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Robust Stabilization of Nonlinear Globally
Lipschitz Delay Systems

Tarek Ahmed-Ali, Iasson Karafyllis, Miroslav Krstic

and Francoise Lamnabhi-Lagarrigue

Abstract This paper studies the application of a recently proposed control scheme

to globally Lipschitz nonlinear systems for which the input is delayed and applied

with zero order hold, the measurements are sampled and delayed, and only an output

is measured (i.e., the state vector is not available). The control scheme consists of an

observer for the delayed state vector, an inter-sample predictor for the output signal,

an approximate predictor for the future value of the state vector, and the nominal

feedback law applied with zero order hold and computed for the predicted value

of the future state vector. The resulting closed-loop system is robust with respect

to modeling and measurement errors and robust to perturbations of the sampling

schedule.

1 Introduction

Predictor feedback is used frequently in the literature for systems with large input

delays. The literature on predictor feedback under non-constant input delays is

reviewed in [1, 2] (where time-varying delays and state-dependent input delays

T. Ahmed-Ali (B)

Laboratoire GREYC CNRS-ENSICAEN, 06 Boulevard du Marechal Juin,

14050 Caen Cedex, France

e-mail: tarek.ahmed-ali@ensicaen.fr

I. Karafyllis

Department of Mathematics, National Technical University of Athens,

Heroon Polytechneiou 9, 15780 Athens, Greece

e-mail: iasonkar@central.ntua.gr

M. Krstic

Department of Mechanical and Aerospace Engineering, University of California,

San Diego, La Jolla, CA 92093-0411, USA

e-mail: krstic@ucsd.edu

F. Lamnabhi-Lagarrigue

Centre National de la Recherche Scientifique, CNRS-EECI SUPELEC,

3 Rue Joliot Curie, 91192 Gif-Sur-Yvette, France

e-mail: lamnabhi@lss.supelec.fr

1



are studied). For nonlinear systems with constant input delays, various forms of

predictors have been used:

• Exact predictors based on the knowledge of the solution mapping [3–5].

• Approximate predictors based on successive approximations [6, 7].

• Approximate predictors based on numerical schemes [8, 9].

• Approximate predictors for which the prediction is provided by the output of a

properly constructed control system [10–12].

Moreover, the literature on predictor feedback for nonlinear systems with constant

input delays has considered cases where the input is applied continuously (as in [1–3,

6, 8, 12], or [9]) or is applied with zero order hold or ZOH (as in [3] and [7]). There

is also a wide literature of predictor feedback design and implementation for linear

systems with constant input delays; see the references in [4] and [5].

This chapter considers the application of a recently proposed control scheme to

globally Lipschitz nonlinear systems for which the input is applied with ZOH, the

measurements are sampled and delayed, and only an output is measured (since the

state vector is not available). Moreover, we also consider the effect of possible mod-

eling errors and measurement noise. The control scheme consists of an observer for

the delayed state vector, an inter-sample predictor for the output signal, an approx-

imate predictor for the future value of the state vector, and the nominal feedback

law applied with ZOH and computed for the predicted value of the future state vec-

tor. The control scheme has been applied to globally Lipschitz nonlinear systems

previously (as in [7]) but in this work we have used a different prediction action,

namely, we are using approximate predictors for which the prediction is provided by

the output of a properly constructed control system (namely, dynamic approximate

predictors) instead of predictors that are based on successive approximations. The

chapter generalizes the results provided in [7] to various directions:

• We show that the convergence is independent of the lower diameter of the sampling

schedule (in contrast with [7], where the estimates depended on the lower diameter

of the sampling schedule).

• We provide assumptions which can be applied to general nonlinear globally Lip-

schitz systems (in contrast with [7], where only triangular single input systems

were considered).

• We provide explicit formulae for the asymptotic gains of various inputs (in contrast

with [7], where only qualitative estimates were provided).

• We provide explicit inequalities for the upper diameter of the sampling partition

and the holding period, which can be used in straightforward way by the potential

control practitioner.

The application of the proposed control scheme guarantees robustness with respect

to modeling errors, measurement noise and perturbations of the sampling schedule.

Prior to the submission of the present chapter, we were informed of the work

[13]. The results in [13] also deal with globally Lipschitz systems using the control

scheme proposed in [7]. The results [13] cover various cases of transmission proto-

cols and generalized the results of [7] to non-triangular globally Lipschitz systems.
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The results of the present paper are less conservative than the results in [13] and

the main difference between the present work and the results of [13] is the use of

dynamic approximate predictors instead of predictors which are based on successive

approximations.

2 Notation

Throughout this chapter, we adopt the following notation:

• For a vector x ∈ R
n we denote by |x | its usual Euclidean norm, by x ′ its

transpose. For a real matrix A ∈ R
n×m , A′ ∈ R

m×n denotes its transpose and

|A| = sup { |Ax | ; x ∈ R
n , |x | = 1 } is its induced norm. I ∈ R

n×n denotes the

identity matrix.

• R+ denotes the set of non-negative real numbers. For every t ≥ 0, [t] denotes the

integer part of t ≥ 0, i.e., the largest integer being less or equal to t ≥ 0. A partition

π = {Ti }∞i=0 of R+ is an increasing sequence with T0 = 0 and Ti → +∞.

• Let x : [a − r, b) → R
n with b > a ≥ 0 and r ≥ 0. By xt we denote the “history”

of x from t −r to t , i.e., (xt ) (θ) = x(t +θ) ; θ ∈ [−r, 0], for t ∈ [a, b). By x̆t we

denote the “open history” of x from t−r to t , i.e., (x̆t ) (θ) = x(t+θ) ; θ ∈ [−r, 0),

for t ∈ [a, b).

• Let I ⊆ R+ be an interval. By L∞(I ; U ) (L∞
loc(I ; U )) we denote the space of

measurable and (locally) bounded functions u( · ) defined on I and taking values

in U ⊆ R
m . Notice that we do not identify functions in L∞ (I;U) which differ on a

measure zero set. For L∞([−r, 0]; R
n) or x ∈ L∞([−r, 0); R

n) we define ‖x‖ =
supθ∈[−r,0] |x(θ)| or ‖x‖ = supθ∈[−r,0) |x(θ)|. Notice that supθ∈[−r,0] |x(θ)| is

not the essential supremum but the actual supremum. By PC(I ; R
m) we denote

the space of piecewise continuous functions u( · ) defined on I and taking values

in R
m .

• By C0(A;Ω), where A ⊆ R
n and Ω ⊆ R

m , we denote the class of con-

tinuous functions taking values in Ω ⊆ R
m . A continuous mapping F :

C0([−r, 0]; R
l) × R

m → R
n is said to be Lipschitz on bounded sets if there

exists a non-decreasing function Q : R+ → R+ such that |F(x, u) − F(y, u)| ≤
Q (‖x‖ + ‖y‖ + |u|) ‖x − y‖ for all x, y ∈ C0([−r, 0]; R

l) and for all u ∈ R
m .

3 Statement of Main Results

We consider a time-invariant control system of the form

ẋ(t) = f (x(t), u(t − τ)) + Gv(t)

x ∈ R
n , u ∈ R

m , v ∈ R
q , t ≥ 0 (1)
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where f : R
n × R

m → R
n is a continuous vector field with f (0, 0) = 0, τ > 0 is a

constant, and G ∈ R
n×q is a real constant matrix. The input v(t) ∈ R

q quantifies the

effect of possible modeling errors. We assume that the following assumptions hold

for system (1).

(H1) There exist a continuous mapping k : R
n → R

m with k(0) = 0, a constant

µ > 0 and a symmetric, positive definite matrix P ∈ R
n×n such that the following

inequality holds for all x ∈ R
n :

x ′ P f (x, k(x)) ≤ −4µ |x |2 (2)

(H2) There exist constants L1, L2, K ≥ 0 such that the following inequalities hold

for all x, y ∈ R
n , u, v ∈ R

m :

|k(x) − k(y)| ≤ K |x − y| (3)

| f (x, u) − f (y, u)| ≤ L1 |x − y| (4)

| f (x, u) − f (x, v)| ≤ L2 |u − v| (5)

(H3) There exist matrices L ∈ R
n×p, H ∈ R

p×n , a constant ω > 0 and a symmetric,

positive definite matrix Q ∈ R
n×n such that the following inequality holds for all

x, e ∈ R
n , u ∈ R

m :

e′Q ( f (x + e, u) − f (x, u) + L He) ≤ −2ω |e|2 (6)

Discussion of the assumptions: Assumption (H1) guarantees that the “continuously

applied” feedback law u(t) = k(x(t)) would globally exponentially stabilize the

equilibrium point 0 ∈ R
n of system (1) if the input delay τ were absent, i.e., if τ = 0.

Assumption (H2) guarantees that both the “nominal” feedback law k : R
n → R

m and

the mapping f : R
n ×R

m → R
n are globally Lipschitz mappings. Assumption (H3)

guarantees that the system ż(t) = f (z(t), u(t − τ)) + L (H z(t) − y(t)) would be

a global exponential observer for system (1) provided that the output y(t) = H x(t)

were available for all t ≥ 0 and that no modeling errors were present.

System (1) under assumptions (H1), (H2), and (H3) would be globally expo-

nentially stabilized by the dynamic output feedback law ż(t) = f (z(t), u(t)) +
L (H z(t) − y(t)) with u(t) = k(z(t)) if (a) the input delay τ were absent, (b) the

input u(t) were allowed to be continuously adjusted, (c) no modeling errors were

present, and (d) the output y(t) = H x(t) were available for all t ≥ 0. In this work,

we will assume that none of the previous requirements hold. More specifically, we

assume that:

• The output measurement is sampled, corrupted and delayed, i.e., there is a partition

{τi }∞i=0 of R+ with supi≥0 (τi+1 − τi ) ≤ Ts where Ts > 0 is a constant, an input

ξ ∈ L∞
loc(R+; R

p) and a constant r ≥ 0 so that y(t) = H x(τi ) + ξ(τi ), for all
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t ∈ [τi , τi+1), i = 0, 1, 2, .... The number Ts > 0 is called the upper diameter of

the partition and is known, while the sampling times {τi }∞i=0 are not known.

• The input delay τ is present and modeling errors are present as well.

• The input cannot be continuously adjusted and can only be applied with ZOH, i.e.,

there exists a constant TH > 0 (the holding period) such that u(t) = ul ∈ R
m , for

all t ∈ [lTH , (l + 1)TH ), l = 0, 1, 2, ....

One (or all) of the above complications are present when the control system is

networked and there are communication or computation delays along the operation

of the network; see the discussion in [3]. Furthermore, the existence of sampled,

corrupted and delayed measurements is common for (bio)chemical processes and

the inability of continuous adjustment of the input is also common for many systems.

Our main result is given next.

Theorem 1 Consider system (1) under assumptions (H1), (H2), and (H3). Let

Ts > 0, TH > 0, and r ≥ 0 be real constants and N > 0 be an integer that

satisfy the inequalities

exp(L1TH )(L1+L2 K )TH

1−exp(L1TH )(L1+L2 K )TH
|P| L2 K ≤ 2µ and

√

K4
2K3

|QL| |H | L1Ts < ω, L1(r + τ) < N

(7)

where K3 and K4 > 0 are constants that satisfy K3 |x |2 ≤ x ′Qx ≤ K4 |x |2 for all

x ∈ R
n . Then for every c > 0, there exist constants θ > 0 and Θ > 0 such that for

every partition {τi }∞i=0 of R+ satisfying

sup
i≥0

(τi+1 − τi ) ≤ Ts (8)

and for all choices of x0 ∈ C0([−r, 0]; R
n), z j,0 ∈ C0([−δ, 0]; R

n) ( j = 0, ..., N),

ŭ0 ∈ L∞([−r − τ, 0); R
m), v ∈ L∞

loc(R+; R
q), and ξ ∈ L∞

loc(R+; R
p), the solution

(x(t), z0(t), ..., zN (t), u(t), w(t)) ∈ R
n × R

Nn × R
m × R

p (9)

of the system (1) with the choices

ż0(t) = f (z0(t), u(t − τ − r)) + L (H z0(t) − w(t)) , t ≥ 0 (10)

ż j (t) = ż j−1(t)

+ f (z j (t), u(t + jδ − r − τ)) − f (z j (t − δ), u(t + ( j − 1)δ − r − τ))

−c
(

z j (t) − z j−1(t) −
∫ t

t−δ
f (z j (s), u(s + jδ − r − τ))ds

)

,

t ≥ 0, j = 1, ..., N

(11)

ẇ(t) = H f (z(t), u(t − τ − r)), t ∈ [τi , τi+1), i = 0, 1, 2, ... (12)
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w(τi ) = H x(τi − r) + ξ(τi ), i = 0, 1, 2, ... (13)

u(t) = k (zN (lTH )) , t ∈ [lTH , (l + 1)TH ), l = 0, 1, 2, ... (14)

and δ = (r + τ)/N, and with the initial conditions x(s) = (x0)(s) for s ∈ [−r, 0],
z j (s) = (z j,0)(s) for s ∈ [−δ, 0], and u(s) = (ŭ0)(s) for s ∈ [−r − τ, 0) corre-

sponding to any inputs v ∈ L∞
loc(R+; R

q) and ξ ∈ L∞
loc(R+; R

p), is unique, exists

for all t ≥ 0 and satisfies the following estimates:

|x(t)| ≤
√

K2
K1

exp (−θ(t − τ)) sup
0≤s≤τ

(|x(s)|)

+Ξ1Ξ2ΩΛN |QL| exp(θ (τ+TH ))
1−g

sup
0≤s≤t

(|ξ (s)|)

+Ξ1

(

|PG| + |G| |P| C + Ω exp (θ TH ) ΛN+1−Λ
Λ−1

|G|
)

exp (θ τ ) sup
0≤s≤t

(|v(s)|)

+Ξ1Ξ2ΩΛN exp(θ (τ+TH ))
1−g

(|QG| × exp(−θ r) + |QL| |H G| Ts) sup
0≤s≤t

(|v (s)|)

+Ξ1Ω exp (−θ (t − τ − TH )) ΛN+1−Λ
Λ−1

(

L2δ ‖ŭ0‖ + 3 max
l=1,...,N

(∥

zl,0

∥)

)

+Ξ1Ω exp (−θ (t − r − τ − TH )) sup
0≤s≤r

(|x (s + τ) − zN (s)|)

+Ξ1Ω exp (−θ (t − r − τ − Ts − TH )) ΛN

1−g

√

K4
K3

sup
r≤s≤r+Ts

(|x (s − r) − z0 (s)|)

+Ξ1Ω exp (−θ (t − r − τ − TH )) ΛN −1
Λ−1

× max
j=1,...,N

(

sup
−δ≤s≤r

(∣

x (s − r + jδ) − z j (s)
∣)

)

(15)

and

‖xt‖ +
∑N

j=0

∥

z j,t

∥

+ ‖ŭt‖ ≤ Θ
(

exp (−θ t)
(

‖x0‖ +
∑N

j=0

∥

z j,0

∥

+ ‖ŭ0‖
)

+
sup0≤s≤t (|v(s)|) + sup0≤s≤t (|ξ (s)|)

)

,

(16)

where

Ω = |P| L2 K (1 + C), Ξ1 =
√

K2
2µK1(µ−θ K2)

,

Ξ2 =
√

K4
2ωK3(ω−θ K4)

, Λ = θ
θ−L1(exp(θ δ)−1)

,

g =
√

K4
2ωK3(ω−θ K4)

|QL| |H | L1
exp(θ Ts )−1

θ
, and C = exp(L1TH )L2 K TH

1−exp(L1TH )(L1+L2 K )TH
.

(17)

Inequality (16) guarantees the input-to-state stability property (as defined in [14])
for the closed-loop system given by (1), (10)–(14) with respect to modeling errors
and measurement noise. More specifically, estimate (16) shows that the gain function
for the external inputs v and ξ is linear. On the other hand, inequality (15) allow us to
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estimate explicitly the asymptotic gains of the external inputs v and ξ to the output
Y (t) = x(t): the asymptotic gain of the modeling error v is guaranteed to be any
number greater than

Ξ1

(

|PG| + |G| |P| C + Ω
ΛN+1 − Λ

Λ − 1
|G| + Ξ2ΩΛN

1 − g
|QG| + Ξ2ΩΛN

1 − g
|QL| |H G| Ts

)

and the asymptotic gain of the measurement error ξ is guaranteed to be any number

greater than

Ξ1Ξ2ΩΛN |QL|
1 − g

, where

Ω = |P| L2 K (1 + C), Ξ1 = 1
µ

√

K2
2K1

, Ξ2 = 1
ω

√

K4
2K3

, Λ = 1
1−L1δ

,

g = Ξ2 |QL| |H | L1Ts, and C = exp(L1TH )L2 K TH

1−exp(L1TH )(L1+L2 K )TH
.

(18)

Robustness to perturbations of the sampling schedule is also guaranteed.

Estimates (15) and (16) are independent of the lower diameter of the sampling

partition (i.e., of inf i≥0(τi+1 − τi ). This feature is in sharp contrast with the result

in [7]. This difference is explained by a different methodology in the proof; if the

same methodology were followed in [7] then a similar result would be proved. A

few words are needed for the explanation of the hybrid dynamic feedback given by

(10)–(14).

• (10) is an observer for the delayed state vector x(t − r). However, (10) does not

use the continuous signal y(t) = H x(t − r), which is not available. The signal

w(t) replaces the output signal y(t) = H x(t − r).

• (12), (13) is an inter-sample predictor for the non-available output signal; it uses

the output values at the sampling times and “tries” to predict the output signal

between two consecutive sampling times.

• System (11) is an approximate predictor of the future value of the state vector

x(t + τ). The approximate predictor uses the estimated value z0(t) of the delayed

state vector x(t −r), which is provided by the observer, and provides zN (t), which

is an approximation of x(t + τ).

• Finally, (14) is the “nominal” feedback law computed at the predicted value of the

future state vector x(t + τ) applied with ZOH (emulation).

Remarks:

• Contrary to the approach in [15], no tradeoff between the delays (in the input and

the output) and the upper diameter of the sampling partition and the holding period

is present for our control scheme.

• From (7), we see that for long delays, we can use sufficiently many predictors that

ensure the robustness properties (15) and (16). The counterpart of this is that the

gains corresponding to measurement and modeling errors will increase.
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The proof of Theorem 1 is in the following section and is demanding because even

the existence/uniqueness of the solution of the overall closed-loop system is not

trivial, since the closed-loop system is a hybrid system with delays. For the proof of

Theorem 1, we need the following two lemmas, which are stated below. Their proofs

are simple and are omitted.

Lemma 1 Let r ≥ 0 be a constant and F : C0([−r, 0]; R
n) × R

m → R
n be

a continuous mapping that is Lipschitz on bounded sets and satisfies the inequal-

ity |F(x, u)| ≤ L ‖x‖ + M |u| for all (x, u) ∈ C0([−r, 0]; R
n) × R

m for cer-

tain constants L > 0 and M ≥ 0. Then for every t0 ≥ 0, b ∈ (t0,+∞),

x0 ∈ C0([−r, 0]; R
n), and u ∈ L∞([t0 − r, b); R

m), the unique solution of

ẋ(t) = F(xt , u(t)) with initial condition x(t0 + s) = (x0)(s) for all s ∈ [−r, 0]
exists for all t ∈ [t0, b] and satisfies the estimate

‖xt‖ ≤ exp (L(t − t0))

(

∥

xt0

∥

+ M

∫ t

t0

|u(s)| ds

)

(19)

for all t ∈ [t0, b].

Lemma 2 Let P ∈ R
n×n be a symmetric, positive definite matrix and K1 > 0 and

K2 > 0 be constants such that the inequality K1 |x |2 ≤ x ′ Px ≤ K2 |x |2 holds for

all x ∈ R
n . Let x : [t0, b) → R

n be an absolutely continuous mapping that satisfies

the inequality

x ′(t)Pẋ(t) ≤ −c |x(t)|2 +
m

∑

j=1

a j

∣

v j (t)
∣2

(20)

for t ∈ [t0, b) a.e., where t0 ≥ 0, b ∈ (t0,+∞], c > 0, and a j ≥ 0 ( j = 1, ..., m)

are constants, p j ≥ 1 are integers and v j ∈ L∞
loc(R+; R

p j ) ( j = 1, ..., m) are

measurable and locally essentially bounded functions. Then for every µ ∈ (0, c/K2)

and for every t ∈ [t0, b), the estimate

supt0≤s≤t (|x(s)| exp (µs)) ≤
√

K2
K1

|x(t0)| exp (µt0) +
√

K2
K1(c−µK2)

m
∑

j=1

√
a j sup

t0≤s≤t

(∣

v j (s)
∣

exp (µs)
) (21)

holds.

4  Key Lemmas
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5 Proof of Theorem 1

We divide the proof into the following three parts:

Part I: Existence and Uniqueness of Solutions

In this part of the proof, we show that for every x0 ∈ C0([−r, 0]; R
n), z j,0 ∈

C0([−δ, 0]; R
n) ( j = 0, ..., N ), ŭ0 ∈ L∞([−r − τ, 0); R

m), v ∈ L∞
loc(R+; R

q),

and ξ ∈ L∞
loc(R+; R

p), the closed-loop system given by (1), (10)-(14) has a unique

solution with initial condition x(s) = (x0)(s) for s ∈ [−r, 0], z j (s) = (z j,0)(s)

for s ∈ [−δ, 0], and u(s) = (ŭ0)(s) for s ∈ [−r − τ, 0) corresponding to inputs

v ∈ L∞
loc(R+; R

q) and ξ ∈ L∞
loc(R+; R

p), and defined for all t ≥ 0.

Part II: Proof of (15)

In this part of the proof, we show that estimate (15) holds for an appropriate

constant θ > 0.

Part III: Proof of (16)

In this part of the proof, we show that estimate (16) holds.

Part I: Existence and Uniqueness of Solutions

First we prove that for every x0 ∈ C0([−r, 0]; R
n), z j,0 ∈ C0([−δ, 0]; R

n) ( j =
0, ..., N ), ŭ0 ∈ L∞([−r − τ, 0); R

m), v ∈ L∞
loc(R+; R

q), and ξ ∈ L∞
loc(R+; R

p),

the closed-loop system given by (1)–(14) has a unique solution with initial condition

x(s) = (x0)(s) for s ∈ [−r, 0], z j (s) = (z j,0)(s) for s ∈ [−δ, 0], and u(s) =
(ŭ0)(s) for s ∈ [−r − τ, 0) corresponding to inputs v ∈ L∞

loc(R+; R
q) and ξ ∈

L∞
loc(R+; R

p). The solution is defined for all t ≥ 0 and is constructed step-by-step

using the following claim:

Claim 1 Assume that there exist an integer a ≥ 0 and x ∈ C0([−r, aTH ]; R
n)

and z j ∈ C0([−δ, aTH ]; R
n) for j = 0, ..., N that are absolutely continuous on

[0, aTH ], and w ∈ PC([0, aTH ]; R
p) and u ∈ L∞([−r − τ, aTH ); R

m) that satisfy

x(s) = (x0)(s) for s ∈ [−r, 0] and z j (s) = (z j,0)(s) for all s ∈ [−δ, 0] and

u(s) = (ŭ0)(s) for all s ∈ [−r − τ, 0), as well as Eqs. (1), (10), (11), and (12) for

t ∈ [0, aTH ) a.e., Eq. (13) for all integers i ≥ 0 with τi ≤ aTH , and Eq. (14) for

l = 0, ..., a − 1 (only when a > 0). Then there exist x ∈ C0([−r, (a + 1)TH ]; R
n)

and z j ∈ C0([−δ, (a + 1)TH ]; R
n) ( j = 0, ..., N ) that are absolutely continuous on

[0, (a+1)TH ], w ∈ PC([0, (a+1)TH ]; R
p), and u ∈ L∞([−r −τ, (a+1)TH ); R

m)

that satisfy x(s) = (x0)(s) for s ∈ [−r, 0], z j (s) = (z j,0)(s) for s ∈ [−δ, 0],
u(s) = (ŭ0)(s) for s ∈ [−r − τ, 0), Eqs. (1), (10)–(12) for t ∈ [0, (a + 1)TH ) a.e.,

Eq. (13) for all integers i ≥ 0 with τi ≤ (a + 1)TH , and Eq. (14) for l = 0, ..., a.

Proof (Claim 1) Using (14) for l = a, we can (uniquely) define u on [aTH ,

(a + 1)TH ). Since u is constant on [aTH , (a + 1)TH ), we know that u ∈ L∞

([−r − τ, (a + 1)TH ); R
m).

Since the right-hand side of (1) satisfies a linear growth condition and since u

is defined on [−r − τ, (a + 1)TH ), it follows from Lemma 1 that we can uniquely

define x on [aTH , (a + 1)TH ]. The extended mapping x : [−r, (a + 1)TH ] → R
n

9



satisfies x ∈ C0([−r, (a + 1)TH ]; R
n), is absolutely continuous on [0, (a + 1)TH ],

and satisfies (1) for t ∈ [0, (a + 1)TH ) a.e.

Since limi→∞ τi = +∞, there are only a finite number of sampling times τi in the

interval [aTH , (a +1)TH ] (and possibly none). The right-hand sides of (10) and (12)

satisfy a linear growth condition and since u is defined on [−r −τ, (a +1)TH ) and x

is defined on [−r, (a + 1)TH ], it follows from Lemma 1 that we can uniquely define

(z0, w) on [aTH , (a + 1)TH ]. The extended mapping z0 : [−δ, (a + 1)TH ] → R
n

satisfies z0 ∈ C0([−δ, (a + 1)TH ]; R
n), is absolutely continuous on [0, (a + 1)TH ]

and satisfies (10) and (12) for t ∈ [0, (a + 1)TH ) a.e.. Moreover, the extended

mapping w : [0, (a + 1)TH ] → R
p satisfies w ∈ PC([0, (a + 1)TH ]; R

p).

Finally, using (11) and Lemma 1, we can define z1 and next z2, ..., zN on

[aTH , (a + 1)TH ]. The extended mappings z j : [−δ, (a + 1)TH ] → R
n (for

j = 1, ..., N ) satisfy z j ∈ C0([−δ, (a + 1)TH ]; R
n), are absolutely continuous

on [0, (a + 1)TH ] and satisfy (11) for t ∈ [0, (a + 1)TH ) a.e.

Therefore, the claim holds. ⊳

Part II: Proof of (15)

We next present three inequalities, which are direct consequences of (1), (2), (6)

and (10):

(z0(t) − x(t − r))′ Q d
dt

(z0(t) − x(t − r)) ≤ −2ω |z0(t) − x(t − r)|2
− (z0(t) − x(t − r))′ QGv(t − r) − (z0(t) − x(t − r))′ QL (w(t) − H x(t − r))

for a.e. t ≥ T,

(22)

x ′(t)Pẋ(t) ≤
−4µ |x(t)|2 + x ′(t)PGv(t) − x ′(t)P ( f (x(t), k(x(t))) − f (x(t), u(t − τ))) ,

for a.e. t ≥ 0, and
(23)

z′
0(t)Qż0(t) ≤ −2ω |z0(t)|2 + z′

0(t)Q f (0, u(t − r − τ)) − z′
0(t)QLw(t),

for a.e. t ≥ 0,
(24)

where T = min {τi : τi ≥ r , i = 1, 2, ...} is the smallest sampling time for which

τi ≥ r holds.

The following equations hold for all j = 1, ..., N , t ≥ 0 and are direct conse-

quences of (11):

z j (t) = z j−1(t) +
∫ t

t−δ
f (z j (s), u(s + jδ − r − τ))ds+

exp (−ct)
(

z j (0) − z j−1(0) −
∫ 0
−δ

f (z j (s), u(s + jδ − r − τ))ds
)

for all t ≥ 0

(25)
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x(t − r + jδ) =
x(t − r + ( j − 1)δ) +

∫ t

t−δ
f (x(s − r + jδ), u(s + jδ − r − τ))ds

+
∫ t−r+ jδ

t−r+( j−1)δ
Gv(s)ds for all t ≥ r

(26)

Completing the squares in (22) and (24), and using (23) and (5), we get:

(z0(t) − x(t − r))′ Q d
dt

(z0(t) − x(t − r)) ≤
−ω |z0(t) − x(t − r)|2 + 1

2ω
|QG|2 |v(t − r)|2

+ 1
2ω

|QL|2 |w(t) − H x(t − r)|2 for a.e. t ≥ T

(27)

x ′(t + τ)Pẋ(t + τ) ≤
−4µ |x(t + τ)|2 + |PG| |v(t + τ)| |x(t + τ)|
+ |P| L2 |x(t + τ)| |k(x(t + τ)) − u(t)| for a.e. t ≥ 0.

(28)

z′
0(t)Qż0(t) ≤ −ω |z0(t)|2 + 1

2ω
|Q|2 L2

2 |u(t − r − τ)|2
+ 1

2ω
|QL|2 |w(t)|2 , for a.e. t ≥ 0.

(29)

For all t ≥ 0, we can use (14) to get u(t) = k (zN (lTH )), where l = [t/TH ]. It

follows from Eq. (1) that

|x(t + τ) − x(lTH + τ)| ≤
∫ t+τ

lTH +τ
| f (x(s), u(s − τ))| ds + |G|

∫ t+τ

lTH +τ
|v(s)| ds.

(30)

Therefore, we get the following for all t ≥ 0, where l = [t/TH ]:

|x(t + τ) − x(lTH + τ)| ≤ L1

∫ t

lTH
|x(s + τ) − x(lTH + τ)| ds

+ (L1 + L2 K ) TH |x(lTH + τ)|
+L2 K TH |zN (lTH ) − x(lTH + τ)| + |G| TH suplTH ≤s≤t (|v(s + τ)|)

(using the triangle inequality, (4) and (5) and the fact that t ∈ [lTH , (l + 1)TH )) and

|x(t + τ) − x(lTH + τ)| ≤ exp (L1TH ) (L1 + L2 K ) TH |x(lTH + τ)|
+ exp (L1TH ) L2 K TH |zN (lTH ) − x(lTH + τ)|
+ exp (L1TH ) |G| TH suplTH ≤s≤t (|v(s + τ)|)

(using the Gronwall-Bellman lemma and the fact that t ∈ [lTH , (l + 1)TH )), and

|x(t + τ) − x(lTH + τ)| ≤ exp(L1TH )(L1+L2 K )TH

1−exp(L1TH )(L1+L2 K )TH
|x(t + τ)|

+ exp(L1TH )L2 K TH

1−exp(L1TH )(L1+L2 K )TH
|zN (lTH ) − x(lTH + τ)|

+ exp(L1TH )|G|TH

1−exp(L1TH )(L1+L2 K )TH
suplTH ≤s≤t (|v(s + τ)|)

(using the triangle inequality and the fact that exp (L1TH ) (L1 + L2 K ) TH < 1).

11



The above inequality in conjunction with the triangle inequality, (3), (28) and (14)

(which implies that u(t) = k (zN (lTH )), where l = [t/TH ]) and the inequality

exp(L1TH )(L1+L2 K )TH

1−exp(L1TH )(L1+L2 K )TH
|P| L2 K ≤ 2µ (31)

give

x ′(t + τ)Pẋ(t + τ) ≤ −2µ |x(t + τ)|2

+ |P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

|x(t + τ)| |x(lTH + τ) − zN (lTH )|
+

(

exp(L1TH )|G||P|L2 K TH

1−exp(L1TH )(L1+L2 K )TH
+ |PG|

)

|x(t + τ)| suplTH ≤s≤t (|v(s + τ)|)

(32)

for t ≥ 0 a.e. and l = [t/TH ]. Completing the squares in (32), we get

x ′(t + τ)Pẋ(t + τ) ≤
−µ |x(t + τ)|2 + 1

2µ

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)2
|x(lTH + τ) − zN (lTH )|2

= + 1
2µ

(

exp(L1TH )|G||P|L2 K TH

1−exp(L1TH )(L1+L2 K )TH
+ |PG|

)2
suplTH ≤s≤t

(

|v(s + τ)|2
)

(33)

for t ≥ 0 a.e. and l = [t/TH ]. Combining (25) and (26), we obtain the following for

all j = 1, ..., N and t ≥ r :

∣

∣z j (t) − x(t − r + jδ)
∣

∣ ≤ |G| supt−r+( j−1)δ≤s≤t−r+ jδ (|v(s)|) +
∣

z j−1(t) − x(t − r + ( j − 1)δ)
∣

+ L1

∫ t

t−δ

∣

z j (s) − x(s − r + jδ)
∣

ds

+ exp (−ct)

∣

∣

z j (0) − z j−1(0) −
∫ 0
−δ

f (z j (s), u(s + jδ − r − τ))ds

∣

∣

(34)

It follows from (34) that the following inequalities hold for all θ ∈ (0, c], j =
1, ..., N , and t ≥ r :

supr≤s≤t

(∣

z j (s) − x(s − r + jδ)
∣

∣ exp(θ s)
)

≤
supr≤s≤t

(∣

∣z j−1(s) − x(s − r + ( j − 1)δ)
∣

∣ exp(θ s)
)

+L1
exp(θ δ)−1

θ
supr−δ≤s≤t

(∣

z j (s) − x(s − r + jδ)
∣

exp(θ s)
)

+
∣

∣

∣z j (0) − z j−1(0) −
∫ 0
−δ

f (z j (s), u(s + jδ − r − τ))ds

∣

∣

+ |G| exp(θ t)sup0≤s≤t−r+ jδ (|v(s)|)

(35)

Since L1δ < 1, there is a small enough θ ∈ (0, c] such that L1 (exp(θ δ) − 1) < θ .

It follows from (35) that the following inequalities hold for all θ ∈ (0, c] sufficiently

small, j = 1, ..., N and t ≥ r :

12



supr≤s≤t

(∣

z j (s) − x(s − r + jδ)
∣

∣ exp(θ s)
)

≤
Λsupr≤s≤t

(∣

∣z j−1(s) − x(s − r + ( j − 1)δ)
∣

∣ exp(θ s)
)

+supr−δ≤s≤r

(∣

∣z j (s) − x(s − r + jδ)
∣

∣ exp(θ s)
)

+Λ |G| exp(θ t)sup0≤s≤t−r+ jδ (|v(s)|)
+Λ

∣

∣

z j (0) − z j−1(0) −
∫ 0
−δ

f (z j (s), u(s + jδ − r − τ))ds

∣

∣

(36)

where

Λ = θ

θ − L1 (exp(θ δ) − 1)
. (37)

Using (4), (5), (36), the fact that L1δ < 1, and induction, we conclude that the

following inequalities hold for all sufficiently small θ ∈ (0, c] and all j = 1, ..., N

and t ≥ r :

supr≤s≤t

(∣

∣z j (s) − x(s − r + jδ)
∣

∣ exp (θ s)
)

≤
Λ j supr≤s≤t (|z0(s) − x(s − r)| exp (θ s))

+Λ j −1
Λ−1

exp (θ r) max
l=1,..., j

(

supr−δ≤s≤r (|zl(s) − x(s − r + lδ)|)
)

+ΛΛ j −1
Λ−1

(

L2δ ‖u0‖ + 3 max
l=1,..., j

(∥

zl,0

∥)

)

+ΛΛ j −1
Λ−1

|G| exp(θ t)sup0≤s≤t−r+ jδ (|v(s)|)

(38)

Using Lemma 2 and inequalities (27) and (33) we obtain:

sup0≤s≤t (|x(s + τ)| exp (θ s)) ≤
√

K2
K1

|x(τ )|

+
√

K2
2µK1(µ−θ K2)

(

|PG| + exp(L1TH )|G||P|L2 K TH

1−exp(L1TH )(L1+L2 K )TH

)

exp (θ t) sup
τ≤s≤t+τ

(|v(s)|)

+
√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

× exp (θ TH ) sup
0≤s≤t

(|x (s + τ) − zN (s)| exp (θ s))

(39)

for all t ≥ 0 and θ ∈ (0, µ/K2), where K1 and K2 > 0 are constants such that the

inequality K1 |x |2 ≤ x ′ Px ≤ K2 |x |2 holds for all x ∈ R
n and

supT ≤s≤t (|z0(s) − x(s − r)| exp (θ s)) ≤
√

K4
K3

|z0(T ) − x(T − r)| exp (θ T )

+
√

K4
2ωK3(ω−θ K4)

|QG| sup0≤s≤t−r (|v(s)| exp (θ s))

+
√

K4
2ωK3(ω−θ K4)

|QL| supT ≤s≤t (|w(s) − H x(s − r)| exp (θ s))

(40)
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for all t ≥ T and θ ∈ (0, ω/K4), where T = min {τi : τi ≥ r , i = 1, 2, ...}.
Combining (39) and (38) for j = N , we obtain the following for all t ≥ 0 and

sufficiently small θ > 0:

sup0≤s≤t (|x(s + τ)| exp (θ s)) ≤
√

K2
K1

|x(τ )|

+
√

K2
2µK1(µ−θ K2)

(

|PG| + exp(L1TH )|G||P|L2 K TH

1−exp(L1TH )(L1+L2 K )TH

)

× exp (θ t) supτ≤s≤t+τ (|v(s)|)
+

√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

× exp (θ (r + TH )) sup0≤s≤r (|x (s + τ) − zN (s)|)
+

√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

exp (θ TH )

×ΛΛN −1
Λ−1

(

L2δ ‖u0‖ + 3 max
l=1,...,N

(∥

zl,0

∥)

)

+
√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

exp (θ TH )

×ΛN supr≤s≤t (|x (s − r) − z0 (s)| exp (θ s))

+
√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

exp (θ (r + TH ))

×ΛN −1
Λ−1

max
j=1,...,N

(

sup−δ≤s≤r

(∣

x (s − r + jδ) − z j (s)
∣))

+
√

K2
2µK1(µ−θ K2)

(

|P|L2 K (1−L1TH exp(L1TH ))
1−exp(L1TH )(L1+L2 K )TH

)

exp (θ (t + TH ))

×ΛΛN −1
Λ−1

|G| sup0≤s≤t+τ (|v (s)|)

(41)

Combining (1) and (12), we obtain the following for all t ∈ [τi , τi+1) with τi ≥ T :

|w(t) − H x(t − r)| ≤ |w(τi ) − H x(τi − r)| + |H | L1

∫ t

τi
|z0(s) − x(s − r)| ds

+ |H G|
∫ t

τi
|v(s − r)| ds

(42)

Using (13), (42) and the facts that t ∈ [τi , τi+1), τi ≥ T , and supi≥0 (τi+1 − τi ) ≤
Ts , we get the following for all θ > 0:

|w(t) − H x(t − r)| exp (θ t) ≤
|ξ(τi )| exp (θ t) + |H G| Ts exp (θ t) supτi ≤s≤t (|v(s − r)|)
+ |H | L1supτi ≤s≤t (|z0(s) − x(s − r)| exp (θ s))

exp(θ Ts )−1
θ

(43)

Estimate (43) implies the following estimate for all t ≥ T and θ > 0:

supT ≤s≤t (|w(s) − H x(s − r)| exp (θ s)) ≤ exp (θ t) supT ≤s≤t (|ξ(s)|)
+ |H | L1supT ≤s≤t (|z0(s) − x(s − r)| exp (θ s))

exp(θ Ts )−1
θ

+ |H G| Ts exp (θ t) sup0≤s≤t−r (|v(s)|)
(44)
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Since

√

K4
2K3

|QL| |H | L1Ts < ω, it follows that there exists θ > 0 such that

g =
√

K4
2ωK3(ω−θ K4)

|QL| |H | L1
exp(θ Ts )−1

θ
< 1. (45)

Combining (40) and (44), we get this for all t ≥ T and for all sufficiently small

θ > 0:

supT ≤s≤t (|z0(s) − x(s − r)| exp (θ s)) ≤
1

1−g

√

K4
K3

|z0(T ) − x(T − r)| exp (θ T )

+ exp(θ t)
1−g

√

K4
2ωK3(ω−θ K4)

(|QG| exp (−θ r) + |QL| |H G| Ts) sup
0≤s≤t

(|v(s)|)

+ 1
1−g

√

K4
2ωK3(ω−θ K4)

|QL| exp (θ t) sup
T ≤s≤t

(|ξ(s)|)

(46)

Combining (41) and (46) and using the fact that supi≥0 (τi+1 − τi ) ≤ Ts (which

implies that T = min {τi : τi ≥ r , i = 1, 2, ...} satisfies T ≤ r + Ts), we obtain

estimate (15) for all t ≥ 0 and sufficiently small θ > 0.

Part III: Proof of (16)

Our strategy for the proof of estimate (16) is described next.

Using (38), (46) and (15) in conjunction with a standard causality argument, we

conclude that there exists a constant κ > 0 such that the following inequality holds

for all t ≥ 0:

‖xt‖ +
∑N

j=0 ‖zt‖ ≤ κ exp (−θ t) sup0≤s≤τ+r+Ts

(

‖xs‖ + ‖ŭs‖ +
∑N

j=0

∥

z j,s

∥

)

+κ
(

sup0≤s≤t (|ξ (s)|) + sup0≤s≤t (|v (s)|)
)

(47)

Using (3), (14) and the fact that k(0) = 0, we obtain the following for all t ≥ 0:

‖ŭt‖ ≤ ‖ŭ0‖ exp (−θ(t − r − τ))

+K exp (−θ (t − r − τ − TH )) sup0≤s≤t (|zN (s)| exp(θs))

(48)

Therefore, inequalities (47) and (48) allow us to conclude the existence of a

constant κ̄ > 0 such that the following inequality holds for all t ≥ 0:

‖xt‖ + ‖ŭt‖ +
∑N

j=0 ‖zt‖ ≤
κ̄ exp (−θ t) sup0≤s≤τ+r+Ts

(

‖xs‖ + ‖ŭs‖ +
∑N

j=0

∥

z j,s

∥

)

+κ̄
(

sup0≤s≤t (|ξ (s)|) + sup0≤s≤t (|v (s)|)
)

(49)
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To show (16), we use inequality (49) and the following claim:

Claim 2 For every integer i ≥ 0 there exists a constant Mi > 0 such that

‖xt‖ + ‖ŭt‖ +
∑N

j=0

∥

z j,t

∥

≤
Mi

(

‖x0‖ +
∑N

j=0

∥

z j,0

∥

+ ‖ŭ0‖ + sup0≤s≤t (|v(s)|) + sup0≤s≤t (|ξ(s)|)
)

for all t ∈ [0, iTH ]
(50)

Indeed, if Claim 2 holds, then inequality (16) is a direct consequence of (49). There-

fore, the rest of the proof is devoted to the proof of Claim 2.

Using Lemma 2 and inequality (29) we obtain for all t ≥ 0:

sup0≤s≤t (|z0(s)| exp (θ s)) ≤
√

K4
K3

|z0(0)|

+
√

K4
2ωK3(ω−θ K4)

|Q| L2sup0≤s≤t (|u(s − r − τ)| exp (θ s))

+
√

K4
2ωK3(ω−θ K4)

|QL| sup0≤s≤t (|w(s)| exp (θ s))

(51)

Using (4), (5) and (12) we obtain the following for all t ∈ [τi , τi+1) and i =
0, 1, 2, ...:

|w(t)| ≤ |w(τi )| + |H | L1
exp(−θ τi )−exp(−θ t)

θ
supτi ≤s≤t (|z0(s)| exp(θ s))

+ |H | L2
exp(−θ τi )−exp(−θ t)

θ
supτi ≤s≤t (|u(s − r − τ)| exp(θ s))

(52)

Combining the estimate (52) with (13) and using the facts that t ∈ [τi , τi+1) and

supi≥0 (τi+1 − τi ) ≤ Ts , we obtain:

sup0≤s≤t (|w(s)| exp(θ s)) ≤ sup0≤s≤t (|ξ(s)|) exp(θ t)+
|H | exp(θ (r + Ts))sup−r≤s≤t−r (|x(s)| exp(θ s))

+ |H | L1
exp(θ Ts )−1

θ
sup0≤s≤t (|z0(s)| exp(θ s))

+ |H | L2
exp(θ Ts )−1

θ
sup0≤s≤t (|u(s − r − τ)| exp(θ s))

(53)

for all t ≥ 0. Using our bound (45), the combination of (51) and (53) implies the

existence of constants Θi > 0 (i = 1, 2, 3, 4) such that the following estimate holds

for all t ≥ 0:

sup0≤s≤t (|z0(s)| exp (θ s)) ≤
Θ1 |z0(0)| + Θ2sup0≤s≤t (|u(s − r − τ)| exp (θ s))

+Θ3sup−r≤s≤t−r (|x(s)| exp (θ s)) + Θ4 exp (θ t) sup0≤s≤t (|ξ(s)|)
(54)

Combining (53) and (54), we obtain:

sup0≤s≤t (|z0(s)| exp (θ s)) + sup0≤s≤t (|w(s)| exp (θ s)) ≤
Θ̃1 |z0(0)| + Θ̃2sup0≤s≤t (|u(s − r − τ)| exp (θ s))

+Θ̃3sup−r≤s≤t−r (|x(s)| exp (θ s)) + Θ̃4 exp (θ t) sup0≤s≤t (|ξ(s)|)
(55)

for all t ≥ 0, for appropriate constants Θ̃i > 0 (i = 1, 2, 3, 4).
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Inequality (4) implies the following estimates for all j = 1, ..., N and t ≥ 0:

∥

∥z j,t

∥

∥ ≤ (1 + 2L1δ)
∥

∥z j,0

∥

∥ + 2sup0≤s≤t

(∣

∣z j−1(s)
∣)

+L1

∫ t

0

∥

z j,s

∥

ds + 2L2δsup0≤s≤t ‖ŭs‖
(56)

Using (56) and the Gronwall lemma, we get this for all j = 1, ..., N and t ≥ 0:

∥

z j,t

∥

≤
exp (L1t)

(

(1 + 2L1δ)
∥

z j,0

∥

+ 2sup0≤s≤t

(∣

z j−1(s)
∣)

+ 2L2δsup0≤s≤t ‖ŭs‖
)

(57)

Using (55) and (57) repeatedly, we obtain the following for all t ≥ 0:

∑N
j=0

∥

z j,t

∥

≤ Θ̄ exp (σ t)
(

∑N
j=0

∥

z j,0

∥

+ sup−r−τ≤s<t (|u(s)|)
+sup−r≤s≤t (|x(s)|) + sup0≤s≤t (|ξ(s)|)

)
(58)

for appropriate constants Θ̄ > 0 and σ > 0. We are now ready to prove Claim 2.

Proof (Claim 2) We use induction. The claim holds automatically for i = 0. Using

(3), (14), and (50) for a certain integer i ≥ 0 and the fact that k(0) = 0, we get:

sup−r−τ≤s<t (|u(s)|) ≤ (1 + K )Mi

(

‖x0‖ +
∑N

j=0

∥

z j,0

∥

+ ‖ŭ0‖
+sup0≤s≤t (|v(s)|) + sup0≤s≤t (|ξ(s)|)

)
(59)

for all t ∈ [0, (i + 1)TH ]. Using (4), (5), Lemma 1 and (59), we obtain

sup−r≤s≤t (|x(s)|) ≤ Ri

(

‖x0‖ +
∑N

j=0

∥

z j,0

∥

+ ‖ŭ0‖
+sup0≤s≤t (|v(s)|) + sup0≤s≤t (|ξ(s)|)

)
(60)

for all t ∈ [0, (i + 1)TH ] for an appropriate constant Ri > 0. Inequality (50) for

i + 1 and an appropriate constant Mi+1 > 0 is a direct consequence of (58), (59),

and (60). The proof of Claim 2 is complete, so the proof of Theorem 1 is complete.

6 Concluding Remarks

In this chapter, we proposed a novel control scheme for nonlinear globally Lipschitz

systems for which the input is delayed and applied with zero order hold, the mea-

surements are sampled and delayed, and only an output is measured. The novelty of

our work is in the use of a chain of approximate (dynamic) predictors to handle long

delays in both input and output. Using small gain arguments, sufficient conditions on

both the upper diameter of the sampling partition and the holding period, and a suffi-

cient number of predictors in the chain, we proved that the closed loop is robust with

17



respect to measurements and modelling errors. We also provided explicit estimates

of the asymptotic gains of the external inputs v and ξ . This can be extended easily o

networked control systems with uniformly globally exponentially stable scheduling

protocols.
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