X D M Z ) ( ~1 ∆ = - , ( 6a 
) ) ( ) ( ) , ( ) , ( ~t Z x CM t x u t x w - = (6b) where ) (x M
is matrix function yet to be defined. Then, the error system (5a-d) rewrites, in terms of Z ~ and ) , ( ~t x w , as follows (see Appendix B):
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We seek a gain ) (x k and a matrix function ) (x M that make the error system (7a-d) coincide

with the following target system (which will be shown to be exponentially convergent in Subsection 3.2):
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Indeed, doing so equations (7d) reduces to (8b) while (7c) further develops as follows:
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Using Part 2 of that Lemma 1, one gets

A D AM D M = - ) ( ) ( 1 . Accordingly, equation (10) boils down to (8c). Now, substituting to ) (x k
and K their expressions given by ( 7e) and (9a), the observer (5a-d) rewrites in the following more suitable form:

)) ( ) , 0 ( ( ) ( ) ( ) ( ˆ1 t y t u L D M X f t Bv X A X - ∆ - + + = - θ & (11a) ) ( ) , ( ˆt X C t D u = (11b) )) ( ) , 0 ( ( ) ( ) , ( ) , ( ˆt y t u L x M C t x u t x u xx t - - = θ (11c) 0 ) , 0 ( ˆ= t u x (11d) for all 0 ≥ t and all ] , 0 [ D x ∈
. For convenience, (3e) is also rewritten:
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The state observer thus designed is a high-gain type involving two design parameters,

n L R ∈ and 1 > θ
. The analysis of Subsection 3.2 will provide insights on how to select these parameters.

Remark 1. a) The above observer design is also a generalization of the observer design proposed in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. Indeed, both observers address ODE-PDE cascaded systems and involve matrix gains ) (x M which play an instrumental role in the achievement of exponential convergence properties. The generalisation lies in the fact that the ODE part of the present class of systems (1a-e)-(2a-c) is nonlinear, whereas only linear systems are considered in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF].

b) A major novelty of the present work is the definition of the new target system (8a-d) which

quite different from the one used in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]). The target system in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] is not usable here due to the nonlinearities in the error system (5a-d).

c) For convenience, the target system based upon in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] is rewritten here (see equations ( 97)-( 100)):
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Clearly, the system (12a-d) is linear while (8a-d) is not. Furthermore(8a-d) involves a feedback interconnection between the finite dimensional and the infinite dimensional parts, whereas (12a-d) is a cascade structure. Consequently, the exponential stability analysis of the system (12a-d) is simpler than that of the system (8a-d). Indeed, the subsystems (12b-c) as well as the (autonomous part of) the subsystem (12a) are both well known to be exponentially stable. The proof of exponential stability is not that easy when it comes to the target system (8a-d).

d) Also, it is worth noticing that the presently designed observer (11a-e) is a High gain type while that in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] is not. However (11a-e) is not a standard high-gain observer due to the presence of the matrix gain ) (x M

Observer Analysis

First, the well posedness of the observer (11a-e) is established in the following proposition the proof of which is placed in Appendix D.

Proposition 2. Let the gain L of the observer (11a-e) be selected so that LC Ahas all its eigenvalues with negative real parts and the input ) (t v be bounded and piecewise continuous. , the observer (11a-e) a global exponential observer of the system (1a-d). Accordingly, the norm,
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Proof. The observer (11a-e) has been designed so that the corresponding error system (7a-d)

coincides with the target system (8a-d), which expresses in terms of the variables Z ~ and ) , ( ~t x w defined by (6a-b). To analyze the system (8a-b), the following Lyapunov function candidate is considered:
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with P any symmetric positive definite matrix satisfying the following algebraic equation:
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where 0 > µ is arbitrarily chosen while 0 > a will be selected later in this proof. Timederivation of (13a) yields, using (8a), ( 8c) and (13b):
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Let us analyse the different terms on the right side of ( 14), starting with the second term. One has:
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Z D M X ) ( ~1 - ∆ =
. Then, (11) becomes:

Z D M t X s t X f D PM Z X f X f D PM Z X T T ) ( )) ( ) ( ( ) ( 2 )) ( ) ( ( ) ( 2 1 1 0 1 1 - - - ∆       + ∆ ≤ - ∆ ∫ (16)
Letting the x -domain length D be such that 1 2 < θ D , one gets using Parts 1 and 2 of Lemma 1
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. Based on these observations, (16) yields:
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where the right side of this inequality does not depend on θ (as long as 1 > θ

). In turn, the third term on the right side of ( 14) develops as follows:
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where the last inequality is obtained using the fact that: where the boundary conditions (7b) and (7d) have been used. Finally, the last term on the right side of (10) can be bounded as follows, whatever 0
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where the last inequality is obtained using (17a-b). Following the same argument as the one used to get (18) from ( 16), the above inequality leads to:
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Using ( 18) to ( 21), it follows from ( 14) that:
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where we have used Wirtinger's inequality [START_REF] Hardy | Inequalities[END_REF]: 
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where the last inequality is obtained using again (23). At this stage, the free parameters 0 > a and 0 > ζ and the design parameter 1 > θ have yet to be chosen. An adequate choice is one that makes Term 1 and Term 2, on the right side of (24), nonnegative. As
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is bounded from below as follows:
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Then, a sufficient condition for 2 Term to be nonnegative is to let:
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The first inequality in (25b) is satisfied with e.g. 8 2 π ζ = . Then, Term 1 can be made nonnegative by letting:
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This suggests the choice
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. Doing so, inequality (26) yields: . This ends the proof of Theorem 1 ■
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Extension

The result of Theorem 1 can be adapted to the case where the PDE subsystem is a delay/transport element. Then, the system (1a-e)-(2a-c) becomes:

)) ( ( ) ( ) ( ) ( t X f t Bv t AX t X + + = & (28a) ) ( ) , ( t CX t D u = (28b) ) , ( ) , ( t x u t x u x t = , D x ≤ ≤ 0 (28c) ) , 0 ( ) ( t u t y = (28d)
where the remaining notations are as in Section 2. Then, the observer (11a-e) adapts to this case as follows:
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where ∆ is defined by (11e) and

Ax e x M θ = ) (
. Following mutatis-mutandis the proof of Theorem 1, the same result can be established with the observer (29a-d) being applied to the system (28ad).

Conclusion

The problem of state observation is addressed for the class of nonlinear systems, represented by the ODE-PDE association of Fig. 1, analytically modelled by equations (1a-e). The aim is to get online estimates of both the finite-dimensional state ) (t X and the infinite-dimensional state ) , ( t x u over the x -domain ) , 0 ( D , for some 0 > D

. A major difficulty is that the connexion point (between the ODE and the PDE subsystems), is not accessible to measurements making useless existing observers developed separately for ODE and PDE systems. The problem is dealt with using the high-gain type observer defined by equations (11a-e) which is a generalization of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] to the case where the ODE subsystem is nonlinear with triangular structure. The matrix function ) (x M emphasizes the difference with standard high-gain observers and plays an instrumental role in making (11a-e) an exponential convergence (Theorem 1). The present study can be pursued in several directions including: (i) re-designing the observer so that to make its convergence rate dependent on the the design parameters µ and θ ; (ii) the design of an adaptive version of the observer and the generalisation to other ODE and PDE subsystems.

Appendices

Appendix A. Proof of Proposition 1.

First notice that, by the standard existence theorem, the solution ) (t X of the ODE subsystems (1a-e) exists, whatever ∞ < ) 0 ( X , because f is continuous and Lipschitz (due to (1e)). Then, it remains to show that, in turn the solution ) , ( t x u exists. To this end, introduce the following auxiliary signal: 

) ( ) , ( ) , ( ) , ( t X t x t x u t x γ ω - = ( 
= (A2) 0 ) , 0 ( = t x ω (A3) 0 ) , ( = t D ω (A4)
This parabolic system is analyzed in many places and its well posedness can be established in many ways. Applying e.g. Theorem 2.6.5 in [START_REF] Zheng | Nonlinear Evolution Equations[END_REF] it follows that (A2)-(A4) admits a unique local solution:

) : ) , 0 ([ ) : ) , 0 ([ 1 Y C Y C ∞ ∩ ∞ ∈ ω (A5) whatever Y x ∈ ) , 0 ( ω , where { } 0 ) 0 ( , 0 ) ( : ) , 0 ( ) ( 2 = = ∈ = = x D D H D Y ξ ξ ξ Α (A6)
is the dense domain of the operator Similarly, deriving both sides of (A1) with respect to time, one gets using (1a) and (2a):

) ( ) , ( )) ( ( ) ( )( , ( ) , ( ) , ( t X t x t X f t AX t x t x u t x t xx t γ γ ω - + - = ( ) ) ( ) , ( ) ( ( ) ( ) , ( ) ( ) , ( ) , ( t 
X t x t X f t AX t x t X t x t x t xx xx γ γ γ ω - + - + = ) ( ) , ( ) ( ) , ( ) , ( t AX t x t X t x t x xx xx γ γ ω - + = ) ( ) , ( ) ( )) ( ( ( ) , ( 1 0 t X t x t X ds t sX f t x t X γ γ -       - ∫ (A7)
where the last equality is obtained using the mean-value theorem. it is Lipschitz. Then, again applying Theorem 2.6.5 in [START_REF] Zheng | Nonlinear Evolution Equations[END_REF] 

Y C Y C X u ∞ ∩ ∞ ∈ + = γ ω , whatever Y u ∈ ) 0 (
. This completes the proof of

Proposition 1 ◼ 1 2 t Z LCM D AM D M x M x dx M d C         - - + - θ (B7)
where we have used (6b). Equation (B7) is nothing other than (7c). Finally, equality (7d) is obtained by deriving both sides of (6b) with respect to x and then letting 0 = x in the obtained equality. Doing so, one gets:

Z dx dM C Z dx dM C t u t w x x ) 0 ( ) 0 ( ) , 0 ( ) , 0 ( ~-= - =
where the second equality is an immediate consequence of (5d ). This completes the proof that the system (7a-d) holds ◼ Appendix C. Properties of the matrix function ) (x M .

Lemma 1. The function ) (x M defined by (9b-c), where A is as in (1c), has the following properties:

1)

k n k k A k x x M ) ( )! 2 ( ) ( 1 1 2 ∑ - = + = θ I 2) ) ( ) ( x AM A x M = 3) k n k k k A x x M ) ( ) ( 1 1 2 1 ∑ - = - + = θ α I with )! 2 ( 1 ! 4 ! 2 , ! 2 1 2 1 1 k k k k - - - = - = - - K α α α α 4) ) ( ) ( 1 1 x AM A x M - - = 5) ( ) n n def x A e x M ×           ∈         = R I I I 0 0 ) ( 0 0 θ , x ∀  Proof.
Part 1. This is simply proved by checking that the presumed expression of ) (x M undergoes the differential equation and border condition (9b-c). It is readily checked that the first derivative is:

k n k k A k x x dx dM ) ( )! 1 2 ( ) ( 1 1 1 2 ∑ - = - - = θ (C1)
Deriving once again, one gets:

k n k k A k x x dx M d ) ( )! 2 2 ( ) ( 1 1 2 2 2 2 ∑ - = - - = θ ) ( ) ( )! 2 2 ( 1 1 1 2 2 A A k x n k k k θ θ         - = ∑ - = - - ) ( ) ( ))! 1 ( 2 ( ) ( 1 ) 1 ( 2 A A n x x M n n θ θ         - - = - - ) )( ( A x M θ =
where the last equality is obtained using the fact that the matrix A is nilpotent i. Part 2. This is an immediate consequence of part 1 using the fact that

A A A A k k ) ( ) ( θ θ = . Part 3. Let us develop the product ) ( ) ( 1 x M x M - replacing there ) ( 1 x M -
by its presumed expression. Doing so one gets:

      +         + = ∑ ∑ - = - = - k n k k k n k k k A x A k x x M x M ) ( ) ( )! 2 ( ) ( ) ( 1 1 2 1 1 2 1 θ α θ I I ∑ - = + = 2 2 1 2 ) ( n k k k k A x I θ β (C2) Direct computations yield: ! 2 1 1 1 + = α β )! 2 ( 1 ))! 1 ( 2 ( ! 2 1 1 k k k k k + - + + + = - α α α β K ) 2 2 2 ( - = n k K
By definition of the k α 's, it follows that all k β 's are equal to zero. Then (C2) implies that the equality 

I x M x M = - ) ( ) ( 1 does hold.

  Now, The exponential convergence of the observer (11a-e) is described in the following theorem which constitutes the main result: Theorem 1. Letting the gain L of the observer (11a-e) be selected as in Proposition 2

  by parts , the fourth term on the right side of (14) develops as follows:

  (A5) is achieved making use of the fact that that Α is a closed operator generating on Y a strongly continuous exponentially stable semigroup T satisfying the inequality )

Part 4 .

 4 This part is readily obtained from Part 3, pre-multiplying and post-term on the right side of (D11) is obtained using the boundary . Then, it follows that in turn the operator Π generates a strongly continuous exponentially stable semigroup. Furthermore, it is easily checked that definite. On the other hand, since the matrix LC Ahas negative real-part eigenvalues, it has a square root. It turns out that, the operator Π -

  Throughout the paper,

	the corresponding 2 L norm is denoted		2
					n R denotes the n dimensional real space and the
	corresponding Euclidean norm is denoted . .	n R denotes the set of all n×	m n × real matrices and
	. the induced Euclidian norm. Functions that are continuously differentiable with respect to all
	their arguments are denoted 1 C .	2 L	[	, 0	D	]	is the Hilbert space of square integrable functions and

Appendix B. Proof of (7a-b).

Deriving

with respect to time yields, using (5a):

( )

. It is readily checked using (1c) and (3e), that:

Then, one gets:

Then, equation (B1) reduces to: ( )

Equation ( 7a) is established.

To prove (7b), write the second equality in (6b) for D x = :

where the last equality is obtained using the fact that C C = ∆ , due to (1c) and (3e). This proves (7b).

To prove (7c), it follows deriving both sides of (6b) with respect to time:

where the last equality is obtained using (6b). Using (7a), equation (B6) further develops as follows:

)

)

) sufficient condition for the observer (3a-d) to be well posed is that the error system (5a-d) is so.

The well posedness of the latter will now be established. To this end, introduce the following variable change:

The last expression is referred to backstepping transformation [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. Then, the error system (5a-d) rewrites, in terms of X ~ and ) , ( t x ω , as follows:

where (D4) is obtained using the mean value theorem. Let us define a new function ) , ( t x η as follows:

Comparing equations (D8-D9) and (D3), it is seen that:

Therefore, analyzing the well-posedness of (D3-D7) amounts to analyzing the well posedness of the following system: ( )

Thus, Theorem 3.3.3 of [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] is applicable to (D16) ensuring that a strong solution

, for all 0 > t , initialized with