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 
Abstract. We are considering the problem of state 

observation for a class of infinite dimensional systems. The 
latter are modelled by a parabolic PDE and a boundary 
condition involving an unknown parameter. The problem is 
dealt with using an adaptive observer that provides online 
estimates of the system (spatially distributed) state and the 
unknown parameters. The observer is formally shown to be 
exponentially convergent under an ad-hoc persistent excitation 
condition. 
 

Index Terms— parabolic PDE, state observation, parameter 
estimation, adaptive observer.  

I. INTRODUCTION 

Practical implementation of control systems may necessitate, 
not only online measurements of the system outputs, but also those 
of the internal state variables. The point is that, in most situations, 
it is not possible to have full information on the system state 
variables, due to the fact that not all these variables are accessible 
to measurements or the costs of implementing all the necessary 
sensors are prohibitive. This is particularly the case when infinite 
dimensional systems are involved. In such situations, the only 
solution is to use state observers to get online estimates of all state 
variables. One of the most known state estimators is the 
Luenberger observer [1]. This established the structure that most 
observers are based upon today. Surveys on observer design can 
be found in [2,3], for finite-dimensional systems, and in [4] for 
infinite dimensional systems. 

In real-life control problems, the online state estimation issue is 
usually faced in presence of large system parameter uncertainty. 
Then, the problem is addressed by the design of adaptive state 
observers which provide online estimates of both the states and the 
unknown parameters. The first adaptive observers have been 
developed for finite-dimensional continuous-time linear systems 
and an extensive overview is found in [5,6]. The case of (finite-
dimensional) nonlinear systems has been extensively studied 
leading to several solutions, e.g. [7-13].  

The problem of observer design for infinite dimensional 
systems (IDSs) has also been given a great deal of interest. Several 
observer design techniques have been developed including the 
infinite dimensional Luenberger observer for linear IDSs (e.g. 
[4,14,15,16]), the boundary observer design of bilinear IDSs (e.g. 
[17,18,19,27]), backstepping-based boundary observers for 
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parabolic partial integro-differential [19], initial state recovery 
algorithms for various linear and nonlinear IDSs [20-22].  

In the last few years, much interest has been paid to 
simultaneous parameter and state estimation for IDSs, within 
various contexts. In [23], simultaneous state and parameter 
estimation has been introduced to deal with output-feedback 
adaptive control design for parabolic PDEs. In this context, the 
unknown parameters are tuned by gradient-type laws while the 
(spatially distributed) state is estimated using open-loop filters. 
The convergence of the estimates to their true values is not 
established. But, this is not required for the achievement of the 
control objectives. In [24], simultaneous state and parameter 
estimation has been performed to solve a parameter identification 
problem for reaction-advection type systems involving a single 
unknown parameter. Open- and closed-loop adaptive identifiers 
have been proposed where the unknown parameter is estimated 
using gradient-type estimators, while the (spatially distributed) 
state is estimated using open-loop filters. It is shown that the 
parameter estimate converges to its true values, by just using 
constant exciting inputs. In [25], simultaneous parameter and state 
estimation has been considered within the context of adaptive 
stabilization for a wave equation subject to a boundary harmonic 
disturbance linearly parameterized along a known set of functions. 
An adaptive observer estimating the system state and the 
(disturbance) unknown parameters is proposed and the estimation 
error system is shown to be asymptotically stable. 

In this paper, the problem of parameter and state estimation is 
addressed for IDSs that are described by a parabolic PDE with a 
boundary condition involving an uncertain parameter. This class 
of systems has been well motivated in [24,28] where the emphasis 
was made on the identification of the unknown parameter. 
Presently, the objective is to accurately estimate both the state of 
domain and parameter of the boundary condition. To this end, an 
adaptive observer is designed that provides online estimates of the 
state (along the domain) and the parameter. The observer design is 
inspired from adaptive observer designs of nonlinear ODE systems 
and PDE systems. Accordingly, the observer includes state and 
parameter estimators as well as a gain adaptation law. A formal 
analysis of the proposed adaptive observer is developed leading to 
conditions on the input signal and the design parameter. 
Interestingly, the input is allowed to be of any type but is must be 
persistently exciting.  Under this condition, the state and 
parameter estimation errors are made exponentially vanishing.  

The paper is organized as follows: the observation problem 
statement, including the class of IDSs, is described is Section 2; 
the adaptive observer design and analysis are dealt with Sections 3 
and 4, respectively; a conclusion and a reference list end the 
paper. 
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II. OBSERVATION PROBLEM STATEMENT 

The system under study is described by a parabolic PDE of the 
form: 
 
 ),(),( txutxu xxt  ,  10  x , 0t  (1a) 

 
with the boundary condition: 
 

),0(),0( tqutux   (1b) 

 
and: 
 

)(),1( tUtu    (control input) (1c) 

),0()( tuty     (system output) (1d) 
 
where Rq  is a fixed unknown parameter. It is only assumed 

that 1q  for the system (1a-d) to be (BIBO) stable. 

The goal is to generate accurate online estimates, ),(ˆ txu  and 

)(ˆ tq , of the system state ),( txu  ( 10  x ; 0t ) and the 

parameter q , based only on the output measurements 

)0);(),(( ttytU . To achieve this objective, it is assumed that the 

state variable ),( txu  ( 10  x ; 0t ) as well as the input 

derivative ),1()( tutU t  are bounded. 

III. ADAPTIVE OBSERVER DESIGN 

The system model (1a-c) suggests the following observer 
structure: 

 

),(),(ˆ),(ˆ txvtxutxu xxt   (3a) 

))(),0(ˆ(),0(ˆ),0(ˆ tytuLtuqtux     (3b) 

)(),1(ˆ tUtu    (3c) 

 

where )(ˆ tq  is a parameter estimate, ),( txv  is an additional 

correction term. A suitable choice of these quantities will be made 
on the basis of the subsequent analysis. First, introduce the 
following errors: 
 

),(),(ˆ),(~ txutxutxu   (state estimation error)  (4a) 

qtqtq  )(ˆ)(~     (parameter estimation error)  (4b) 
 
Then, subtracting equation (1a) to (3a), it follows that ),(~ txu  

undergoes the following equation: 
 

),(),(~),(~ txvtxutxu xxt  , (5a) 

 
with the following boundary conditions: 
 

),0(~),0(~),0(~ tuLtuqtux     (5b) 

0),1(~ tu  (5c) 
 

using (1b-c) and (3b-c). Now, let us introduce the following 
coordinate change: 

 
)(~),(),(~),( tqtxtxutxz  ,     (6) 

 
where R),( tx  is an auxiliary function to be defined later. 

Then, it follows from (6) that ),( txz  undergoes the following 

equation: 
 

),(),(~),( txvtxutxz xxt  )(~),()(~),( tqtxtqtxt
  , 0t  (7) 

using (5a). Equation (7) suggests the following choice of ),( txv : 

 

)(~),(),( tqtxtxv            (8) 
 
Doing so, equation (7) simplifies to: 
 

)(~),(),(~),( tqtxtxutxz txxt  ,  0t  (9) 

 
In view of (6), )(~),(),( tqtxtxz   can be substituted to ),(~ txu  

on the right side of (9). Then, one gets: 
 

)(~),(),(),( tqtxtxztxz xxxxt  )(~),( tqtxt  

     )(~),(),(),( tqtxtxtxz txxxx   ,  0t  (10) 

 
Equation (10) suggests the following trajectory for the auxiliary 
state vector ),( tx : 

 

),(),( txtx xxt        (11a) 

 
This is completed with the following boundary and initial 
conditions which will prove to be judicious: 
 

0),1( t , 0)0,( x , ),0(),0( tutx   (11b) 

 
Doing so, equation (10) boils down to: 
 

),(),( txztxz xxt  ; 0t ,  (12a) 

 
In view of (11b) and (5b), one get from (6) the following 

boundary conditions: 
 

0)(~),1(),1(~),1(  tqttutz     (12b) 

 
)(~),0(),0(~),0( tqttutz xxx   

 )(~),0(),0(~),0(~ tqttuLtuq x  

   )(~),0()(~),0(),0(~),0(~ tqttqttzLtuq x    

  ),0(),0(),0(~),0(~ ttLtuqtzL x   

  ),0(~),0( tLqtLz   (12c) 

 
where the last equality is obtained using the last part of (11b). 
Owing to the unknown parameter, the following adaptive law is 
proposed: 
 



 
)(~),0()()(ˆ 1 tyttrtq                  (13a) 

 ),0()()()( 22
2 ttrtrtr   ;  R)(tr      (13b) 

),0(~)(),0(ˆ)(~ tutytuty   (13c) 

 
where the gains 01   and 02   as well as the initial 

conditions  R)0(q̂  and 0)0( r  are all arbitrarily chosen. The 

observer thus designed is constituted of equations (3a-c), (11a-b) 
and (13a-c). For convenience, these equations are recapitulated in 
the following table:  
 

Table 1. Adaptive observer 

State observer: 

)(ˆ),(),(ˆ),(ˆ tqtxtxutxu xxt
  (14a) 

))(),0(ˆ(),0(ˆ),0(ˆ tytuLtuqtux  ,  )(),1(ˆ tUtu   (14b) 

Parameter estimator: 

),(),( txtx xxt   ;  R),( tx  (14c) 

0),1( t , 0)0,( x ,  and    ),0(),0( tutx   (14d) 

)(~),0()()(ˆ 1 tyttrtq  ,  )(),0(ˆ)(~ tytuty                (14e) 

 ),0()()()( 22
2 ttrtrtr   ;  R)(tr ; 0)0( r      (14f) 

 
It is worth noticing that equations (14c-d) are similar to the filter 
(62)-(64) in [24]. However, the parameter adaptive law (14e-f) is 
different from the adaptive law (61) in [24]. The main feature of 
the former, compared to the latter, is that it offers the possibility of 
tuning independently the dynamics of the state estimator (14a-b), 
using the design parameter L , and those of the parameter adaptive 
law (14e), which is tuned by the parameters 21 , . In [24], the 

dynamics of the state estimator and the parameter law can not be 
independently tuned. 

IV. ADAPTIVE OBSERVER ANALYSIS  

The observer analysis relies on the study of the error system: 
 

),(),( txztxz xxt  ; 0t ,  (15a) 

)(~),0()()(~
1 tyttrtq   (15b) 

)(~),0(),0(),0(~)(~ tqttztuty   (15c) 

),0(~),0(),0( tqLtLztzx  ,  0),1( tz  (15d) 

),(),( txtx xxt        (15e) 

0),1( t , 0)0,( x , ),0(),0( tutx   (15f) 

 
Clearly, (15a) is a simple copy of (12a); (15b) is obtained from 
(13a) and (4b); (15c) is obtained from (13c) and (6); (15d) is 
obtained from (12b-c); (15e-f) are copies of (11a-b). Before 
embarking in the analysis of the system (15a-b), recall the 
following Wirtinger's inequalities [26] as these will be repeatedly 
used: 
 

 
1

0

2
2

1

0

2 )(
4

)( dxxdxx x
   and   

1

0

22

10
)()(max dxxx x

x
  (16) 

 

whatever )1,0(1H  such that 0)0(   or 0)1(  , where 

)1,0(1H  is the Sobolev space of absolutely continuous scalar 

functions   such that )1,0(2Lx  .  

The stability analysis relies upon  the following persistent 
excitation assumption:  

 

0,0,, 10  t : 1
2

0 ),0( 


 
t

t
dss  (18) 

 
It can be shown (see e.g. [6,7]) that, the time-varying scalar )(tr  

(solution of (14f)) does exist, is positive and stays bounded away 
from 0, provided  ),0( t  is bounded and satisfies the PE (18). The 

boundedness of ),0( t  is formally established in the following 

proposition: 

Proposition 1. The signal ),0( t  is bounded     � 

Proof. see Appendix A. 

In the latter, the notation, 

t
t

,0(sup
0

max 


 . 

is used. Proposition 1 and condition (18) ensure that, in turn the 

inverse 1r  is bounded, is positive and stays bounded away from 

0. Specifically, there are two positive real numbers ),( rr , such 

that: 
 

1
1

0 )( rtrr   ,  for all 0t  (19) 

 

with )(inf 1

0
0 trr

t




  and )(sup 1

0
1 trr

t




 . In the sequel, condition 

(18) is supposed to be true, so that one can make use of (19). 
Then, the following Lyapunov function is defined: 

 

  1

0

221 ),(~)
~

,( dxtxzqrzV       (20) 

 
Theorem 1. Consider the adaptive observer of Table 1 and let 

its design parameters be selected as follows: 

10  L ,  
21
L

 , and L22   

When applied to the system (1a-b)-(2a-b) then, the adaptive 
observer is exponentially convergent in the sense that 


1

0

2 ),(~ dxtxu  and )(~ tq  both converge exponentially to zero, 

whatever the initial conditions )0(~q  and )10),0,(~(  xxu   ■ 

Proof.  From (20) one gets the following time-derivative: 
 

)(~)()(~2)()(~)
~

,( 112 tqtrtqtrtqzV    
1

0
),(),( dxtxztxz t    (21) 

 
Using (15b) and (14f), one immediately gets: 



 
 

)(~)()(~2)()(~ 112 tqtrtqtrtq     

   )(~),0()(~2),0()(~
1

212
2 tyttqtrtq     

 ),0()(~)(~ 22
2

12
2 ttqrtq     

        )(~),0(),0(),0()(~2 1 tqttzttq     (using (15c) 

 ),0()(~)2()(~ 22
12

12
2 ttqrtq     

     ),0(),0()(~2 1 tzttq   

 ),0()(~)2()(~ 22
12

2
02 ttqtqr    

     ),0(),0()(~2 1 tzttq  (using (19)) (22) 

 
On the other hand, using (15a) the third term on the right side of 
(21) develops as follows: 
 

 
1

0

1

0
),(),(),(),( dxtxztxzdxtxztxz xxt  

   
1

0

21

0 ),(),(),( dxtxztxztxz xx   

 
where the last equality is obtained using an integration by part. 
The above equality yields, successively: 
 

 
1

0

21

0
),(),0(),0(),(),( dxtxztztzdxtxztxz xxt   (using (15d)) 

   
1

0

2 ),(),0()(~),0(~),0( dxtxzttqLtzLtz x  (by (15d)) 

 
1

0

22 ),(),0(),0()(~),0( dxtxztzttqLtLz x  (23) 

 
Using (22) and (23), equation (21) implies:  
 

),0(),0()(~2),0()(~)2()(~
1

22
12

2
02 tzttqttqtqrV    

 
1

0

22 ),(),0(),0()(~),0( dxtxztzttqLtLz x  

 ),0()(~)2()(~ 22
12

2
02 ttqtqr    

 
1

0

2
1

2 ),(),0(),0()(~)2(),0( dxtxztzttqLtLz x  

 ),0()(~)2()(~ 22
12

2
02 ttqtqr    

 
1

0

2
1

2 ),(),0(),0(~)2(),0( dxtxztztqLtLz x  

 
1

0

2 ),()1( dxtxzx       (whatever 10   ) 

 ),0()(~)2()(~ 22
12

2
02 ttqtqr    

 ),0(),0(~)2(),0()( 1
2 tztqLtzL    

 
1

0

2 ),()1( dxtxzx  (using the second part in (16)) 

 
1

0

22
02 ),()1()(~ dxtxztqr   

 










































),0(

),0(~

)(
2

2
2

2
)2(

),0(

),0(~

1

1
21

tz

tq

L
L

L

tz

tq
T 




 (23) 

 
where the last inequality is obtained using the first part in (16). 
The matrix in the last quantity of (23) is made positive semi-
definite iff: 
 

02 21    and  0
4

)2(
)2)((

2
1

21 



 L

L  

 
It is readily checked that, the above inequalities hold if the 
following conditions are satisfied: 
 
   12L   and  22   

 
where 10    is arbitrary. It turns out that, the adaptive 

observer parameters must be selected as follows: 
  

10  L ,  
21
L

 , and L22   (24) 

 
Doing so, inequality (23) gives: 
 


1

0

22
02 ),()1()(~ dxtxztqrV   

 

which shows that V  is negative definite which, in view of (20), 

implies that both )(~ tq  and 
1

0

2 ),( dxtxz  are exponentially 

convergent to zero. 
Now, from (6) one has: 
 

)(~),(),(),(~ tqtxtxztxu   

 

Since  
1

0

2 ),( dxtx is bounded (by Proposition 1), it readily 

follows that, in turn, 
1

0

2 ),(~ dxtxu  exponentially converges to 

zero. This completes the proof of Theorem 1 ■ 

V. CONCLUSION 

The problem of state observation and parameter estimation has 
been addressed of IDSs described by the model (1a-c)-(2a-b). The 
latter is basically a parabolic PDE with uncertainty in the 
boundary condition. The problem is coped with using the adaptive 
observer (14a-f) which is shown to enjoy the exponential 
convergence feature of Theorem 1, in presence of the persistent 
excitation property (18).  

APPENDIX A. PROOF OF PROPOSITION 1 

Part 1. Following a similar proof in [24], let us consider the 
transformation: 

 

  que  (A1)

 



 
with   defined by: 

 

),(),( txtx xxt    (A2) 

),1(),1( tut  ,  and 0),0( tx  (A3) 

 

It is easily checked that e  undergoes the following equations: 

 

),(),( txetxe xxt   (A4) 

0),0( tex ,  and  0),1( te  (A5) 

 
It is shown in many places that the system (A4)-(A5) is 
exponentially stable (e.g. [29]). Then, it readily follows from (A1) 
that, ),0( t  is bounded if and only if ),0( t  is so. To show this,  
consider the Lyapunov function candidate: 
 


1

0

2 ),(
2

1
)( dxtxtW x  (A6) 

 
Time-derivative of W , along the system (A2)-(A3), yields: 
 


1

0
),(),()( dxtxtxtW xtx   

 
1

0
),(),( dxtxtx txx   (because   is smooth)  

   
1

0

21

0 ),(),(),( dxtxtxtx xxtx   

 
1

0

2 ),(),1(),1( dxtxtt xxtx   (A7) 

 
using successively an integration by part and the fact that 

0),0( tx . Furthermore, the first condition in (A3) gives 

),1(),1( tut tt  . Then, (A7) implies, using Young inequality: 

 


1

0

22
2

2
2

),(),1(
2

),1(
2

1
)( dxtxttutW xxxt 
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whatever 20   , where the second inequality is obtained 
using (the second part in) (16). Again, using the first inequality in 
(16), one gets from (A8): 
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This implies that 
1

0

2 ),( dxtxx  is bounded, because 

)(),1( tUtut
  is bounded by assumption.  Furthermore, one has: 
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where we have used Schwartz inequality to get the last inequality. 
Clearly, inequality (A10) shows that ),0( t  is bounded. This 

establishes that ),0( t  is bounded and completes the proof of 

Proposition 1  ■ 
 

REFERENCES 

[1] Luenberger D. G. Observing the state of a linear system. 
IEEE T. on Mil. Electron., vol. 8, no. 2, pp. 74–80, Apr. 1964. 

[2] Misawa E. A. and J. K. Hedrick. Nonlinear observers - A 
state-of-the art survey. J. Dyn. Syst.-T. ASME, vol. 111, no. 3, 
pp. 344–352, 1989. 

[3] Spurgeon S. K. Sliding mode observers: A survey. Int. J. 
Syst. Sci., vol. 39, no. 8, pp. 751–764, 2008. 

[4] Hidayat Z., R. Babuska, B. De Schutter, and A. Nunez. 
Observers for linear distributed-parameter systems: A survey. 
IEEE International Symposium on Robotic and Sensors 
Environments, Montreal, Canada, pp. 166–171, 2011. 

[5] Narendra K.S. and A.M. Annaswamy (1989).  Stable 
Adaptive Systems. Prentice Hall. Reprinted by Dover 
Publications, New York, 2004. 

[6] Ioannou P. and J. Sun (1996). Robust Adaptive Control. 
Prentice Hall. 

[7] G. Kreisselmeier, “The generation of adaptive law structures 
for globally convergent adaptive observers,” IEEE Trans. 
Automat. Contr., vol. 24, no. 3, pp. 510–513, 1979. 

[8] Bastin G., Gevers M.R. (1988). Stable adaptive observers for 
nonlinear time-varying systems. IEEE Transactions on 
Automatic Control; vol. 33, pp. 650–658. 

[9] Marino R, Tomei P. (1996). Nonlinear control design: 
geometric, adaptive and robust. Prentice Hall, UK. 

[10] Besançon G. (2000). Remarks on nonlinear adaptive observer 
design. Systems and Control Letters; vol. 41, pp.271–280.  

[11] Zhang Q. (2002). Adaptive observer for multiple-input-
multiple-output (mimo) linear time-varying systems. IEEE 
Trans. Automatic Control, vol. 47 (3), pp. 525–529. 

[12] Besançon G., J. De León-Morales, O. Huerta-Guevara 
(2006). On adaptive observers for state affine systems. 
International Journal of Control, vol. 79 (6), pp. 581-591. 

[13] Besançon G., (2007). Nonlinear Observers and Applications, 
Springer, ISBN: 978-3-540-73502-1. 

[14] Curtain R.F. and H. Zwart (1995). An Introduction to Infinite 
Dimensional Linear Systems Theory. Springer-Verlag, New 
York. 

[15] Lasiecka I., R. Triggiani, (2000). Control Theory for Partial 
Differential Equations: Continuous and Approximation 
Theories, Cambridge University Press, Cambridge, UK. 



 
[16] Amann H. (1989), Feedback stabilization of linear and 

semilinear parabolic systems. In: Semigroup Theory and 
Applications,  Clément et al. (editors). Lecture Notes Pure 
Appl. Math. 116, 21-57, M. Dekker, New York, 1989. 

[17] Bounit H. and H. Hammouri, (1997). Observers for infinite 
dimensional bilinear systems. European J. Control, vol. 3 (1), 
pp. 325–339. 

[18] Vries D., K.J. Keesman, H. Zwart (2007). A Luenberger 
observer for infinite dimensional bilinear system: a UV 
desinfection example. IFAC Symposium on System, Structure 
and Control, Foz do Iguaçu, Brazil. 

[19] Smyshlyaev A., Krstic M., (2005). Backstepping observers 
for a class of parabolic PDEs. Systems & Control Letters, vol. 
54, pp. 613–725. 

[20] Tucsnak, M., G. Weiss, (2009). Observation and control for 
operator semigroups. Basel, Birkhäuser. 

[21] Ramdani K., M. Tucsnak, G. Weiss (2010). Recovering the 
initial state of an infinite-dimensional system using observers. 
Automatica, vol. 46, pp. 1616-1625. 

[22] Fridman E. (2013). Observers and initial state recovering for 
a class of hyperbolic systems via Lyapunov method. 
Automatica, vol. 49, pp. 2250–2260. 

[23] Smyshlyaev A. and M. Krstic (2006). Output–Feedback 
Adaptive Control for Parabolic PDEs with Spatially Varying 
Coefficients, 45th IEEE Conference on Decision & Control, 
San Diego, USA. 

[24] Smyshlyaev A., M. Krstic, Adaptive boundary control for 
unstable parabolic PDEs—Part III: Output feedback examples 
with swapping identifiers. Automatica, vol. 43, pp.1557-1564,  
2007. 

[25] Guo W. and B.Z. Guo, (2013). Parameter Estimation and 
Non-Collocated Adaptive Stabilization for a Wave Equation 
Subject to General Boundary Harmonic Disturbance. IEEE 
Transactions on Automatic Control, vol. 58(7), pp. 1631-1643. 

[26] Hardy G., J. Littlewood, and G. Polya (1934). Inequalities. 
Cambridge: Cambridge University Press. 

[27] Xu C.Z., P. Ligaius, and J.P. Gauthier, (1995). An observer 
for infinite-dimensional dissipative bilinear systems. Comput. 
Math. Appl., vol. 29 (7), pp.13–21. 

[28] Smyshlyaev A., Y. Orlov, and M. Krstic (2009). Adaptive 
Identification of two unstable PDEs with boundary sensing 
and actuation. Int. J. Adaptive Control and Signal Processing, 
vol. 23, pp. 131-149. 

[29] Smyshlyaev A. and M. Krstic. Adaptive Control of Parabolic 
PDEs. Princeton University Press, 2010. 


