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Sampling Intervals Enlargement for a Class of Parabolic Sampled-

Data Observers 

 

Tarek Ahmed-Ali, Emilia Fridman, Fouad Giri, Francoise Lamnabhi-Lagarrigue 

 

Abstract. The problem of state observation is addressed for a class of parabolic systems governed 

by linear diffusion PDEs. An observer is designed that provides online estimates of the system 

(spatially distributed) state, based on time sampled output measurements. The observer is a fixed-

gain involving an inter-sample output predictor, making the state trajectories (at the different spatial 

positions) continuous in time. The observer convergence is analyzed using Lyapunov's direct 

method, Writtinger's inequalities and other tools. Sufficient conditions for exponential convergence 

are established in terms of LMIs involving the sampling period and the observer gain. Interestingly, 

the conditions entail no limitation on the spatial domain length and no persistent excitation 

requirement.  

1. Introduction 

State observers are resorted to get online estimates of system state variables that are not accessible 

to measurements. They are beneficial when suitable physical sensors are missing or when their 

implementation is prohibitive or entails reliability issues. State observers are widely used in system 

control and system fault detection and diagnostics. During the three past decades, the problem of 

system observability and observer design has intensively been investigated especially for finite-

dimension systems (FDSs). For linear systems, the Luenberger observer [2] and the Kalman filter 

[3] have been proposed in the early sixties. Several extensions to nonlinear systems have been 

developed, over the thirty lat years, including the high-gain observer (e.g.[3]-[6]), sliding-mode 

observers (e.g. [7]-[9]), Luenberger-like observers (e.g. [10]). 

The problem of distributed parameter system (DPS) observability and observer design has also been 

given a great deal of interest, especially in recent years. The earliest works have focused on linear 

IDSs and a relatively complete theoretical framework exists since the nineties, including the infinite 

dimensional Luenberger observer (e.g. [11],[12]) and reference list therein. Boundary observer 

design of bilinear DPSs have been studied, in e.g. [13]-[15]. A unifying study of both interior and 

boundary observation for linear and bilinear systems is found in [16]. In [17], backstepping 

techniques have been used to design exponentially convergent boundary observers for a class of 

parabolic partial integro-differential equations. The problem of initial state recovery has also been 

given interest. In [18], an iterative algorithm is proposed to recover the initial state of a linear 

infinite dimensional system. The proposed algorithm generalizes various algorithms, proposed 

earlier for specific classes of systems, and stands as an alternative to methods based on Gramian 



inversion [19]. The ideas of [18] have been extended to some nonlinear infinite dimensional 

systems, using LMI techniques [20]. 

In this paper, we are interested in parabolic systems governed by linear diffusion type PDEs. The 

problem of designing sampled-data controllers for this class of systems has been dealt with in e.g. 

[21], using H-infinity and LMIs. Presently, the focus is made on sampled-data observer design. It is 

assumed that a sensor provides the spatially averaged value of the system over the whole spatial 

domain. An observer is designed that provides online estimates of the full spatially distributed state, 

based on time sampled output measurements. The observer involves a fixed injection gain and an 

inter-sample output predictor subject to periodic resetting. Accordingly, the latter turns out to be the 

only hybrid part of the observer. In particular, the state estimator is continuous-time and all 

generated state estimate trajectories are continuously varying. The observer convergence is 

analyzed using Lyapunov's direct method, Writtinger's inequalities and other tools. Sufficient 

conditions for exponential convergence are established in terms of LMIs involving the sampling 

period and the output injection gain. Interestingly, the conditions entail no limitation on the length 

of the spatial domain. The observer thus developed may be viewed as an extension of the hybrid 

adaptive observer proposed by [22] for FDSs. 

The paper is organised as follows: first, the observation problem under study is formulated in 

Section 2; then, the observer design and analysis are dealt with in Section 3; a conclusion and 

reference list end the paper. 

2. Observation Problem Statement 

The system under study is governed by the following linear diffusion type PDE: 

  ),(),(),( txutxutxu xxt  ,  10  x , 0t  (1a) 

with the boundary condition: 

 0),1( tu , 0),0( tux  (1b) 

where the state variable R),( txu  is assumed to be bounded and the scalar parameter 0  is 

known. The system is observed via the output signal: 

 
1

0
),()( dxtxuty   (2) 

The goal is to generate accurate online estimates ),(ˆ txu  of the system state ),( txu  ( 10  x ; 

0t ), based on the sampled output measurements )( kty , where the kt 's )( Nk  denote the 

sampling instants. Presently, the case of constant sampling period 1 kk tt  is considered.  

Note that the assumption 0  ensures the system observability and guarantee the existence of an 

observer solving the considered observation problem. The case 0  is ruled out because the 

system is then only detectable.  

3. Observer Design and Analysis 



3.1 Observer Design 

To estimate the state of the system (1a-c)-(2), the following observer is proposed: 






   )(),(ˆ),(ˆ),(ˆ),(ˆ

1

0
twdtuKtxutxutxu xxt  , 10  x , 0t  (3a)

  0),1(ˆ tu ,  0),0(ˆ tux (3b) 

 
1

0
),(ˆ),(ˆ)( dxtxutxutw xx  , 1 kk ttt  (3c)

)()( kk tytw  (3d) 

where û(x, t) denotes the state estimate, w(t) the output prediction between two successive 

sampling times, and K  >0 is the output-injection gain. Clearly, the observer is composed of two 

parts: the state estimator (3a-b) and the output predictor (3c-d). The former features a feedback 

structure while the latter does not. Nevertheless, the predictor open-loop structure is compensated 

for by its periodic reinitialization. It turns out that, the predictor is the only hybrid part of the 

observer. The state estimator (3a-b) enjoys time continuity whatever the spatial position 0  ≤x  ≤1. 

The inter-sample predictor based observer (3a-d) can also be expressed in terms of a time-varying 

gain involving a ZOH innovation






   )(),(ˆ),(ˆ),(ˆ),(ˆ

1

0

)(
kk

ttK
xxt tydtuKetxutxutxu k  , 10  x , 1 kk ttt  (4a) 

  0),1(ˆ tu ,  0),0(ˆ tux (4b) 

Compared with (Bar Am and Fridman, 2014), the observer (4a-b) enjoys its time-varying gain 

feature. Notice that the varying gain is exponentially decreasing, over any sampling interval 

1 kk ttt . Accordingly, the information obtained at the sampling time k t is progressively 

forgotten. 

3.2 Observer Analysis 

A suitable choice of the output injection gain and the sampling period τ will now be 

determined based on the analysis of the following errors: 

),(),(ˆ),(~ txutxutxu   (state estimation error) (4a) 

)()()( tytwte      (output prediction error)   (4b) 

Then, it follows subtracting (side-by-side) equation (1a) to (3a) that, ),(~ txu  undergoes the

following equation: 






   )(),(~),(~),(~),(~ 1

0
tedtuKtxutxutxu xxt  ,  10  x , 0t (5a)

where the last term on the right side is obtained adding, within the parenthesis, the quantity 

0),()(
1

0
  dxtxuty  (due to (2)). Equation (5a) is completed with the boundary conditions:

0),1(~ tu , 0),0(~ tux (5b) 



Similar equations are established for the error )(te . First, note that by (2) the system output )(ty

undergoes the differential equation: 

 
1

0
),(),()( dxtxutxuty xx  (using (2) and (1a))

Subtracting this equation to (3c) yields, successively: 

 
1

0
),(~),(~)( dxtxutxute xx  ,    1 kk ttt


1

0
),(~),1(~ dxtxutux  ,   1 kk ttt (6a)

where the last equation is obtained using (5b). Equation (6a) is completed with the following 

reinitialization equations, obtained from (3d): 

 0)( kte  (6b) 

The error system (5a-b)-(6a-b) will now be analyzed considering the following Lyapunov function 

candidate: 

 
t

tx
k

dssestdxtxu
p

dxtxutV )()(
2

1
),(~

2
),(~

2

1
)( 21

0

21
1

0

2  ,     1 kk ttt (7)

with 2,1,0k . and 01 p  a scalar arbitrarily chosen.  

 The main result is described in the following theorem: 

Theorem 1. Let the observer described by (3a-d) be applied to the system (1a-b)-(2). Let the 

output-injection gain K  (in equation (3a)), the sampling period 1 kk tt  and the weighting 

coefficient in (7) be selected such that 

2K ,  

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
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

KKp
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1
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min

21 


K

K
p  (8a) 

In the case where )1(8 2   , the following additional conditions on K  is required: 

0KK   or 1KK     (8b) 

with 
2

82

0

 
K , 

2

82

1

 
K , and )1(2   . Then, the estimation error 

),(~ txu is exponentially vanishing as t , uniformly in x , whatever )10(),0,(~  xxu   ■

Proof.  The derivative of (7) along the trajectory of (5a-b)-(6a-b) writes: 






  

t

txtxt
k

dssest
dt

d
dxtxutxupdxtxutxutV )()(),(~),(~),(~),(~)( 21

01
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0
  (9) 

The different terms on the right side of (9) are separately analysed in the sequel. The first term 

develops as follows:  

 
1

0

21

0

1

0
),(~),(~),(~),(~),(~ dxtxudxtxutxudxtxutxu xxt 



   
1

0

1

0

1

0
),(~)(),(~),(~ dxtxuteKdxdtutxuK   

  
1

0

21

0

2 ),(~),(~ dxtxudxtxux   

   
1

0

1

0

1

0
),(~)(),(~),(~ dxtxuteKdxdtutxuK   (10) 

using (5b). The third term on the right side of (10) develops as follows: 

  
1

0

1

0
),(~),(~ dxdtutxuK   

1

0

1

0
),(~),(~ dxdtxutxuK   

   




 

1

0

1

0
)),(~),(~(),(~ dxdtxututxuK   

   




 

1

0

1

0

1

0

2 )),(~),(~(),(~),(~ dxdtxututxuKdxtxuK   

  
1

0

1

0

2 )(),(~),(~ dxxgtxuKdxtxuK  (11a) 

where )(xg  is defined by: 

  
1

0
)),(~),(~()(  dtxutuxg  (11b) 

It is readily seen that 0)(
1

0
 dxxg . Then, by one of Writtinger's inequalities (see e.g. Lemma 1.1 in 

[21]) one has: 

  
1

0

2
2

1

0

2 )(
1

)( dxxgdxxg x
 (11c) 

It is also easily obtained from (11b) that, xx uxg ~)(  . Then, (11c) explicitly writes as follows: 

  
1

0

2
2

1

0

2 ~1
)( dxudxxg x

 (11d) 

Using (11a-d), one gets from (10): 

 
1

0

2
21

0

21

0
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2
),(~

2

1
),(~),(~ dxtxgdxtxudxtxutxu xt


 

  
1

0

21

0

2 ),(~),(~ dxtxuKdxtxu  

           )(
2

)(),(~ 21

0
te

K
dxxgtxuK    

 
1

0

2 ),(~
2

dxtxu
K

 (using Young inequality) 

     )(
2

),(~
2

1
),(~)

2
( 21

0
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0

2 te
K

dxtxudxtxu
K

x    

       









1

0

2
2

2 )(),(~)(
2

),(~)
2

)(1( dxxgtxuKxgtxu
K   (11e) 

where 10    is arbitrary. The last term on the right side of (11e) can be condensed as follows: 
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)(),(~)(),(~)(
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2
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K
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xgtxuxgtxuKxgtxu
K



  

It is readily checked that the matrix on the right side of this equation is negative semidefinite iff: 

 0
2


K    and  0)2)(1( 22  KK  (11f) 

The second inequality in (11f) involves the quadratic function  22  KK  and the associated 

discriminant  82   with )1(2   . This discriminant is positive if  8)1(2  . 

Then, the second inequality in (10f) holds if 0KK   or 1KK  . In the case where  8)1(2  , 

the second inequality in (11f) holds whatever 0K . That is, under conditions (8a-b) one has, 

0)(),(~)(
2

),(~)
2

)(1( 2
2

2  xgtxuKxgtxu
K  , whatever tx, . Then, inequality (10e) yields: 

 )(
2
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2

1
),(~)

2
(),(~),(~ 21

0
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0
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0
te

K
dxtxudxtxu

K
dxtxutxu xt     (12) 

In turn, the second term on the right side of (9) develops as follows: 

  
1

01

1

01 ),(~),(~),(~),(~ dxtxutxupdxtxutxup txxxtx   

 
1

01 ),(~),(~ dxtxutxup txx   

  
1

0

2
1

1

01 ),(~),(~),(~ dxtxupdxtxutxup xxxxx    (using (5a)) 

    
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where the two last equalities are obtained using an integration by part and (5b). Note that the first 

equality holds because u~  is smooth (see a similar proof in Appendix A of [21]). Now, let us closely 

look at the term ),1(~ tuxx . It follows from (5b) that 0),1(~ tut . Then, one has letting 1t  in (5a): 

 

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
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which gives: 

 
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
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tedtuKtuxx   (13b) 

Also, the quantity ),1(~ tux  rewrites as follows: 

 
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),(~),1(~ dxtxutu xxx  (using (5b)) (13c) 

Combining (13a-c) one gets: 
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Combining (12) and (14) one gets: 
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Finally, the third term on the right side of (9) develops as follows: 
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where the last inequality is obtained using Schwartz inequality twice. Using (15) and (16), it 

follows from (9) that: 
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for all 1 kk ttt . The last term on the right side of (17) is worked out as follows: 
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where we have used Schwartz inequality and the fact that 0)( kte . This together with (17) yields: 
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for all 1 kk ttt . At this point, it is worth recalling that, the parameters ,0,01  p  and 0   

are still arbitrary, while 10    and K  satisfies (8a-b). Then, the third term on the right side of 

(17) suggests that   and   must be such that 2  and )
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  p . Accordingly, we simply 

let: 
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In turn, the second term on the right side of (17) suggests that 1p  must be selected so that 

2/11 p . For simplicity, we let:  
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Finally, the last term on the right side of (17) suggest that   must be selected such that 
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Combining (17) and (18a-h), it follows that, if 
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then, 
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It readily follows from (21) that: 
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Comparing (22c) and (22b), one gets that  )()( 11
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  kk tVtV , for all k . This, together with (22a), 

implies that: 

 )(
0

0)()( ttetVtV   ,  for all  0tt   (23) 

Theorem 1 is established ■ 

4. Conclusion 

We have addressed the problem of estimating the state of the class of PDSs described by the model 

(1a-b)-(2) which is basically a diffusive parabolic PDE. The main features of the observer (3a-d) are 

its time sampled-data nature, its constant output-injection gain, and an inter-sample output 

predictor. The last feature is crucial in ensuring time-continuity of all state estimate trajectories (at 

all spatial positions). The analysis made in Theorem 1 has lead to sufficient conditions for the 

observer to be exponentially convergent. The conditions involve the sampling period and the 

injection gain. Interestingly, the conditions entail no limitation on the spatial domain length and no 

persistent excitation requirement.  The present study can be extended to the case of multiple 

sensors, each one of them providing the averaged value of the spatial state over a subdomain 

],[ 1ii xx , i.e.  
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where 10 10  pxxx   for some finite integer p . 
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