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The problem of state observation, based on spatiallysampled output measurements, is addressed for a class of infinite dimensional systems, modelled by a semi-linear heat equation augmented with a structured uncertain part involving a set of unknown parameters. An adaptive observer is designed that provides online estimates of the system (spatially distributed) state and unknown parameters based on sampled data (in space). Sufficient conditions for the observer to be exponentially convergent are established. These include an ad-hoc persistent excitation condition as well as a condition on how the observer gain must be selected in relation with the space sampling interval.

I. INTRODUCTION

Adaptive state observers are resorted to deal with online state and parameter estimation. The first adaptive observers have been developed for finite-dimensional continuous-time linear systems and an extensive survey can be found in [START_REF] Narendra | Stable Adaptive Systems[END_REF] and [START_REF] Ioannou | Robust Adaptive Control[END_REF]. Then, research efforts have been devoted to designing nonlinear adaptive observers for (finite-dimensional) nonlinear systems, e.g., [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF]- [START_REF] Besançon | On adaptive observers for state affine systems[END_REF]. More recently, sampled-data (in time) observers have been developed for (finitedimensional) nonlinear systems where output measurements are only available at sampling instants, e.g., [START_REF] Ahmed-Ali | Continuousdiscrete adaptive observers for state affine systems[END_REF]- [START_REF] Folin | Sampled-data adaptive observer for a class of state-affine nonlinear systems with output injection[END_REF].

The problem of observer design for infinite dimensional systems (IDSs) has also been given a great deal of interest, especially since the eighties. Several observer design techniques have been developed including the infinite dimensional Luenberger observer for linear IDSs (e.g., [START_REF] Curtain | An Introduction to Infinite Dimensional Linear Systems Theory[END_REF], [START_REF] Lasiecka | Control Theory for Partial Differential Equations: Continuous and Approximation Theories[END_REF]), the boundary observer design of bilinear IDSs (e.g., [START_REF] Amann | Feedback stabilization of linear and semilinear parabolic systems[END_REF]- [START_REF] Vries | A Luenberger observer for infinite dimensional bilinear system: A UV desinfection example[END_REF], [START_REF] Guo | Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF]), backstepping-based boundary observers for parabolic partial integro-differential IDSs [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], initial state recovery algorithms for various linear and nonlinear IDSs [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]- [START_REF] Fridman | Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method[END_REF], sampled-data (in time and space) observer for semilinear diffusion IDSs [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF].

In the last few years, much interest has been paid to simultaneous parameter and state estimation for IDSs, within various contexts. In [START_REF] Smyshlyaev | Output-feedback adaptive control for parabolic PDEs with spatially varying coefficients[END_REF], simultaneous state and parameter estimation has been introduced to deal with output-feedback adaptive control design for parabolic PDEs. In this context, the unknown parameters are tuned by gradienttype laws while the (spatially distributed) state is estimated using openloop filters. The convergence of the estimates to their true values is not established. But, this is not required for the achievement of control objectives. In [START_REF] Smyshlyaev | Adaptive identification of two unstable PDEs with boundary sensing and actuation[END_REF], simultaneous state and parameter estimation has been performed to solve a parameter identification problem for reactionadvection type systems involving a single unknown parameter. Open-and closed-loop adaptive identifiers have been proposed where the unknown parameter is estimated using gradient-type estimators, while the (spatially distributed) state is estimated using open-loop filters. It is shown that the parameter estimate converges to its true values, by just using constant exciting inputs. In [START_REF] Guo | Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF], simultaneous parameter and state estimation has been considered within the context of adaptive stabilization for a wave equation subject to a boundary harmonic disturbance linearly parameterized along a known set of functions. An adaptive observer estimating the system state and the (disturbance) unknown parameters is proposed and the estimation error system is shown to be asymptotically stable.

In this technical note, the problem of parameter and state estimation is addressed for IDSs that are described by a semilinear heat equation, based on sampled (in space) state measurements. The system includes a structured uncertain part, involving linearly a set of unknown parameters. Note that, in the absence of parameter uncertainty, the observer proposed in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF] applies to the present system. On the other hand, the class of systems considered here can be viewed as a generalization of the system considered in [START_REF] Smyshlyaev | Adaptive identification of two unstable PDEs with boundary sensing and actuation[END_REF] as this involves a single unknown parameters. The corresponding observation problem is dealt with using an adaptive observer providing online estimates of the system (spatially distributed) state and unknown parameters. The observer design involves a backstepping state transformation, inspired from adaptive observers of nonlinear ODE systems [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], [START_REF] Smyshlyaev | Adaptive Control of Parabolic PDEs[END_REF]. The observer state and parameter estimators are derived so that the transformed system coincides with an exponentially stable target system. The observer derivation entails an ad-hoc persistent excitation condition, under which all state and parameter estimation errors are guaranteed to be exponentially vanishing. A second sufficient condition is established showing that the observer gain depends on the space sampling period. The technical note is organized as follows: the observation problem statement, including the class of IDSs, is described in Section II; the adaptive observer design and analysis are dealt with in Section III; a conclusion and a reference list end the technical note.

II. OBSERVATION PROBLEM STATEMENT

The system under study is described by a parabolic type PDE of the form

u t (x, t)=u xx (x, t)+θ T φ (y(t),t) , 0 <x<1,t>0 (1a)
with the boundary condition

u x (0,t)=0,t≥ 0 (1b)
and boundary input actuation:

u(1,t)=U (t),t ≥ 0, (control input) (1c)
where φ : R p × R → R n is a known C 1 function; θ ∈ R n is a fixed vector of unknown components but its dimension n is known.

The quantity θ T φ(y(t),t) might represent a possible structured modelling error. The system is observed via an output vector y(t) ∈ R p including all measurements acquired on the system at time t. Specifically, the spatial domain 0 ≤ x ≤ 1 is divided in p known subintervals [x j ,x j+1 ], with p ≥ 1 and

x 0 =0≤ x j ≤ x j+1 ≤ x p =1 (j =0•••p -1)
. A sensor is placed at the middle of each subinterval providing online state measurements at those positions y j (t)=u(x j ,t); x j = x j + x j+1 2 (j =0,...,p-1). (2a) Then, the system output vector y(t) is defined as follows:

y(t)=[y 0 (t),...,y p-1 (t)] T . ( 2b 
)
Note that the case of single sensor p =1, or equivalently ∆=1, is not ruled out, where ∆ denotes the maximum space sampling interval, i.e., ∆= max j=0,...,p-1

(x j+1 -x j ). ( 2c 
)
The goal is to generate accurate online estimates û(x, t) and θ, respectively of the system state u(x, t) ( 0 ≤ x ≤ 1; t ≥ 0)a n dt h e parameter vector θ, based on the output measurements y(t). To achieve this objective, the following assumption is considered: Assumption 1: u(x, t) is bounded and the function φ(., t) is uniformly bounded with respect to the argument t.

Remark 1:

a) Equation (1a) may capture several heat phenomena. For instance, the simpler case θ ∈ R boils down to the heat system (1) in [START_REF] Smyshlyaev | Adaptive identification of two unstable PDEs with boundary sensing and actuation[END_REF] (with the sensor being placed at the boundary x = 0). In the general case θ ∈ R n , (1a) may be viewed as an approximation of a parabolic type equation of the form

u t (x, t)=u xx (x, t)+θ T 1 0 ψ (u(x, t),t) dx.
Then, the approximation of the integral term by the rectangle method leads to an equation similar to (1a). b) The above boundedness assumption entails the existence of (not necessarily known) scalars

-∞ <u m <u M < ∞ and -∞ < φ m <φ M < ∞ such that, ∀ x ∈ [0, 1], ∀ y ∈ [u m ,u M ] p , ∀t ≥ 0 u m ≤ u(x, t) ≤ u M ,φ m ≤ φ(y, t) ≤φ M .
This assumption will prove to be crucial for the varying gain matrix λ(x, t) of the observer (defined in the next section) to be bounded.

III. OBSERVER DESIGN AND ANALYSIS

A. Observer Design

The system model (1a)-(1c) suggests the following observer structure:

ût (x, t)=û xx (x, t)+φ T (y(t),t) θ(t)-K (û(x j ,t) -y j (t)) + v(x, t),x j ≤ x<x j+1 , (j =0,...,p-1) (3a) ûx (0,t)=0 (3b) û(1,t)=U (t) (3c) 
where θ(t) is a parameter vector estimate, v(x, t) is an additional correction term, and K ≥ 0 is the observer gain. Suitable choices of these quantities will be made based on the subsequent analysis. First, introduce the following errors:

u(x, t)=û(x, t) -u(x, t)(state estimation error) (4a) θ(t)= θ(t) -θ (parameter estimation error). ( 4b 
)
Subtracting (1a) to (3a), it follows using (1a) and (4a), (4b) that u(x, t) undergoes the following equation:

u t (x, t)= u xx (x, t)+φ T (y(t),t) θ(t) -K u(x j ,t)+v(x, t), x j ≤ x<x j+1 , (j =0,...,p-1) (5a)
with the following boundary conditions:

u x (0,t)= u(1,t)=0(using (1b-c) and (4b-c)). (5b) 
Now, introduce the backstepping transformation, inspired by [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF] z

(x, t)= u(x, t) -λ(x, t) θ(t) (6) 
where λ(x, t) ∈ R 1×n is an auxiliary vector function to be defined later. It is worth noting that, the above transformation has originally been introduced in [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF] for finite dimensional systems described by nonlinear ODEs. It has proved in many places to be useful for the design of adaptive observers [START_REF] Besançon | On adaptive observers for state affine systems[END_REF]- [START_REF] Folin | Sampled-data adaptive observer for a class of state-affine nonlinear systems with output injection[END_REF].

It follows from ( 6) that z(x, t) undergoes the following equation:

z t (x, t)= u xx (x, t)+φ T (y(t),t) θ(t) -K u(x j ,t)+v(x, t) -λ t (x, t) θ(t) -λ(x, t) ˙ θ(t) (7) 
for all t ≥ 0, x j ≤ x<x j+1 and j =0,...,p-1. Equation ( 7) suggests the following choice of v(x, t):

v(x, t)=λ(x, t) ˙ θ(t) (8) 
Doing so, (7) simplifies to

z t (x, t)= u xx (x, t)+φ T (y(t),t) θ(t)-K u(x j ,t)-λ t (x, t) θ(t) (9) 
for all t ≥ 0, x j ≤ x<x j+1 and j =0,...,p-1.I nv i e wo f( 6 ) , z(x, t)+λ(x, t) θ(t) can be substituted to u(x, t) on the right side of [START_REF] Hann | Continuous adaptive observer for state affine sampled-data systems[END_REF]. Doing so, one gets

z t (x, t)=z xx (x, t)+λ xx (x, t) θ(t)+φ T (y(t),t) θ(t) -K z(x j ,t)+λ(x j ,t) θ(t) -λ t (x, t) θ(t) = z xx (x, t) -Kz(x j ,t) + λ xx (x, t)+φ T (y(t),t) -Kλ(x j ,t) -λ t (x, t) θ(t) (10) 
for all t ≥ 0, x j ≤ x<x j+1 and j =0,...,p-1. Equation ( 10) suggests the following trajectory for the auxiliary state vector λ(x, t):

λ t (x, t)=λ xx (x, t) -Kλ(x j ,t)+φ T (y(t),t); t ≥ 0,x j ≤ x<x j+1 ,j=0,...,p-1 (11a)
with the following boundary and initial conditions:

λ x (0,t)=λ(1,t)=0, and λ(x, 0) = 0. (11b) 
Doing so, (10) boils down to

z t (x, t)=z xx (x, t)-Kz(x j ,t ); t ≥ 0,x j ≤ x<x j+1 , (j=0,...,p-1). (12a 
) In view of (11b) and (5b), one gets from (6) the following boundary conditions:

z x (0,t)=z(1,t)=0 (12b) 
Owing to the unknown parameter vector, the following adaptive law is used:

θ(t)= -R(t)Λ T (t) y(t) and θ(t) ∈ R n (13a) Ṙ(t)=R(t) -R(t)Λ T (t)Λ(t)R(t) with R(t) ∈ R n×n (13b) Λ(t)= ⎡ ⎢ ⎣ λ(x 0 ,t) . . . λ(x p-1 ,t) ⎤ ⎥ ⎦ ∈ R p×n (13c) y(t)=[û(x 0 ,t) -y 0 (t),...,û(x p-1 ,t) -y p-1 (t)] T (13d)
where the initial conditions θ(0) = θ 0 and R(0) = R 0 are arbitrarily chosen but R 0 = R T 0 > 0. The structure of the parameter adaptive law (13a)-(13d) is similar to that used in (finite-dimensional) system observers, e.g., [START_REF] Besançon | Remarks on nonlinear adaptive observer design[END_REF]- [START_REF] Besançon | On adaptive observers for state affine systems[END_REF]. The main difference is that the adaptive gain Λ(t) is presently generated by a PDE equation [namely, (11a), (11b)], while such a gain was generated by an ODE equation in the case of finite-dimension system observers. Except for this difference, the adaptive law (13a), (13b) is expected to perform as in the finitedimensional case. In particular, the matrix R(t) [generated by (13b)] will be required to stay all the time symmetric and positive definite. The observer thus designed is constituted of (3a)-(3c), (11a), (11b) and (13a)-(13c). For convenience, these equations are rewritten together as follows:

ût (x, t)=û xx (x, t)+φ T (y(t),t) θ(t)-K (û(x j ,t)-y j (t)) + λ(x, t) θ(t), for x j ≤ x<x j+1 (j =0,...,p-1) (14a) ûx (0,t)=0, û(1,t)=U (t) (14b) λ t (x, t)=λ xx (x, t) -Kλ(x j ,t)+φ T (y(t),t); t ≥ 0,x j ≤ x<x j+1 ,j =0,...,p-1 (14c) λ x (0,t)=λ(1,t)=0,λ (x, 0) = 0 (by definition) ((4d) θ(t)= -R(t)Λ T (t) y(t) (14e) 
Ṙ(t)=R(t) -R(t)Λ T (t)Λ(t)R(t). (14f) 

B. Observer Analysis

The observer analysis amounts to analyzing the stability of the following error system:

z t (x, t)=z xx (x, t) -Kz(x j ,t);
for all t ≥ 0 and x j ≤ x<x j+1 (j =0,...,p-1)

(15a) ˙ θ(t)= -R(t)Λ T (t) Z(t)+Λ(t) θ(t) with θ = θ -θ (15b) Z(t)=[z(x 0 ,t),...,z(x p-1 ,t)] T ∈ R p (15c) z x (0,t)=z(1,t)=0 (15d) 
where (15a) and (15c) are, respectively, copies of (12a) and (14c), while (15b) is obtained from (14e) replacing there y(t) by Z(t)+ Λ(t) θ(t), due to (2a), (2b), [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], and (15d). The error equations (15a), (15b) are completed by the λ-equation (11a) and the associated boundary and initial conditions (11b).

It is worth noting that the solution (z =0,λ =0, θ =0)is an equilibrium of the system (15a), (15b). Indeed, it is readily checked that, if (z(x, t 0 )=0,λ(x, t 0 )=0, θ(t 0 )=0),forall0 <x<1 and some t 0 ≥ 0, then one has (z(x, t)=0,λ(x, t)=0, θ(t)=0),forallt ≥ t 0 .

For space limitation, the well posedness of the problem at hand is concisely discussed in the following remark.

Remark 2:

a) It is readily checked that, the system of (1a), (15a), and (14c) are simpler forms of equation ( 21) in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]. Following mutatis mutandis the well-posedness analysis developed there, one concludes that a strong solution (u(x, t),z(x, t),λ(x, t)) exists in the Hilbert space

H 1 2 = D (-A) 1 2 = w ∈ H 1 (0, 1) : w x (0) = w(1) = 0
where A = ∂ 2 /∂x 2 , (-A) 1/2 the square root of (-A),a n d H 1 (0, 1) is the Sobolev space of absolutely continuous scalar functions w :

[0, 1] → R or R n with dw/dx ∈ L 2 [0, 1].
Then, the existence and uniqueness of R(t) and θ(t) is immediately obtained from (14f) and (15b), applying the usual existence theorem of ODEs. Then, the existence and uniqueness of u(x, t)= z(x, t)+λ(x, t) θ(t) follows from [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF]. This also implies the existence of û(x, t)= u(x, t)+u(x, t). b) Also, the following Wirtinger's inequalities will be repeatedly used in the forthcoming analysis [START_REF] Hardy | Inequalities[END_REF] b a

w 2 (x, t)dx ≤ 4(b -a) 2 π 2 b a w 2 x (x, t)dx (16a) max a≤x≤b w 2 (x, t) ≤ b a w 2 x (x, t)dx (16b) whatever the function w ∈ H 1 (a, b) such that w(a)=0 or w(b)=0.
The next result is on the boundedness of the auxiliary vector λ(x, t). Proposition 1: The auxiliary state vector λ(x, t), generated by (14c)-(14d), is uniformly bounded, provided that the gain observer K in (14a) and the space sampling interval ∆ satisfy the condition:

0 ≤ K∆ 2 < 4π 2 .
Proof: See Appendix A. Using Proposition 1, it is readily follows from (13c) that:

Λ(t) ≤Λ m with Λ m = λ m √ p and λ m =s u p 0≤x≤1,t≥0 λ(x, t) . (17) 
To ensure the exponential stability of the system (15a)-(15d), it is required that the time-varying matrix R(t) [solution of (14f)] exists is symmetric positive definite. Now, it is shown in many places (e.g., [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems[END_REF], [START_REF] Besançon | On adaptive observers for state affine systems[END_REF]) that R(t) enjoys the required properties if the following persistent excitation (PE) condition holds:

∃δ, ε 0 ,ε 1 > 0, ∀ t>0:ε 0 I (m+p)×(m+p) < t+δ t Λ T (s)Λ(s)ds < ε 1 I (m+p)×(m+p) . ( 18 
)
Similar PE conditions are needed in system identification and adaptive observation. Note that, the right inequality simply means that Λ(s) is bounded which actually is the case due to [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]. The left inequality means that the column vectors of Λ(s) span the vector space R n+p on any finite time interval [t, t + δ],forallt. Under condition [START_REF] Ramdani | Recovering the initial state of an infinite-dimensional system using observers[END_REF], it turns out that the inverse R -1 is also bounded and symmetric positive definite, i.e., there are positive scalars (r, r), such that

rI (m+p)×(m+p) ≤ R -1 (t)= R -1 (t)
T ≤ rI (m+p)×(m+p) , ∀t ≥ 0.

(19) In the sequel, condition ( 18) is supposed to be true, so that one can make use of [START_REF] Fridman | Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method[END_REF]. Then, one has the following main result:

Theorem 1: Let the adaptive observer described by (4a)-(4c), ( 9), (12a), (12b), and (14a), (14b) be applied to the system (1a), (1b), (2a), (2b) subject to Assumption 1 and the PE assumption [START_REF] Ramdani | Recovering the initial state of an infinite-dimensional system using observers[END_REF]. Let the observer gain K and the space sampling interval be selected such that K∆ < 2π 2 . Then, the estimation errors θ(t) and the quantity max 0≤x≤1 | u(x, t)| are globally exponentially vanishing.

Proof: Consider the following Lyapunov function candidate:

V (z, θ)=V 0 ( θ)+ μ 0 2 1 0 z 2 (x, t)dx + 1 2 1 0 z 2 x (x, t)dx (20a)
with V 0 ( θ)= θ T R -1 θ and μ 0 any positive scalar such that

μ 0 >p 1 - K∆ 2π 2 -1 . (20b) 
Note that μ 0 exists because K∆ < 2π 2 by assumption (Theorem 1). From (20a), one gets the following time-derivative:

V (z, θ)= V0 ( θ)+μ 0 1 0 z(x, t)z t (x, t)dx+ 1 0 z x z xt (x, t)dx. (21) 
Using (15b) and (14f), one immediately gets

V0 ( θ)= θ T (t) Ṙ-1 (t) θ(t)+2 θ T (t)R -1 (t) ˙ θ(t) = θ T (t) -R -1 +Λ T (t)Λ(t) θ(t) -2 θ T (t) Λ T (t)Λ(t) θ(t)+Λ T (t)Z(t) ≤-θ T (t)R -1 (t) θ(t)+ Z(t) 2 (using Young's inequality) ≤-θ T R -1 θ + p max 0<x<1 |z(x, t)| 2 (using (15c)) ≤-V 0 ( θ)+p 1 0 z 2 x (x, t)dx (22) 
using Wirtinger's inequality (16b). On the other hand, using (15a), the third term on the right side of ( 21) develops as follows:

1 0 z(x, t)z t (x, t)dx = p-1 j=0 x j+1 x j z(x, t)(z xx (x, t) -Kz(x j ,t)) dx = p-1 j=0 x j+1 x j z(x, t)z xx (x, t)dx - p-1 j=0 x j+1 x j Kz(x j ,t)z(x, t)dx = 1 0 z(x, t)z xx (x, t)dx- p-1 j=0 x j+1
x j K (z(x j ,t)-z(x, t)) z(x, t)dx

- p-1 j=0 x j+1 x j Kz 2 (x, t)dx = - 1 0 z 2 x (x, t)dx-K ⎛ ⎜ ⎝ p-1 j=0 x j+1
x j (z(x j ,t)-z(x, t)) z(x, t)dx

- 1 0 z 2 (x, t)dx ⎞ ⎠ (23) 
where the last equality is obtained using an integration by parts. By Young's inequality, one has

- p-1 j=0 x j+1 x j K (z(x j ,t)-z(x, t)) z(x, t)dx ≤ Kξ 2 1 0 z 2 (x, t)dx + 1 2ξ p-1 j=0 x j+1 x j K (z(x j ,t) -z(x, t)) 2 dx (24)
whatever ξ>0. Also, the application of (16a) gives

K 2ξ p-1 j=0 x j+1 x j (z(x j ,t)-z(x, t)) 2 dx = K 2ξ p-1 j=0 x j x j (z(x j ,t)-z(x, t)) 2 dx + K 2ξ p-1 j=0 x j+1 x j (z(x j ,t) -z(x, t)) 2 dx ≤ K∆ 2 2ξπ 2 1 0 z 2 x (x, t)dx.
This together with ( 23) and ( 24) yields

1 0 z(x, t)z t (x, t)dx ≤- 1 0 z 2 x (x, t)dx + Kξ 2 1 0 z 2 (x, t)dx + K∆ 2 2ξπ 2 1 0 z 2 x (x, t)dx -K 1 0 z 2 (x, t)dx ≤-1 - K∆ 2 2ξπ 2 1 0 z 2 x (x, t)dx -K 1 - ξ 2 1 0 z 2 (x, t)dx. (25) 
Using ( 22) and ( 25), one gets

θ T (t) Ṙ-1 (t) θ(t)+2 θ T (t)R -1 (t) ˙ θ(t)+μ 0 1 0 z(x, t)z t (x, t)dx ≤-θ T R -1 θ + p 1 0 z 2 x (x, t)dx -μ 0 ⎛ ⎝ 1- K∆ 2 2ξπ 2 1 0 z 2 x (x, t)dx+K 1- ξ 2 1 0 z 2 (x, t)dx ⎞ ⎠ ≤-θ T R -1 θ -μ 0 1 - K∆ 2 2ξπ 2 - p μ 0 1 0 z 2 x (x, t)dx -Kμ 0 1 - ξ 2 1 0 z 2 (x, t)dx. ( 26 
)
Focusing on the last term on the right side of ( 21), one has

1 0 z x (x, t)z xt (x, t)dx = 1 0 z x (x, t)z tx (x, t)dx (27) 
using a similar argument as Remark A1 in Appendix A of [START_REF] Fridman | Sampled-data distributed Hinfinity control of transport reaction systems[END_REF].

Then, one has, using successively an integration by part, (12a) and the boundary conditions z x (0,t)=z(1,t)=0

1 0 z x (x, t)z xt (x, t)dx = - 1 0 z xx (x, t)z t (x, t)dx = - 1 0 z 2 xx (x, t)dx + p-1 j=1 x j+1 x j Kz xx (x, t)z(x j ,t)dx = - 1 0 z 2 xx (x, t)dx + p-1 j=1 x j+1 x j Kz xx (x, t)z(x, t)dx + p-1 j=1 x j+1 x j Kz xx (x, t)(z(x j ,t) -z(x, t)) dx ≤- 1 0 z 2 xx (x, t)dx + 1 0 Kz xx (x, t)z(x, t)dx + p-1 j=1 x j+1 x j K η 2 z 2 xx (x, t)+K 1 2η (z(x j ,t) -z(x, t)) 2 dx ( 28 
)
where Young's inequality has been used in the last inequality and η> 0 is arbitrary. Integrating by part the second integral on the right side of ( 28), this yields

1 0 z x (x, t)z xt (x, t)dx ≤- 1 0 z 2 xx (x, t)dx + K (z x (1,t)z(1,t) -z x (0,t)z(0,t)) -K 1 0 z 2 x (x, t)dx + Kη 2 1 0 z 2 xx (x, t)dx + K 2η p-1 j=1 x j+1 x j (z(x j ,t) -z(x, t)) 2 dx ≤ Kη 2 -1 1 0 z 2 xx (x, t)dx -K 1 0 z 2 x (x, t)dx + K 2η p-1 j=1 x j x j (z(x j ,t) -z(x, t)) 2 dx + K 2η p-1 j=1 x j+1 x j (z(x j ,t) -z(x, t)) 2 dx ( 29 
)
where the conditions z x (0,t)=z(1,t)=0 have again been used. Applying (16a) to the last two terms on the right side of (29), one gets

1 0 z x (x, t)z xt (x, t)dx ≤-1 - Kη 2 1 0 z 2 xx (x, t)dx -K 1 0 z 2 x (x, t)dx + ∆ 2 2ηπ 2 1 0 z 2 x (x, t)dx ≤-1 - Kη 2 1 0 z 2 xx (x, t)dx -K 1 - ∆ 2 2ηπ 2 1 0 z 2 x (x, t)dx). (30) 
Let the free parameters η in (30) and ξ in (26) be such that:

ξ =∆ and η = ∆ π 2 . ( 31 
)
This ensures that

1 - ∆ 2 2ηπ 2 =1- ∆ 2 > 0 and 1 - ξ 2 =1- ∆ 2 > 0 (32) because 0 < ∆ ≤ 1.
Then, the first term on the right side of (30) entails the following condition on K:

Kη 2 < 1 or, equivalently,K ∆ < 2π 2 (33) 
which is nothing else than the condition in Theorem 1. Combining ( 21), [START_REF] Smyshlyaev | Adaptive Control of Parabolic PDEs[END_REF], and (30) gives, using (31)-(33)

V ≤-θ T R -1 θ -Kμ 0 1 - ∆ 2 1 0 z 2 (x, t)dx -μ 0 1 - K∆ 2π 2 - p μ 0 1 0 z 2 x (x, t)dx -K 1 - ∆ 2 1 0 z 2 x (x, t)dx. (34) 
Note that by (20b), one has

1 - K∆ 2π 2 - p μ 0 > 0. (35) 
Then, (34) yields

V ≤-V 0 ( θ)-μ 0 K 1- ∆ 2 + π 2 8 1- K∆ 2π 2 - p μ 0 × 1 0 z 2 (x, t)dx -K 1 - ∆ 2 + μ 0 2 1 - K∆ 2π 2 - p μ 0 × 1 0 z 2 x (x, t)dx ≤-V 0 ( θ)-σ 0 μ 0 2 1 0 z 2 (x, t)dx- σ 1 2 1 0 z 2 x (x, t)dx (36) 
≤-σV (z, θ)

with σ =min(1,σ 0 ,σ 1 ),where

σ 0 =2K 1 - ∆ 2 + π 2 4 1 - K∆ 2π 2 - p μ 0 > 0 (38) 
σ 1 = K 1 - ∆ 2 + μ 0 2 1 - K∆ 2π 2 - p μ 0 > 0. (39) 
Clearly, inequality (37) implies that V is exponentially vanishing (as t →∞) and from (20a) so are θ, 1 0 z 2 (x, t)dx and 1 0 z 2 x (x, t)dx. Then, using Wirtinger's inequality (16b), one has

max 0≤x≤1 z 2 (x, t) ≤ 1 0 z 2 x (x, t)dx. (40) 
This holds because z(1,t)=0 (due to (15d)). Then, in turn max 0≤x≤1 |z(x, t)| is also exponentially vanishing. On the other hand, one has from (6) that u(x, t)=z(x, t)+λ(x, t) θ(t).Asλ(x, t) is bounded (by Proposition 1), it follows that max 0≤x≤1 | u(x, t)| is also exponentially vanishing. This completes the proof of Theorem 1.

Remark 3:

a) As 0 < ∆ ≤ 1, the condition K∆/2π 2 < 1, introduced in Theorem 1, is more restrictive than the condition K∆ 2 /4π 2 < 1 required in Proposition 1. Therefore, only the former is retained. Under that condition, the gain K ≥ 0 can be arbitrarily chosen, but the spatial sampling interval ∆ must be selected accordingly. The larger K, the smaller ∆. b) Using (35), it follows from (38), (39) that σ 0 and σ 1 are increasing functions of the gain K. Then, it follows from (36) that the convergence rate of 1 0 z 2 (x, t)dx and 1 0 z 2 x (x, t)dx can be made arbitrarily high by letting K be sufficiently large.

Then, it follows from [START_REF] Guo | Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance[END_REF] that the convergence rate of V 0 ( θ) can be made arbitrarily close to that of V 0 ( θ(0))e -t by letting K be sufficiently large. Consequently, it follows from ( 6) and (40) that, the convergence rate of max 0≤x≤1 | u(x, t)| is also made higher with larger values of K. On the other hand, it has been pointed out in Part a that, large values of K entail small values of the sampling interval ∆ or, equivalently, large number p of required sensors.

IV. CONCLUSION

We have addressed the problem of estimating the state and parameters of the class of IDSs described by the model (1a)-(1c), (2a), (2b). The latter is basically a parabolic PDE augmented by the structured quantity θ T φ(y(t),t). The adaptive observer (14a)-( 14f) is designed and shown to enjoy exponential convergence, under the persistent excitation property [START_REF] Ramdani | Recovering the initial state of an infinite-dimensional system using observers[END_REF] and the condition (20b). The latter shows that the observer gain K must be selected taking into account the space sampling interval ∆. The smaller ∆ the larger may be the gain K.

APPENDIX A PROOF OF PROPOSITION 1

Consider the Lyapunov functional candidate:

W (t)= 1 2 1 0 λ(x, t)λ T (x, t)dx + 1 2 1 0 λ x (x, t)λ T x (x, t)dx (A1)
Using (14c), it follows from (A1):

Ẇ (t)= 1 0 λ t (x, t)λ T (x, t)dx + 1 0 λ x (x, t)λ T xt (x, t)dx. (A2)
Following the same approach as in the proof of Theorem 1, the two terms on the right side of (A2) will be successively upper bounded. The first term develops as follows:

1 0 λ t (x, t)λ T (x, t)dx = 1 0 λ xx (x, t)λ T (x, t)dx- p-1 j=0 x j+1
x j Kλ(x j ,t)λ T (x, t)dx

+ 1 0 φ T (y(t),t) λ T (x, t)dx = - 1 0 λ x (x, t) 2 dx - p-1 j=0 x j+1
x j Kλ(x j ,t)λ T (x, t)dx

+ 1 0 λ(x, t)φ (y(t),t) dx = - 1 0 λ x (x, t) 2 dx - p-1 j=0 x j+1
x j K (λ(x j ,t) -λ(x, t)) λ T (x, t)dx

+ 1 0 λ(x, t)φ (y(t),t) dx - 1 0 K λ(x, t) 2 dx (A3)
where the penultimate last equality is obtained using an integration by parts of the first term on the right side and the boundary conditions in (14d). Using Young inequality, one has

1 0 λ(x, t)φ (y(t),t) dx ≤ φ (y(t),t) 2 2ζ + ζ 2 1 0 λ(x, t) 2 dx (A4) - p-1 j=0 x j+1 x j K (λ(x j ,t) -λ(x, t)) λ T (x, t)dx ≤ 1 2ω p-1 j=0 x j+1 x j K λ(x j ,t) -λ(x, t) 2 dx + Kω 2 1 0 λ(x, t) 2 dx& (A5)
whatever ζ>0 and ω>0. Using Wirtinger's inequality (16a), the first term on the right side of (A5) is bounded as follows:

1 2ω p-1 j=0 x j+1 x j K λ(x j ,t) -λ(x, t) 2 dx ≤ 1 2ω p-1 j=0 x j x j K λ(x j ,t) -λ(x, t) 2 dx + 1 2ω p-1 j=0 x j+1 x j K λ(x j ,t) -λ(x, t) 2 dx ≤ K 2ω ∆ 2 π 2 p-1 j=0 x j+1 x j λ x (x, t) 2 dx (A6)
Using (A4)-(A6), it follows from (A3) that:

1 0 λ t (x, t)λ T (x, t)dx ≤-1 - K 2ω ∆ 2 π 2 1 0 λ x (x, t) 2 dx -K - Kω 2 - ζ 2 1 0 λ(x, t) 2 dx + φ (y(t),t) 2 2ζ . (A7) 
Letting ω = K∆ 2 /2ϑπ 2 for some 0 <ϑ<1, inequality (A7) yields

1 0 λ t (x, t)λ T (x, t)dx ≤-(1 -ϑ) 1 0 λ x (x, t) 2 dx -K - K 2 ∆ 2 4ϑπ 2 - ζ 2 1 0 λ(x, t) 2 dx + φ (y(t),t) 2 2ζ . (A8)
Now, let us focus on the second term on the right side of (A2). First, notice that equality [START_REF] Fridman | Sampled-data distributed Hinfinity control of transport reaction systems[END_REF] still holds replacing there z(x, t) by λ(x, t). Then, one immediately has

1 0 λ x (x, t)λ T xt (x, t)dx = 1 0 λ x (x, t)λ T tx (x, t)dx = - 1 0 λ xx (x, t)λ T t (x, t)dx (A9)
using an integration by part and the boundary conditions (14d). The above equality develops further as follows, using (14c):

1 0 λ x (x, t)λ T xt (x, t)dx = - p-1 p=0 x j+1 x j λ xx (x, t)λ T t (x, t)dx = - p-1 p=0 x j+1 x j λ xx (x, t) 2 dx + K p-1 p=0 x j+1 x j λ xx (x, t)λ T (x j ,t)dx - 1 0 λ xx (x, t)φ (y(t),t)) = - 1 0 λ 2 xx (x, t)dx + K p-1 p=0 x j+1 x j λ xx (x, t)λ T (x, t)dx + K p-1 p=0 x j+1 x j λ xx (x, t) λ T (x j ,t) -λ T (x, t) dx - 1 0 λ xx (x, t)φ T (y(t),t)) dx = - 1 0 λ 2 xx (x, t)dx + K 1 0 λ xx (x, t)λ T (x, t)dx - 1 0 λ xx (x, t)φ T (y(t),t)) dx + K p-1 p=0 x j+1 x j λ xx (x, t) λ T (x j ,t) -λ T (x, t) dx. (A10)
Applying Young's inequality to the third and fourth quantities on the right side of (A10) and integrating by part the second integral, equality (A10) yields, using the boundary conditions (14d) The above inequality shows that, one first proceeds with the selection of the design parameters K, ∆ according to the following condition:

1 0 λ x (x, t)λ T xt (x, t)dx ≤- 1 0 λ xx (x, t) 2 dx -K 1 0 λ x (x, t) 2 dx + K p-1 p=0 x j+1 x j υ 2 λ xx (x, t) 2 + 1 2υ λ(x j ,t) -λ(x, t) 2 dx + ̟ 2 
K∆ 2 4π 2 < 1 (A14)
This is nothing other than the assumption (made on K and ∆)i n Proposition 1. Then, let the free parameters (υ, ϑ, ̟) be such that

K∆ 2 4π 2 <ϑ<1, 0 < ζ 2 ≤ K - K 2 ∆ 2 4ϑπ 2 ∆ 2 2π 2 <υ< 2 K , ̟ 2 < 1 - Kυ 2 . (A15)
It is readily checked that, this choice ensures that

K - K 2 ∆ 2 4ϑπ 2 - ζ 2 ≥ 0, 1 -ϑ>0 1 - ∆ 2 2υπ 2 > 0, 1 - Kυ 2 - ̟ 2 > 0.
Then, applying Wirtinger's inequality (16a) to the second and fourth terms on the right side of inequality (A13), this develops as follows: 

Ẇ (t) ≤- K - K 2 ∆ 2 4ϑπ 2 - ζ 2 + π 2 (1 -ϑ) 4 
× 1 0 λ(x, t) 2 dx -K 1 - ∆ 2 2υπ 2 + π 2 4 1 - Kυ 2 - ̟ 2 
× 1 0 λ x (x,
γ =2min K - K 2 ∆ 2 4ϑπ 2 - ζ 2 + π 2 (1 -ϑ) 4 , K 1 - ∆ 2 2υπ 2 + π 2 4 1 - Kυ 2 - ̟ 2 .
As φ(y(t),t) is bounded (by Assumption 1), it follows from (A16) that so is W (t). Then, it follows from (A1) that 1 0 λ x (x, t) 2 dx is bounded. Applying the inequality (16b), one gets that max 0≤x≤1 λ(x, t) 2 is bounded. Proposition 1 is proved.

  Applying the Wirtinger's inequality (16a) to the two terms in the penultimate line in (A11), one gets

		+		K 2υ	p-1 p=0	x j x j	λ(x j ,t) -λ(x, t) 2 dx
		+		K 2υ	p-1 p=0	x j+1 x j	λ(x j ,t) -λ(x, t) 2 dx
		+		̟ 2	1	λ 2 xx (x, t)dx +	1 2̟	φ (y(t),t)) 2	(A11)
							0		
	whatever the scalars υ>0, ̟>0. 1
	λ x (x, t)λ T xt (x, t)dx
	0								
		1								1
	≤-	0	λ xx (x, t) 2 dx -K	0	λ x (x, t) 2 dx
	+	Kυ 2	0	1	λ xx (x, t) 2 dx+	K∆ 2 2υπ 2	p-1 p=0	x j+1 x j	λ x (x, t) 2 dx
	+	̟ 2	1		λ xx (x, t) 2 dx +	1 2̟	φ (y(t),t)) 2
		0							
	≤-1 -	Kυ 2	-	̟ 2	0	1	λ xx (x, t) 2 dx
	-K 1-	∆ 2 2υπ 2	0	1	λ x (x, t) 2 dx +	1 2̟	φ (y(t),t)) 2 .
										(A12)
	Combining (A12) and (A8), one obtains
		Ẇ (t) ≤-K -	K 2 ∆ 2 4ϑπ 2 -	ζ 2	0	1	λ(x, t) 2 dx
										1
							-(1 -ϑ)	0	λ x (x, t) 2 dx
							-K 1 -	∆ 2 2υπ 2	0	1	λ x (x, t) 2 dx
							-1 -	Kυ 2	-	̟ 2	0	1	λ xx (x, t) 2 dx
							+			1 2ζ	+	1 2̟	φ (y(t),t) 2 .	(A13)

1 0 λ xx (x, t) 2 dx + 1 2̟ φ (y(t),t)) 2 ≤-1 0 λ xx (x, t) 2 dx -K 1 0 λ x (x, t) 2 dx + Kυ 2 1 0 λ xx (x, t) 2 dx

  t) 2 dx

	+	1 2ζ	+	1 2̟		φ (y(t),t) 2
	≤-γW(t)+	1 2ζ	+	1 2̟	φ (y(t),t) 2	(A16)
	with