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 

Abstract. The problem of observer design is addressed for output-

injection nonlinear systems. A major difficulty with this class of 

systems is that the state equation involves an output-dependent term 

that is explicitly dependent on unknown parameters. As the output is 

only accessible to measurement at sampling times, the output-

dependent term turns out to be (almost all time) subject to a double 

uncertainty, making previous adaptive observers inappropriate. 

Presently, a new hybrid adaptive observer is designed and shown to be 

exponentially convergent under ad-hoc conditions. 

Index Terms- Adaptive observer, Sampled-data nonlinear systems 

I. INTRODUCTION 

Designing adaptive observers for nonlinear systems has been given a 

great deal of interest since the late eighties ([2,3,4,7,8]). Several 

design methods for obtaining exponentially convergent adaptive 

observers have been developed. However, almost all these design 

methods provide continuous-time adaptive observers that need 

discretization for practical implementation purpose. The point is that 

exact discretization is a highly complex issue due to the strong  

nonlinearity of the adaptive observer. On the other hand, there is no 

guarantee that approximate discrete-time versions can preserve the 

performances of the original continuous-time adaptive observers. This 

explains why quite a few studies have, so far, focused on designing 

sampled-data adaptive observers that apply to nonlinear systems 

subject to parametric uncertainty. A first attempt has been made in [1] 

where an adaptive observer, operating according to the continuous-

discrete design principle, has been developed for a class of state affine 

system with unknown parameters. Later on, an adaptive observer has 

been developed in [5], following the hybrid-observer design principle.   

A common limitation of the (sampled-output) nonlinear adaptive 

observers of [1,5] is that, they are not applicable to output-injection 

systems. In these systems, the output signal is feed back through the 

state equation. In the context of adaptive observers, the output-

dependent terms (entering the state equation) are also dependent on 

unknown parameters. As the output measurements are missing (except 

at sampling times), it turns out that those output-dependent terms are 

subject to a double uncertainty (parametric and output). This is a 

challenging difficulty that existing adaptive observers can not cope 

with. Presently, a new nonlinear adaptive observer is designed by 

combining ideas from continuous-time adaptive observers (e.g. [3,8]) 

and from continuous-discrete hybrid adaptive observers [6]. 

Accordingly, the proposed observer includes an adaptive state 

estimator, an adaptation parameter law, and an inter-sample output-

estimator. The latter is an instrumental component as the output 

estimation error is used to correct the trajectories of the state and the 

parameter estimates. It involves state and parameter projections and 

undergoes a periodic resetting which makes it the only discontinuous 

part of the observer. It is formally established that the adaptive 

observer is exponentially convergent provided the sampling period is 

small and a persistent excitation condition holds. The fact that the state 

and parameter estimate trajectories are continuous is another appealing 

feature of the observer. 
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The paper is organized as follows: the class of systems dealt with is 

described along with the proposed observer in Section 2; the main 

theorem describing the observer performances is presented in Section 

3; all technical proofs are appended. 

II. CLASS OF SYSTEMS AND ADAPTIVE OBSERVER 

The system under study is described by the following model: 

11000 ))(())(),(()()(  tutytutxAtx   (1a) 

)()( kk tcxty   (1b) 

with, 
nnA R0 ;  nc  1

R , p
R0 ,   m

R1  (2a)  

pnyu R),(0 ; mnu R)(1 ,    (2b) 

where u  and y  denote the system input and output, respectively; 

nx R  is the state vector, and the pair ),( 0 cA  is known and 

detectable. The system order n  is known but the parameter vectors 

0  and 1  are not. The function (.,.)0  is class 1C  while  (.)1  is 

just continuous. The input signal u  is bounded and the mapping 

xu   (defined by equation (1a)) is L -stable. Then, it readily 

follows that, in turn the state x  and the output y  are bounded. Note 

that signal boundedness is a usual assumption in the literature of 

nonlinear observers. The output equation (1b) emphasizes the fact that 

the signal y  is only accessible to measurements at sampling instants 

kt . The latter is any increasing sequence so that kt  as k . 

As the state equation (1a) involves y , through ),(0 yu , the system 

(1a-b) is said output-injection type [3]. A large class of practical 

systems fit the model (1a) and so can be observed using the adaptive 

observer proposed hereafter. Among these systems, Lorenz chaotic 

model is of the form (1a) with 0)( tu  and 01  , and Duffing 

oscillator model which involves the specific input )cos()( ttu   [4]. 

The problem at hand consists in designing an observer that provides 

accurate online estimates of the state )(tx  and the parameter vectors 

0  and 1 . State and parameter estimation must only rely on the input 

signal )(tu  and the sampled output measurements )( kty . A major 

difficulty in this problem is that the system involves two unknown 

parameter vectors with different properties. The parameter vector 1  

comes linearly in the state equation (1a), while 0  does not. Indeed, 

the output y  in ),(0 yu  is only accessible to measurement at 

sampling times. That is, the term 
00 ))(),((  tytu  in (1a) is all time 

subject to a double uncertainty, except at sampling times. This double 

uncertainty makes currently existing sampled-data adaptive observers 

inappropriate for the system (1a-b). Indeed, those proposed in [1,5] 

only apply to state-affine systems (in which case 00  ). As no 

existing observer is applicable to the system (1a-b), the following 

sampled-output adaptive observer is presently proposed: 

)(ˆ))](()))((),(([)(ˆ)(ˆ 100 ttutzsattutxAtx   

      )(ˆ)()()(ˆ tttztxcK 


  (3a) 

 )()(ˆ)()()(ˆ tztxccttRt TT  


, with )()( pmnt R  (3b) 

 TTT ttt )(ˆ)(ˆ)(ˆ 10   , with  mp tt RR  )(ˆ,)(ˆ
10   (3c) 

))(ˆ())](()))((),(([))(ˆ()( 100 tPtutzsattuctxPcAtz x   , 

 for ),( 1 kk ttt  (3d) 
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)()( kk tytz   (3e) 

    )())((),()()()( 100 tutzsattutKcAt    (3f) 

RccRRR TT  ,  with )()()0( pmpmIR   (3g) 

where the observer gain nK R  is chosen so that the matrix KcA 0  

is Hurwitz; xP  and P  denote projection functions, respectively on 

n
x R  and pm R , the latter being the balls centered on the 

origin, with known radiuses x  and  , such that: 

   and  xtx )( , 0t  (4) 

For convenience, the definitions of projection and saturation 

functions are recalled: 

w

w
wwP xx ),min()(  ,   

w

w
wwP ),min()(   ,  

 and  ),min()sgn()( Myzzzsat   (5a) 

where 0My  is any upper bound of output i.e. 

)(sup
0

tyy
t

M


  (5b) 

where )sgn( z  designates the sign function. All initial values 

( )0(̂ , )0(x̂ ...) in (3a-g) are allowed to be arbitrarily chosen (because 

to the observer will prove to be globally convergent). In view of (3d-

e), the variable )(tz  is an estimate of the output )(ty  over the open 

interval ),( 1kk tt , given the output samples )(),( 1kk tyty  The 

output estimator (3d-e) is resorted to cope with the sampled nature of 

output measurements. Also, the output estimation error acts as driving 

input of both the state estimation equation (3a) and the parameter 

adaptation law (3b). The model component ),(0 yu  which is output-

dependent is replaced in the observer by the "reconstructed signal" 

 ))((),(0 tzsattu . This is coherent with the fact that )(tz  is an 

estimate of )(ty . The saturation of  )(tz  is used to cope with the fact 

that, at this stage, this signal is not yet proved to be bounded. Without 

using that saturation, it will not be possible to ensure the boundedness 

of the adaptation gain  , nor that of the remaining observer signals. 

Note that the presence of  the quantity   ))((),(0 tzsattu  is precisely 

what makes (3a-g) fundamentally different from previous (sampled-

data) adaptive observers e.g. those in [1,5]. 

Remark 1. As (.,.)0  and (.,.)1  are continuous and KcA 0
 is 

Hurwitz, two real scalars 0M  and 0M  can be found such that: 

     M
t

tutzsattu  )())((),(sup 10 ,   M
t

t  )(sup  (6) 

III. ADAPTIVE OBSERVER ANALYSIS  

The adaptive observer defined by equations (3a-g) will now be 

analyzed. As pointed out earlier, a major difficulty in the analysis is to 

deal with the term 00 ))(),((  tytu  (in equation (1a)) which entails a 

double uncertainty (a parametric  uncertainty on 0  and measurement 

uncertainty on the output )(ty ). Another difficulty comes from the 

hybrid (continuous-discrete) nature of the output estimator (3d-e) of 

the observer. For analysis purpose, the following notations are 

introduced: 

xxx  ˆ~ ,   yze  ,     ˆ~
,   TTT

10   ,  TTT
10

~~~
   (7) 

where the vector partitions in (7) match those in (3c). Also, introduce 

the following augmented error:  


~~  x  (8) 

This error undergoes the following equation (proof in Appendix A): 

  0000 ),())(,()(  yuzsatuKeKcA   (9a) 

This is completed with similar equations, obtained using (7), (3a-g) 

and (1a-b), describing the dynamics of the errors e  and 
~

: 

 ecccR TT  
~~

 (9b) 

   )()ˆ()]())(,([)()ˆ( 100   PPuzsatucxPxPcAe xx   

        )(]0))(,())(,([ 00  Pysatuzsatuc  ,  ),[ 1 kk ttt  (9c) 

0)( kte   (9d) 

where the fact that )(xPx x  has been used in (9c). The analysis of  

the error system (9a-d) will now be accomplished, taking benefit from 

the fact that the time-varying matrix R  (solution of (3g)) is bounded 

symmetric positive definite, provided the following persistent 

excitation (PE) condition holds (e.g. [4,8]): 0,0,0, 10  t : 

  )()(1)()(0 )()( pmpm

t

t

TT
pmpm IdssccsI 



   


 (10) 

Under this condition, it is readily checked that the matrix inverse 1R , 

which also is bounded positive definite, undergoes the equation 

 ccRdtRd TT  11 /)( . Then, two positive real numbers ),( rr  

would exist such that, for all 0t : 

)()(
11

)()( ))(()( pmpm
T

pmpm IrtRtRrI 


   (11) 

The point with condition (10) is that it involves the vector signal )(t  

which, in view of (3d) and (3f), depends on the observer signals and 

parameters (i.e. )(ˆ),( txtz , )(ˆ
0 t , )(ˆ

1 t ). A convenient PE condition is 

one that only depends on the system (not the observer) signals and 

parameters. This issue is coped with in the following lemma, the proof 

of which is placed in Appendix B: 

Lemma 1. Let )(* t  denotes the solution of the equation, 

    )()(),()()()( 10
*

0
* tutytutKcAt    (12) 

with )0()0(*   , and introduce the definition, 

)(sup 1 kk
k

tt . (13) 

Suppose the following PE property is holding: 

0,0,0, 10  t :  

)()(1
**

)()(0 )()( pmpm

t

t

TT

pmpm IdssccsI 



   


 (14) 

Then, there exists a real constant 00   such that, if 00    then, 

in turn property (10) holds  ■ 

Remark 2. a) Expressing the PE condition (14) in terms of the matrix 

gain   is a usual practice in the literature, e.g. [1,3,4,5,8]. 

b) An explicit description of how small 0  is provided in the proof of 

Lemma 1. In the sequel, the (system-dependent) PE condition (14) 

will be supposed to be true and the maximal sampling period is 

assumed to be sufficiently small (in the sense that 00   ). Then, 

by Lemma 1, the (observer-dependant) PE property (10) and the 

matrix inequalities (11) can be used throughout the paper ■ 

Making use of (11), the following Lyapunov function is considered: 

 PRV TT   ~~ 1  (15) 

where 
TPP   is any positive definite matrix satisfying the inequality: 

IPKcAKcAP T  )()( 00  (16) 

and   is any positive constant such that: 






424 cM
  (17) 
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where M  is as in (6) and   is any positive real scalar such that: 

2r  (18) 

where r  is as in (11). Let 0*   denote the largest scalar satisfying: 

0
*   , 

*
0

2/* 1*

Mc
e


   , 

Mec

e

M





 1

1 2/**
0

2/*

*

*




 (19) 

where   is any scalar such that 
2

0 0
   and 

),(sup 0
,

* yu
y

MM yyuu
M 








, with )(sup
0

tuu
t

def

M


  (20) 

 MM ccAcAM  ,,max 00  ,   
20

12




    (21) 



































42

max

0

2

2)(

1
,

2

1
min

c

P

M


,   

 and 
2

2
2*222

1

2
))((

2
cKP M

M






       (22a) 

 rP),(inf min2   (22b) 

where (.)max  and (.)min  are the maximum and minimum 

eigenvalues. Then, one has the following main result in Appendix C. 

Theorem 1. Let the sampled-output adaptive observer (3a-g) be 

applied to the system (1a-b). Suppose that the sampling period 

satisfies *   and that the PE condition (12) holds. Then: 

 
2/

2/2/*

0

2/*

0

1

1

)(

)(
~

t

M

M
e

eMec

ec

t

t 











 

















, 0tt      ■ 

Remark 3. a) By Theorem 1, both )(
~

t  and )(t  exponentially tends 

to zero. On the other, (8) entails 
~~~ x  and   

is bounded by (6). It follows that )(~ tx is exponentially vanishing. 

b) Notice that inequalities (16), (17), and (18) define a feasible 

algebraic problem. Indeed, the constant observer gain K  is first 

chosen so that )( 0 KcA   is Hurwitz. Then, (3f) shows that    and its 

bound M  in (6) are entirely dependent on the choice of K . Then, 

equation (3g) implies that in turn R , and so its bounds r  and r  in 

(18), are dependent on the choice of K . Owing to r , it is readily 

checked using (11) that a possible value is  0
 er  (see e.g. [4]). 

Then, (18) implies that, in turn   is dependent on ),( 0  (which 

themselves are dependent on K ) and, due to (17), so is  . Finally, 

inequality (16) shows that P  depends on   and 0  ■ 

IV. SIMULATION 

To illustrate the performances of the adaptive observer, we are 

considering the following example of the form (1a) with, 













11

10
0A , 










))(sin(

))(cos(
))(),((0

ty

ty
tytu , 










)(

0
))((1

tu
tu , 

]01[c , 5.40  ,  5.11  , and initial conditions 

1.0)0(,7.4)0( 21  xx . It is readily checked that the autonomous 

system (with 0)( tu ) has an equilibrium at (0,0) and its linear 

approximation (around the equilibrium) has complex poles. That is, 

the system is of oscillating nature). The observer gain K  is selected so 

that  the two eigenvalues of KcA 0  take the values 01.1  and 

00.1 . It turns out that ]1,01.1[ K . The parameter and signal 

bounds involved (5a-b) are set to 100 x , and 7.15My . It is 

checked by simulation that, the last two bounds hold whenever the 

system (1a-b) is excited by square periodic inputs )(tu  with amplitude 

not larger than 5 . An example of such input signals is shown, together 

with the corresponding system output, in Fig. 1 and both are used in 

the observer (3a-g). The sampling period is set to a constant value 

s5.0 . Then, the quality of the obtained parameter and state 

estimates is illustrated by Figs 3 and 4. Because of space limitation, 

only estimation errors are provided. The figures show a quite 

satisfactory estimation quality confirming Theorem 1. 

 
Fig. 1. Input signal. 

 

 

Fig. 2. Top: Illustration of perfect matching between the system output 

)(ty  (solid) and predicted output )(tz  (dotted). Bottom: zoom on 

the true and predicted outputs during the transient stage. 

V. CONCLUDING REMARKS 

This study has addressed the problem of adaptively estimating the 

state and the parameters of output-injection systems of the form (1a-b), 

based on sampled-output data. A major difficulty is that, the output-

dependent term 00 ),(  yu  (entering the state equation) is subject to 

both parametric and output uncertainties. This makes existing 

sampled-data adaptive observers inappropriate for the systems (1a-b). 
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Theorem 1 shows that the new hybrid adaptive observer (3a-g) is 

suitable for these systems as it enjoys exponential convergence under 

ad-hoc conditions, including the sampling period smallness and the 

(system-dependent) PE condition of Lemma 1. Another feature is that 

the trajectory of the state estimate )(ˆ tx  is continuous (only the output 

estimation )(tz  is discontinuous). 

 

 
Fig. 3. Estimation errors 111

ˆ~ xxx   (top) and 222
ˆ~ xxx   (bottom). 

 

 

Fig. 4. Estimation errors 000
ˆ~

   (top) and 111
ˆ~

   (bottom).  

APPENDIX A. PROOF OF EQUATION (9A) 

Subtracting (1a) from (3a), one gets using (7): 

  
 ˆˆ

~
)(),(ˆ))(,(~~

1100000  zxcKuyuzsatuxAx  

     000000 ),())(,(
~

))(,(~)(  yuzsatuzsatuxKcA   

        
̂~

)( 11  Keu  (A1) 

By (8),  
~

  is substituted to  x~  on the right side of (A1), 

yielding: 

  000000 ),())(,(
~

))(,()(~  yuzsatuzsatuKcAx   

 
~

)(ˆ~
)( 011 KcAKeu 


  (A2) 

From (A2) and (8), one gets deriving  : 

000

~
))(,()(

~~~  zsatuKcAx    

   000 ),())(,(  yuzsatu   

 
~~

)(
~

)( 011
 KcAKeu  (A3) 

Using (3f), (A3) simplifies to: 

  0000 ),())(,()(  yuzsatuKeKcA   

which establishes (9a)  ■ 

APPENDIX B. PROOF OF LEMMA 1. 

Letting )()()(
~ * ttt   , it follows subtracting (3f) from (12) that: 

    0)(),())((),()(
~

)()(
~

000 tytutzsattutKcAt  


   (B1) 

with 0)0(
~

  (because )0()0(*   ). As 0  is continuous, the last 

term on the right side of (B1) is bounded as follows: 

yzsatyuzsatu M  )(),())(,( *
00   

  eysatzsat MM
** )()(    (B2) 

 because yysat )( , with *
M  as in (20). As KcA 0  is Hurwitz, it 

follows from (B1) and (B2) that: 

)(sup)(
~

sup
0

*

0

seKs
ts

M
ts 

    (B3) 

using 0)0(
~

 , where 
 


0

)( 0 dseK
sKcA

 . Note that K  is finite 

and can a priori be determined because KcA 0  is known. On the 

other hand, equation (3d) gives, for all ),[ 1 kk ttt : 


t

t xk
k

dssxPcAtytz ))(ˆ()()( 0  

 
t

tk

dssPsuszsatsuc ))(ˆ())](()))((),(([ 10    (B4) 

Recall that the output )(ty  undergoes an equation like (3d) replacing 

there all estimates by their true values. Then, an expression similar to 

(B4) is obtained for )(ty , i.e.  for all ),[ 1 kk ttt : 

 
t

tk
k

dssusysucsxcAtyty  ))](())(),(([)()()( 100  (B5) 

Subtracting (B5) from (B4), one gets for all ),[ 1 kk ttt : 

  
t

t x
k

dssxsxPcAtytzte )())(ˆ()()()( 0  

 
t

tk

dssPsuszsatsuc ))(ˆ())](()))((),(([ 10    

 
t

tk

dssusysuc  ))](())(),(([ 10  (B6) 

The terms under the integral symbols involve both system signals (i.e. 

),, yxu  and observer signals (i.e. ),ˆ,ˆ zx  . The former are bounded by 

assumption. The latter come in through the projection functions. It 

turns out that, all terms under integrals are bounded. Then, it follows 

from (B6) that, there exists a real  eK0  such that: 

eKtytzte  )()()( ,  , for all ),[ 1 kk ttt   (B7) 

Combining (B7) and (B3) yields: 
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  eM
ts

KKs *

0

)(
~

sup 


 (B8) 

On the other hand, it is readily checked that: 





t

t

TT dssccs )()(  








t

t

TTt

t

TTt

t

TT
dssccsdssccsdssccs )(

~
)(

~
)(

~
)(2)()( ***  








t

t

TT
dssccs )()( **   )()(

2
)(

~
2 pmpm

t

tM Idssc 





  (B9) 

using (6) and (2b). Combining (B9) and (B8) gives, using (14): 

)()(0)()( pmpm

t

t

TT Idssccs 


 


 

 )()(

2*2 pmpmeMM IcKK     

This establishes the right side of (10) with 0  is any real such that 

0
*

02   eMM KK  and   eMM KK *
000 2 . The left side 

of (10) is established similarly  ■ 

APPENDIX C. PROOF OF THEOREM 1 

The proof is divided in two parts. First, it is shown that the mapping 

 )()(
~

)( ttte   is ISS. Then, it is shown that, in turn the mapping-

inverse   )()()(
~

tett  is ISS. The result of Theorem 1 is then 

obtained invoking the small gain theorem. 

Part 1. Proof that the mapping 













)(

)(
~

)(
t

t
te




 is ISS. 

Time-derivation of  V  gives, using (15), (9a-b) and (3g): 

 
 PRRV TTT 2
~~

2
~~ 11    

       ecccccccR TTTTTTTTTT    ~~
2

~~ 1  

          0000 ),())(,()(2  yuzsatuKeKcAPT   

    21 ~
2

~~~~
   ecccccR TTTTTTTTT

 

                     000 ),())(,(2  yuzsatuKePT   

where we have used the fact that 
2

0 )(2   KcAPT
, which is 

a direct consequence of (16). The last inequality further simplifies to: 
22

1 1~~~~~
ecccccRV TTTTTTTT 


    

   22*2

0

222
)(

2

2
eKP M





  (C1) 

where 0  is any real constant satisfying (18) and 0  is as in 

(16). Note that inequality (C1) is obtained using the Young inequality 

  twice, once with    and once with 2/  . Also note that, 

the last term on the right side of (C1) is obtained using also the fact 

that: 

)()()(),())(,( **
00 ysatzsatyzsatyuzsatu MM    

 eM
*  

 because yysat )( , with 
*
M  as in (20). Using (11) and (18), 

inequality  (C1) develops further as follows: 

22222
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22~~

2

1









   ecccRV TTTTT  
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22
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2
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






  ccR TTT

 

   2
2

2*2

0

22 2
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2
ecKP TT

M 







 





 (C2) 

It is readily checked that 
22

cccc M
TT   , where M  is as in 

(6). By (17),   is selected such that 



422

2

cM
 . Then one has, for 

all 0s :  

0
2

2

2

2

42
2









 c
cc

MTT . 

Then, it follows from (C2) that: 

2
10 eVV     

with 0  and  1  as in (22a). Integrating the above inequality implies, 

for all tt  00 : 





t

t

sttt
dsseetVetV

0

000 )()()( 2)(
10

)(    (C3) 

Given any scalar   such that 2/0 0  , it follows multiplying 

both sides of (C3) by te :  





t

t

sttttt dsseeetVeetVe
0

0000 )()()( 2)(
10
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 



t

t

stt dsseeeM
0

0 )(2)(
10

  (C4) 

with )( 00
00 tVeM

t
 , using the fact that 1

)( 0 
 t

e
 . Inequality (C4) 

implies successively: 


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
t

t

sssttt dsseeeeeMtVe
0

0 )()( 2)(
10

   

 



t

t

sst
dsseeeeM

0

00 )(2)()(
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  

    )(sup 2)()(
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0

0

00 seedseeM s

tst

t

t
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0
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
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


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2

)(sup 2

0

1
0

2

0

1
0
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seeMseeM s
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s

tst















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Taking root-squares of both sides of the last inequality gives: 
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)( 2/
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1
0

2/

0

seeMtVe s

tst

t 







  (C5) 

On the other hand, it readily follows from (15): 









  22

2
1 ~~~

 PRV TT  

with 2  as in (22b). Taking the root square of both sides of the above 

inequality, one immediately obtains   TTV 
~

2  which, 

together with (C5), yields: 

   )(sup
2~ 2/
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1
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e s

tst

t 










  

Clearly, the right side of this inequality is increasing. Then, one has: 

  2/)()(
~

sup
0
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tst

ess 


 )(sup 2/
1

0

seeM s

tst




  (C6) 

with 201 /)(00 
tVeM

t
  and   as in (21), which establishes Part 1. 

Part 2. Proof of Theorem 1. 

To establish Theorem 1, the expression (B6) (see Appendix B) giving 

)()()( tytzte   is rewritten as follows, for Nk  and ),[ 1 kk ttt : 

  
t

t xx
k

dssxPsxPcAte ))(()(ˆ()( 0  
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where we have used the fact that ))(()( sxPsx x , )( P  and 

))(()( sysatsy  , due to (4) and (5a-b). By (8), 
~

  can be 

substituted to x~  on the right side of (C7). Then, taking absolute value 

of both sides of (C7) and multiplying the obtained inequality by 2/te  

one gets, using the inequalities )(~))(())(ˆ( sxsxPsxP xx   and 
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~
)())(ˆ( PsP : 
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for all ),[ 1 kk ttt , with  MM ccAcAM  ,,max 00  and *
M  as 

in (20). Noticing that     22 ~~ TT   , inequality (C8) 

rewrites: 
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It is readily checked that 
2/2/0 k

k

tt

t

s edse
     . Then, one gets 

from (C9): 
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where we have used the inequalities  ktt0 , with 

)(sup 1 kk
k

tt , and the fact that kt  is an increasing sequence. It is 

readily seen that, the right side of inequality (C10) is an increasing 

function of t . Then, it follows that: 
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Now, by letting   be sufficiently small so that: 

12/*
0  ec M ,  (C12) 

one gets from (C11): 
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Substituting the right side of (C13) to  )(sup 2/
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 in (C6) gives: 
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Let   be sufficiently small so that, in addition to (C12), the following 

inequality holds: 
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Then, (C14) yields: 
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This implies that: 
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which ends the proof ■ 
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