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On the DMT Optimality of Time-Varying Distributed Rotation over Slow Fading Relay Channels

We consider a slow fading two-hop relay channel where a source terminal communicates with a destination through a layer of relays without a direct link. First, we introduce the notion of time-varying distributed rotation and propose a linear relaying scheme called rotate-and-forward (RF). The main idea is to create a time-varying channel and to convert the spatial diversity to time diversity. It is shown that this scheme achieves the optimal diversity-multiplexing tradeoff (DMT) of the channel with full-duplex relays. While more involved non-linear relaying schemes previously proposed in the literature are optimal in the same setting, we show here that simple linear relaying can also be DMT optimal. Then, we extend the RF scheme to the relay channel with multiple hops where the DMT optimality of the two-antenna case is shown. Finally, we apply the idea of distributed rotation to the decode-and-forward relays. Same diversity order as previous schemes can be achieved with low signaling complexity.

I. INTRODUCTION

.

In recent years, there has been a surge of interest in cooperative diversity techniques, where spatial diversity is exploited with distributed relay antennas. Many different schemes have been proposed to improve the diversity of the channel (see, e.g., [4]-[15] and references therein). Essentially, these schemes can be divided into two categories, namely, linear and nonlinear relaying schemes. Based on message decoding (e.g., decode-and-forward) or signal compression (e.g., compress-and-forward) or a mixture of both at the relays, nonlinear relaying schemes are "intelligent" and can usually outperform the "dumb" linear relaying schemes (e.g., amplifyand-forward) where relays only forward linear combinations of individual observations. In a multi-hop MIMO relay network, the role of the relays is two-fold: to provide diversity gain

with independent paths and multiplexing gains with "antenna pooling". While the traditional decode-and-forward scheme performs well in networks with single-antenna nodes ( [START_REF] Cover | Capacity theorems for the relay channel[END_REF], [START_REF] Kramer | Cooperative strategies and capacity theorems for relay networks[END_REF]), it can suffer from significant loss of multiplexing gain: requiring each relay node to decode the entire source message jeopardizes the degrees of freedom of the network. This is due to the impossibility of splitting the source message into separated parts for different relays without channel state information (CSI) at the source terminal. On the other hand, with amplify-and-forward, the relays send the analog observation without decoding nor encoding. It has been shown that even this naive amplify-and-forward scheme is optimal in terms of multiplexing gain in the high SNR regime [START_REF] Borade | Amplify and forward in wireless relay networks: Rate, diversity and network size[END_REF]. However, as pointed out in [START_REF] Yang | Diversity of MIMO multi-hop relay channels[END_REF], the amplify-and-forward operation correlates the source-destination paths and penalizes the diversity gain. Compress-and-forward is a solution in between the above two. In this case, each relay encodes the digitized (quantized) observation and send it to the destination. The latter tries to recover the source message from the received signal. It has been shown in [START_REF] Avestimehr | Wireless network information flow: A deterministic approach[END_REF], [START_REF] Lim | Noisy network coding[END_REF] that relaying schemes of this kind (e.g., quantize-map-and-forward in [START_REF] Avestimehr | Wireless network information flow: A deterministic approach[END_REF] and noisy network coding in [START_REF] Lim | Noisy network coding[END_REF]), achieves any rate within a constant number of bits to the capacity of multi-hop relay networks. As a result, these schemes attain the optimal DMT of such networks [START_REF] Kolte | Generalized diversity-multiplexing tradeoff of half-duplex relay networks[END_REF]. While it appears that the multihop relaying problem has been solved with nonlinear relaying (in the high SNR regime) at this point, it is still unknown whether the same can be done with linear relaying.

Unlike nonlinear relaying, linear schemes are appealing for their low signaling and computational complexity as well as their scalability in terms of practical implementation. More importantly, it has been shown that they can also be DMT optimal in some non-trivial settings [START_REF] Yang | Towards the optimal amplify-and-forward cooperative diversity scheme[END_REF]. It is worth mentioning that a linear scheme, called the flip-and-forward scheme, was proposed in [START_REF] Yang | Diversity of MIMO multi-hop relay channels[END_REF] and shown to achieve the maximum diversity as well as the maximum multiplexing gain for any number of antennas and hops.

As space-time codes exploit the spatial diversity in a multipleantenna (MIMO) system, cooperative diversity can be achieved with distributed space-time code/processing [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF], [START_REF] Azarian | On the achievable diversitymultiplexing tradeoff in half-duplex cooperative channels[END_REF], [START_REF] Jing | Distributed space-time coding in wireless relay networks[END_REF]. With linear relaying, the relays perform a linear processing on the received signal in a coordinated manner and forward it. In a nutshell, while the signal is naturally mixed in space before arriving at the relays, it is then artificially transformed in the time domain by the relays in such a way to mimic the space-time codes. In most cases, the relaying creates a "good" equivalent channel with high diversity [START_REF] Azarian | On the achievable diversitymultiplexing tradeoff in half-duplex cooperative channels[END_REF], [START_REF] Yang | Diversity of MIMO multi-hop relay channels[END_REF]. Although it is rather straightforward to conceive a scheme with maximum diversity and/or maximum multiplexing gain, designing an optimal scheme in terms of the fundamental tradeoff between these two remains challenging. As a matter of fact, the equivalent channel with distributed space-time processing can be quite involved, if not intractable.

In this work, we propose a conceptually different framework to exploit cooperative diversity. In this framework, the relays do not perform any temporal transformation that is the key ingredient for traditional cooperative diversity schemes. Instead, with the time-varying scalar rotation based on the socalled distributed rotation sequences, an artificial time-varying channel is created to recover the spatial diversity. It turns out that the proposed framework is both tractable from the theoretical point of view and simple from the practical point of view. As a main result of this paper, a linear relaying scheme called rotate-and-forward is proposed and shown to be DMT optimal for two-hop relay channels with arbitrary number of source/relays/destination antennas. Moreover, we show that this scheme is also DMT optimal in some cases in the multi-hop setting. Finally, we apply the idea of distributed rotation to decode-and-forward relays and show that equivalent performance as the existing schemes can be achieved with much lower relaying complexity.

The rest of the paper is organized as follows. The system models and some basic assumptions are presented in Section II. The main results on the rotate-and-forward scheme are presented in Section III. The two main theorems of the paper are proved separately in Sections IV and V. Then, the RF scheme is extended to the multi-hop case and the optimality is shown for certain settings. As another application of the distributed rotation, a variant of the decode-and-forward scheme is introduced and analyzed in Section VII. Finally, the paper is concluded in Section VIII. Some of the proofs are deferred to the appendix to make the reading fluid.

II. SYSTEM MODEL AND ASSUMPTIONS

Throughout the paper, we will use the following notations. Boldface lower-case letters v and upper-case letters M are used to denote vectors and matrices, respectively. Unless otherwise is specified, vectors are column vectors. Matrix transpose, Hermitian transpose, inverse, trace, and determinant are denoted by A T , A * , A -1 , Tr (A), and det(A), respectively. We let A I,J denote the submatrix of A as [A ij ] i∈I,j∈J and A I denote the submatrix of A as [A ij ] i,j∈I . We also define det(A) I = det(A I ) for any non-empty set I. When I is empty, we define det(A) ∅ = det(A ∅ ) = 1 for notational convenience. Finally, the dot-equality . = means the equality of the SNR exponent at high SNR, i.e., f . = g means lim snr→∞ log(f ) log snr = lim snr→∞ log(g) log snr .

A. Signal Model

We consider a slow fading wireless channel with one source, one destination, and n relays. It is assumed that the source and destination are equipped with m and p antennas, respectively, while each of the relays has only one antenna, as shown in Fig. 1. For simplicity, we call it a (m, n, p) relay channel. In this work, we focus on distributed relaying schemes. By distributed relaying, we mean that no information on the message or channel state information (CSI) is exchanged between the relays. All terminals in the channel have perfect receiver CSI and no transmitter CSI at all. Furthermore, we assume that the relays only receive signal from the source and the destination only receives signal from the relays, i.e., there is no direct link from the source to the destination. Unless it is otherwise specified, we also assume that the n relays work in full-duplex mode, i.e., they transmit and receive simultaneously at any instant t.

Finally, all terminals work with perfect synchronization.

The signal model can be described as follows

y R [t] = F x[t] + z R [t], y D [t] = G x R [t] + z D [t], t = 1, 2, . . .
where x ∈ C m×1 , y R ∈ C n×1 and y D ∈ C p×1 are the transmitted signal from the source, received signal at the relays, and received signal at the destination, respectively; z R ∈ C n×1 and z D ∈ C p×1 are the additive white Gaussian noise with independent and identically distributed (i.i.d.) N C (0, σ 2 ) entries at the relay and the destination, respectively; F ∈ C n×m and G ∈ C p×n are channel matrices defining the source-relays and relays-destination channels, respectively; for simplicity, the transmit power at the source and the relay is subject to the following average per-antenna constraints P , i.e.,

E x[t] 2 ≤ mP, E x R [t] 2 ≤ nP,
at any time instant t. Note that the above expectations are taken over all random factors including the message, channel coefficients, and noise. From now on, we define the signal-tonoise ratio as snr P/σ 2 .

B. Diversity-Multiplexing Tradeoff

In this work, we are interested in the high SNR performance of this system. In order to evaluate the performance of the relaying schemes, we use the diversity-multiplexing tradeoff (DMT) [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF] to characterize the fundamental interplay between reliability and throughput in the high signal-to-noise ratio (SNR) regime. A relaying scheme is said to achieve multiplexing gain r and diversity gain d if

d(r) = lim snr→∞ -
log(P out (r log snr)) log snr

where P out (r log snr) denotes the outage probability 1 , that is, the probability that the mutual information between the source and the destination is lower than the target rate R = r log snr.

Alternatively, we can use the dot-equality expression

P out (r log snr) . = snr -d(r) . (1) 
Note that in order to remove the dependency on any particular coding scheme, instead of using the error probability, we use directly the outage probability to characterize the achievable DMT. This choice is justified given that we can always use an outage-optimal or DMT-achieving code for a particular relaying scheme (e.g., random [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF] or universal coding [START_REF] Tavildar | Approximately universal codes over slow fading channels[END_REF]).

C. Main Ingredient: Distributed Rotation Sequence

Let us first define

U [0, 1).
Then, we define a set of K equally spaced values in U and the corresponding set of complex rotations

A K 0, 1 K , . . . , K -1 K , R K e j2πϕ : ϕ ∈ A K .
A distributed rotation sequence is defined as follows.

Definition 1 (Distributed Rotation Sequence): A sequence of diagonal matrices {∆ t }, t = 1, . . . , K n , is said to be a distributed rotation sequence (DRS) if 1) ∆ t = diag e j2πϕ1,t , . . . , e j2πϕn,t with ϕ i,t ∈ A K for i = 1, . . . n, 2) ∆ t = ∆ t , ∀ t = t . In other words, any sequence of length K n that runs through all the possibilities defined by R n×1 K is a DRS. As we will show in the next sections, fixed DRS (known at all terminals) is used by the relays to create time-varying channels.

III. DISTRIBUTED LINEAR RELAYING: ROTATE-AND-FORWARD AND DMT OPTIMALITY A. Protocol description

In this section, we consider distributed linear relaying schemes, i.e.,

x

R [t] = D[t] y R [t -1]
where x R ∈ C n×1 is transmitted signal from the relays; D is a diagonal matrix. Note that if the relaying matrix D[t] does not vary with t, the above signal model is reduced to a naive antenna-wise amplify-and-forward scheme. For simplicity, we assume that

F satisfies E |f ij | 2 = 1, ∀ i, j. Furthermore, we impose |D ii | 2 = snr n snr + 1
, i.e., constant relaying gain. The proposed rotate-and-forward (RF) scheme is based on a fixed DRS {∆ t } and works as follows. A codeword X

x [START_REF] Foschini | On limits of wireless communications in a fading environment when using multiple antennas[END_REF] 

y D [t + 1] = c G∆ t F x[t] + c G∆ t z R [t] + z D [t + 1]
for t = 1, . . . , T . Hence, the transmitted codeword X goes through an equivalent time-varying fading channel with channel matrix c G∆ t F and equivalent noise covariance 

σ 2 (I + c 2 G∆ t ∆ * t G * ) = σ 2 (I + c 2 GG * ). It is important to note that, since z R [t] is i.i.d
y D [t + 1] = c G∆ t F x[t] + z[t] where z[t] ∼ N C (0, Σ z ) with Σ z σ 2 (I + c 2 GG * ). B. Outage Analysis Since c 2 ≤ 1 and GG * G 2 F I, we have σ 2 (1 + G 2 F ) I Σ z σ 2 I.
As in most works on high SNR analysis in the literature, we only consider channel distributions such that the density function has exponentially decaying tail, which implies that there exists some µ > 0 such that, for any > 0, P G Then, the outage probability is written as

P (O ∩ B ) + P O ∩ B ≤ P (B ) + P O ∩ {(1 + snr )σ 2 I Σ z σ 2 I} .
Since P (B ) decays exponentially with snr for any > 0, i.e., P (B ) . = snr -∞ , the outage probability is dominated by

P O ∩ {(1 + snr )σ 2 I Σ z σ 2 I}
in which we can make as close to 0 as possible. In other words, we can assume, without loss of generality, that Σ z = σ 2 I, without causing any impact on the SNR exponent of the outage probability. Consequently, we can ignore the exact noise covariance, as far as the diversity-multiplexing tradeoff is concerned [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF]. Here, the DMT of the proposed protocol depends uniquely on the timevarying equivalent channel matrix H[t] G∆ t F where the factor c is omitted for the same reason. We are now interested in the following average mutual information in bits per channel use

I T (snr) 1 T T t=1 log det I + snr H[t] H[t] *
where we recall that T = K n . Then, we can get the following chain of equalities

I T (snr) = 1 T T t=1 log det (I + snr∆ t F F * ∆ * t G * G) (2) = 1 T T t=1 log det (I + snr∆ t P ∆ * t Q) = 1 K n θn∈A K • • • θ1∈A K log det (I + snrR θ P R * θ Q) (3)
where ( 2) follows from Sylvester's identity log det(I+AB) = log det(I + BA), and we define P F F * , Q G * G, and R θ diag(e j2πθ1 , . . . , e j2πθn ). Analyzing (3) directly being difficult in general, we try to derive insightful bounds instead.

To that end, we need the following lemma.

Lemma 1: Some properties on det (I + snrR θ P R * θ Q) are listed as follows:

Property 1: The determinant det (I + snrR θ P R * θ Q) is a multilinear function of e ±j2πθi , i = 1, . . . , n. 2 Property 2: For any S ⊆ {1, . . . , n},

U |S| det (I + snrR θ P R * θ Q) dθ S
is a multilinear function of e ±j2πθi , ∀ i ∈ S, S being the complementary set of S in {1, . . . , n}. Property 3:

U n det (I + snrR θ P R * θ Q) dθ = I⊆{1,...,n} snr |I| det (P I ) det (Q I ) (4)
where we recall that det(A ∅ ) = 1. Proof: See Appendix A The following bounds on I T are obtained. Since the proof is quite involved, it is deferred in Section IV.

Theorem 1: The mutual information I T of the rotate-andforward scheme with n relays is upper and lower bounded by

I (snr)+(n-1) ≥ I T (snr) ≥ K -1 K n-1 I (snr)-2 (5) 
with

I (snr) log   I⊆{1,...,n} snr |I| det (P I ) det (Q I )   (6) 
where we recall that T = K n . Now, let us define the outage probabilities

P out,T (R) P (I T (snr) < R) , P out (R) P (I (snr) < R) .
2 Here, there is a slight abuse of terminology. Technically, we should say that

det(I + diag{v 1 }P diag{v 2 }Q) is multilinear function of v 1 , v 2 ∈ C n×1 , and specify diag{v 1 } = R θ and diag{v 2 } = R * θ .
Using this and ( 5), we obtain P out (r log snr -(n -1)) ≤ P out,T (r log snr)

≤ P out K K -1 n-1 (r log snr + 2) .

C. Diversity-Multiplexing Tradeoff

By neglecting the constant terms and applying (1), we obtain the following corollary.

Corollary 1: Let d T (r) and d (r) denote respectively the DMT of the RF scheme and the DMT corresponding to I . Then, we have

d (r) ≥ d T (r) ≥ d K K -1 n-1 r (7) whence d ∞ (r) lim K→∞ d T (r) = d (r).
The corollary states that the DMT of the RF scheme is upper bounded by d (r). More importantly, it is shown that this upper bound can be approached with a large number of rotation angles. The main message from these results is that to characterize the DMT of the RF scheme, it is enough to consider d (r), that is, to analyze I defined in [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF]. As a matter of fact, I is much more tractable than I T , as will be shown in the next section.

Here comes the main result of the paper. The proof will be provided separately in Section V.

Theorem 2: In a two-hop (m, n, p) relay channel with i.i.d. Rayleigh fading, we have

d (r) = d min{m,p},n (r) (8) 
where d m,n (r) denotes the DMT of a classical m × n MIMO channel, i.e., a piece-wise linear function connecting (k, (mk)(n -k)), k = 0, . . . , min{m, n}. Furthermore, it can be achieved by the rotate-and-forward scheme when K → ∞. Remark 3.1: The RF scheme achieves the optimal DMT in this setting. To see this, let us consider the following two cuts between the source and the destination: 1) sourcerelays cut is an m × n Rayleigh channel, and 2) relaysdestination cut is an n × p Rayleigh channel. According to the information theoretic max-flow min-cut theorem [START_REF] Cover | Elements of Information Theory[END_REF], it is readily shown that the DMT of the end-to-end channel with any relaying strategy is dominated by the DMT of either cut, i.e., min d (m,n) (r), d (n,p) (r) that coincides with [START_REF] Hunter | Outage analysis of coded cooperation[END_REF].

Remark 3.2: If the relays could cooperate perfectly (e.g., co-located relays), it would be possible to perform joint decoding and joint encoding to achieve the cut-set bound in a straightforward manner. However, Theorem 2 shows that even with linear distributed relaying, the cut-set bound can be achieved. To the authors' best knowledge, this is the first distributed linear scheme that achieves the optimal DMT in such a setting with any number of antennas.

Remark 3.3: While the RF scheme is designed here for the two-hop relay channel without direct source-destination link, it can also be applied to the non-orthogonal AF schemes [START_REF] Azarian | On the achievable diversitymultiplexing tradeoff in half-duplex cooperative channels[END_REF], [START_REF] Yang | Optimal space-time codes for the MIMO amplify-and-forward cooperative channel[END_REF] to improve the performance. The key idea is to extend the AF relaying to RF relaying, that is, to introduce timevarying AF processing wherever multiple distributed relays are involved.

Remark 3.4: With the lower bound in [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF], we obtain a sufficient condition of K → ∞ for the DMT optimality of the RF scheme. But the converse is not true in general, i.e., K need not go to infinity for the RF scheme to achieve the optimal DMT. For example, it is shown in [START_REF] Pedarsani | Flip-and-forward achieves the optimal diversity-multiplexing tradeoff for the two-hop MIMO relay channel, with two relay antennas[END_REF] that the flipand-forward scheme, a particular case of rotate-and-forward with K = 2 is DMT optimal for any (m, 2, p) channel with i.i.d. Rayleigh fading. Therefore, supported by this example, one may expect to have a better lower bound than [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF]. It is however still an open question.

Remark 3.5: The lower bound in ( 7) is tight for r = 0, for any K ≥ 2. It means that the RF scheme achieves the maximum diversity gain whenever K ≥ 2. On the other hand, since the rotations are independent of the relay-destination channel matrix G, the rank of the end-to-end channel matrix remains the same after the rotation with probability 1. Therefore, the maximum multiplexing gain is achieved for any K (e.g., K = 1 for the AF case).

IV. PROOF OF THEOREM 1

Let us first prove the lower bound. For K = 1, the lower and upper bounds in (5) are trivial. Therefore, we assume K ≥ 2 in the rest of the proof. To prove the proposition, we pick up [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF] 

in which det (I + snrR θ P R * θ Q) is multilinear function of e ±j2πθi , i = 1, . . . , n. Furthermore, since P , Q 0, it is readily shown that det (I + snrR θ P R * θ Q) is real and has the following form in terms of θ i det (I + snrR θ P R * θ Q) = a i + b i cos(2πθ i + φ i ), i = 1, . . . , n (9) 
where a i ≥ 0, b i ≥ 0, and φ i ∈ [0, 2π) do not depend on θ i . It is worth noting that

a i = 1 0 det (I + snrR θ P R * θ Q) dθ i (10) 
is also multilinear function of the rest of the θ i . In addition, we can show that

a i -b i ≥ 1, ∀ i. ( 11 
)
Hence, we can take a closer look on the Riemann sum of θ 1 in (3)

θ1∈A K log det (I + snrR θ P R * θ Q) = θ1∈A K log (a 1 + b 1 cos(2πθ 1 + φ 1 )) (12) ≥ K 1 0 log (a 1 + b 1 cos(2πθ 1 + φ 1 )) dθ 1 -log (a 1 + b 1 ) -log (a 1 -b 1 ) (13) 
where ( 12) is from ( 9); ( 13) is actually nothing but approximating the integral by a Riemann sum. To see this, let us consider an illustrative example in Fig. 2 where K is even and φ = 0. The dark rectangles (Riemann sum ( 12)) together with the light rectangles (second term in ( 13)) are larger than the integrated area (first term in ( 13)). Furthermore, it can be verified that for general K and φ, the hatched area can only be smaller. 3 Therefore, (13) always holds. Proof: For b = 0, (14) holds trivially. For a ≥ b > 0, we use the following equality [START_REF] Gröbner | Integraltafel, Teil II, Bestimmte Integrale[END_REF], [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF],

1 0 log(a + b cos(2πθ))dθ = log a + √ a 2 -b 2 2
from which ( 14) is immediate. By proceeding further from (13), we can get simpler lower bounds

θ1∈A K log det (I + snrR θ P R * θ Q) ≥ K (log (a 1 ) -1) -log (2a 1 -1) (15) ≥ K (log (a 1 ) -1) -(log (a 1 ) + 1) (16) = (K -1) log (a 1 ) -(K + 1) (17) 
where the first and second terms in [START_REF] Elia | D-MG tradeoff and optimal codes for a class of AF and DF cooperative communication protocols[END_REF] are from the lower bound in [START_REF] Yang | Diversity of MIMO multi-hop relay channels[END_REF] and from [START_REF] Yang | Towards the optimal amplify-and-forward cooperative diversity scheme[END_REF], respectively; ( 16) is from log(2a 1 -1) ≤ log(2a 1 ) = log(a 1 ) + 1. From ( 17) and ( 10), we get

θ1∈A K log det (I + snrR θ P R * θ Q) ≥ (K -1) log 1 0 det (I + snrR θ P R * θ Q) dθ 1 -(K + 1) . Since 1 0 det (I + snrR θ P R * θ Q) dθ
1 is real and multilinear on e ±j2πθ2 according to Property 2 from Lemma 1, it is also in the form a 2 + b 2 cos(2πθ 2 + φ 2 ) with

a 2 = 1 0 1 0 det (I + snrR θ P R * θ Q) dθ 1 dθ 2 . ( 18 
)
Therefore, with the same reasoning as above on θ 1 , it is readily shown that

θ1∈A K ,θ2∈A K log det (I + snrR θ P R * θ Q) ≥ (K -1) 2 log 1 0 1 0 det (I + snrR θ P R * θ Q) dθ 1 dθ 2 -(K -1)(K + 1) -(K + 1)
and

θn-1∈A K • • • θ1∈A K log det (I + snrR θ P R * θ Q) ≥ (K -1) n-1 log U n-1 det (I + snrR θ P R * θ Q) dθ 1 • • • dθ n-1 -(K + 1) n-2 k=0 (K -1) k . ( 19 
)
It is worth noting that the integral inside the logarithm in [START_REF] Avestimehr | Wireless network information flow: A deterministic approach[END_REF] does not depend on θ n and can be simply replaced by

U n det (I + snrR θ P R * θ Q) dθ.
Moreover, we have

(K + 1) n-2 k=0 (K -1) k = 1 + K + (K + 1) n-2 k=1 (K -1) k ≤ 1 + K + n-2 k=1 (K 2 -1)(K -1) k-1 ≤ n-1 k=0 K k ≤ K n -1 K -1 ≤ 2K n-1 . (20) 
Finally, combining (6), ( 3), ( 4), [START_REF] Avestimehr | Wireless network information flow: A deterministic approach[END_REF], and (20), we obtain the lower bound in [START_REF]User cooperation diversity-Part II: Implementation aspects and performance analysis[END_REF].

The proof of the upper bound uses the same ideas as the lower bound. First, note that

I T (snr) ≤ max θ∈U n log det (I + snrR θ P R * θ Q) = max θn∈U • • • max θ1∈U log det (I + snrR θ P R * θ Q) .
From (9), we have

max θ1∈U log det (I + snrR θ P R * θ Q) = log(a 1 + b 1 ) ≤ log(a 1 ) + 1
where a 1 is defined in [START_REF] Azarian | On the achievable diversitymultiplexing tradeoff in half-duplex cooperative channels[END_REF]. As noted before, a 1 is also in the form a 2 +b 2 cos(2πθ 2 +φ 2 ) with a 2 defined in [START_REF] Borade | Amplify and forward in wireless relay networks: Rate, diversity and network size[END_REF]. Therefore, we have

max θ2∈U max θ1∈U log det (I + snrR θ P R * θ Q) ≤ log 1 0 1 0 det (I + snrR θ P R * θ Q) dθ 1 dθ 2 + 2
and then

max θn-1∈U • • • max θ1∈U log det (I + snrR θ P R * θ Q) ≤ log U n-1 det (I + snrR θ P R * θ Q) dθ 1 • • • dθ n-1 + (n -1). (21) 
Again, note that the integral inside the logarithm in [START_REF] Kolte | Generalized diversity-multiplexing tradeoff of half-duplex relay networks[END_REF] does not depend on θ n and can be simply replaced by

U n det (I + snrR θ P R * θ Q) dθ.
Finally, the upper bound in (5) follows straightforwardly. This completes the proof of Theorem 1.

V. PROOF OF THEOREM 2

A. Preliminary: LQ decomposition of the GUE ensemble

In this section, we describe a new approach for analyzing the joint distribution of the entries of random matrices with complex Gaussian entries (GUE ensemble) performing the LQ decomposition of the matrix. This approach turns out to be the key for proving the DMT optimality of the rotate-andforward scheme. Let H be the n × m channel matrix, with i.i.d. circularly symmetric complex Gaussian entries with unit variance. The idea is to permute the rows of matrix H such that the diagonal entries of lower triangular matrix L provide us the optimal DMT. Lemma 3 ( [START_REF] Hogg | Introduction to mathematical statistics[END_REF]): Suppose we have n i.i.d. samples X 1 , X 2 , . . . X n from a continuous distribution with density f X (x). Then, the joint distribution of the maximum of the samples X (1) and the rest is

f X (1) ,X2,...,Xn (x 1 , . . . , x n ) = n n i=1 f X (x i ), x 1 ≥ x i , ∀ i ≥ 2.
The LQ decomposition of matrix H can be done by the following procedure. Let h i ∈ C 1×m be the i th row vector of matrix H, with probability density function (pdf)

p h (h i ). The joint pdf of H is p H (H) = n i=1 p h (h i ).
In first step, we permute the matrix such that the row with the largest norm would be the first row. By Lemma 3, putting the strongest vector in the first row will give us the following pdf

p( h1 , . . . , hn ) = n n i=1 p h ( hi ), h1 ≥ hi , ∀ i ≥ 2,
and after marginalization

p( h1 2 , h2 , . . . , hn ) = n p χ 2 2n ( h1 2 ) n i=2 p h ( hi ), h1 ≥ hi , ∀ i ≥ 2.
Performing the unitary transform U 1 (the first row of U 1 aligns with h1 ) on h2 , . . . , hn , the joint pdf is unchanged

p( h1 2 , h2 U 1 , . . . , hn U 1 ) = n p χ 2 2m ( h1 2 ) n i=2 p h ( hi U 1 ), h1 ≥ hi , ∀ i ≥ 2.
Setting l 11 = h1 and ĥi = hi U 1 , i ≥ 2, we have p(l p h ( hi ),

l 11 ≥ hi , ∀ i ≥ 2, n j=2 | h2j | 2 ≥ n j=2 | hij | 2 , ∀ i ≥ 3.
We can now set p h ( ȟi ),

l 21 = h21 , l 2 22 = n j=2 | h2j | 2 ,
l 2 11 ≥ |l 21 | 2 + l 2 22 , l 2 11 ≥ ȟi 2 , ∀ i ≥ 3, l 2 22 ≥ n j=2 | ȟij | 2 , ∀ i ≥ 3.
Now, if we continue, we will get a lower-triangular matrix L with the following distribution 4

p L (L) = n! n i=1 p χ 2 2(m-i+1) (l 2 ii ) j<i p N C (l ij ), l 2 ii ≥ k j=i |l kj | 2 , ∀ k > i
where p N C (•) is the pdf of the standard circularly symmetric Gaussian distribution. Note that a similar expression (with the n! factor) appears in the joint distribution of order statistics of n i.i.d. samples. 4 With a slight abuse of notation, we use p L (L) to denote the joint pdf of l 2 ii : i = 1, . . . , n and {l ij : n ≥ i > j ≥ 1}. Similar notation with be applied to p R (R) later on.

B. Simultaneous LQ and QR decomposition

In this section, we perform a simultaneous LQ and QR decomposition on the two channel matrices F ∈ C m×n and G ∈ C n×p with i.i.d. N C (0, 1) entries. Suppose by now that min{m, p} ≥ n. Let f i and g i be the i th row and column vectors of F and G, respectively. The joint pdf of F and G is

p F (F )p G (G) = n i=1 p f (f i ) n i=1 p g (g i ) = p (f 1 , g 1 , . . . , f n , g n ) .
Similar to Section V-A, we put the vector pair (f i , g i ) in the first row and column of F and G if the product norm f i g i is the largest. It will give us the following pdf

p( f1 , g1 , . . . , fn , gn ) = n n i=1 p f ( fi ) n i=1 p g (g i ), f1 g1 ≥ fi gi , ∀ i ≥ 2
and after marginalization p( f1 2 , g1 2 , f2 , g2 , . . . , fn , gn )

= n p χ 2 2m ( f1 2 )p χ 2 2p ( g1 2 ) n i=2 p f ( fi ) n i=2 p g (g i ), f1 g1 ≥ fi gi , ∀ i ≥ 2.
Performing the unitary transform U 1 (the first column of U 1 aligns with f1 ) on f2 , . . . , fn , and V 1 (the first row of V 1 aligns with g1 ), the joint pdf is unchanged

p( f1 2 , g1 2 , f2 U 1 , V 1 g2 , . . . , fn U 1 , V 1 gn ) = n p χ 2 2m ( f1 2 )p χ 2 2p ( g1 2 ) n i=2 p f ( fi U 1 ) n i=2 p g (V 1 gi ), f1 g1 ≥ fi gi , ∀ i ≥ 2.
Setting l 11 = f1 and r 11 = g1 and fi = fi

U 1 , ĝi = V 1 gi , i ≥ 2, we have p(l 2 11 , r 2 11 , f2 , ĝ2 , . . . , fn , ĝn ) = n p χ 2 2m (l 2 11 )p χ 2 2p (r 2 11 ) n i=2 p f ( fi ) n i=2 p g (ĝ i ), l 11 r 11 ≥ fi ĝi , ∀ i ≥ 2.
Now, as in Section V-A, we order the rest of the row-column vector pairs ( f2 , ĝ2 ), . . . , ( fn , ĝn ) such that ( f2 , ḡ2 ) has the largest product norm of the (2, . . . , n) subvector. We obtain p(l 2 11 , r 2 11 , f2 , ḡ2 , . . . , fn , ḡn )

= n(n -1)p χ 2 2m (l 2 11 )p χ 2 2p (r 2 11 ) n i=2 p f ( fi ) n i=2 p g (ḡ i ), l 11 r 11 ≥ fi ḡi , ∀ i ≥ 2, n j=2 | f2j | 2 n j=2 |ḡ 2j | 2 ≥ n j=2 | fij | 2 n j=2 |ḡ ij | 2 , ∀ i ≥ 3.
We can now set

l 21 = f21 , r 12 = ḡ21 , l 2 22 = n j=2 | f2j | 2 , r 2 22 = n j=2
|ḡ 2j | 2 , and perform the unitary transform U 2 and V 2 on the (2, . . . , n; 2, . . . , n) submatrices of F and G, respectively. Now, if we continue, we will get a lower-triangular matrix L and a upper-triangular matrix R with the following joint distribution

p L (L)p R (R) = n! n i=1 p χ 2 2(m-i+1) (l 2 ii )p χ 2 2(p-i+1) (r 2 ii ) j<i p N C (l ij )p N C (r ji ), l 2 ii r 2 ii ≥ k j=i |l kj | 2 k j=i |r jk | 2 , ∀ k > i. ( 22 
)
Keep in mind that the above constraint implies that

l 2 ii r 2 ii ≥ |l kj | 2 |r jk | 2 , ∀ k ≥ j ≥ i.
Observe that the permutation as well as the unitary transform on matrices F and G will not change the expression I T in (3) for the mutual information. Let Π be the permutation matrix. Then, F = ΠLQ and G = QRΠ T . Therefore,

det (I + snrR θ F F * R * θ G * G) = det I + snrΠ T R θ ΠLL * Π * R * θ ΠR * R .
Since Π is a permutation matrix, Π T R θ Π has the same structure as R θ and (6) still holds.

C. DMT of the Rotate-and-Forward Scheme

Let us recall that we identify I T with I in the high snr regime, since the latter is achievable when K → ∞. 

I = log

I ≥ log n k=0 snr k det (LL * ) I k det (R * R) I k = log n k=0 snr k k i=1 l 2 ii r 2
ii Now, we are ready to compute the exact DMT of the lower bound for the rotate-and-forward scheme. Gathering all pieces together, we obtain P out (r log snr) . = P(I * < r log snr) 

• ≤ P log n k=0 snr k k i=1 l 2 ii r 2 ii < r log snr . ( 23 
(m + 1 -i)(α ii + β ii ) + j<i (α ij + β ji ) subject to k - k i=1 (α ii + β ii ) ≤ r, 1 ≤ k ≤ n (outage region) (24) α ii + β ii ≤ α jk + β kj , ∀ j ≥ k ≥ i, α ij , β ij ≥ 0, ∀ i, j (pdf region) ( 25 
)
where ( 24) is from the outage event in the upper bound ( 23); ( 25) is from the region in which ( 22) the pdf is defined. Note that we can perform the variable changes η ij = α ij + β ji and have

d LB (r) = min n j=1 (m + 1 -j)η jj + i>j η ij (26) subject to k - k i=1 η ii ≤ r, k = 1, . . . , n η ii ≤ η jk , ∀ j ≥ k ≥ i, η ij ≥ 0, ∀ i, j (27) 
which is exactly what we would get if we had only one matrix instead of two. In the following, we will find a lower bound on the (26) by 1) using the fact η ij ≥ η jj for i < j from the pdf region [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF], and 2) enlarging the pdf region by relaxing the constraints in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] to 0 ≤ η ii ≤ η jj , ∀ i ≤ j. It is then readily shown that

d LB (r) ≥ min n j=1 (2m + 1 -2j)η jj subject to k - k i=1 η ii ≤ r, k = 1, . . . , n 0 ≤ η ii ≤ η jj , ∀ j ≥ i.
And this optimization coincides perfectly with the one from the eigenvalue formulation for the classical MIMO channel in [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF]. Therefore, the DMT optimality of the RF scheme is shown without directly solving this problem.

2) Case m = p: Let q denote the minimum of m and p. By the cutset bound, the diversity of the system is upper bounded by the diversity of each stage, i.e.,

d(r) ≤ min{d m,n (r), d n,p (r)} = d n,q (r). (28) 
• If m > p = q, we can simply not send any signal in m-p antennas at the source node. So we can apply the result giving us a lower bound on the DMT which matches the upper bound in [START_REF] Hogg | Introduction to mathematical statistics[END_REF]. Therefore, d(r) = d n,q (r).

• If q = m < p, we can simply ignore the received signal in p -m antennas at the destination node. Again, using the cutset bound, we deduce that d(r) = d n,q (r). This completes the proof of Theorem 2.

VI. TOWARDS MULTIPLE HOPS A. Generalize the RF Scheme

Let us now consider an N -hop relay channel with N -1 layers of relays. As before, we assume m antennas at the source, p antennas at the destination, and

(n 1 , n 2 , • • • , n N -1 )
antennas at the intermediate relaying layers, respectively. The channel matrices are denoted by H 1 , H 2 , . . ., H N for the N hops respectively.

Then, it is straightforward to extend the two-hop RF scheme to the general N -hop case. Instead of using one DRS, each layer fixes a DRS {∆ i,ti } ti with parameter

K i , i = 1, . . . , N -1. Therefore, the RF scheme is a T -slot protocol with T N -1 i=1 T i and T i K ni i . In each slot, the concatenated rotation sequence (∆ 1,t1 , . . . , ∆ N -1,t N -1
) is different and all T different possibilities are run through in T time slots. It is readily shown that the average mutual information in bits per channel use can be obtained as a direct generalization of (2); the result is given in [START_REF] Katz | Cooperative schemes for a source and an occasional nearby relay in wireless networks[END_REF]. Now, we would like to bound I T1,...,T N -1 as we did in Theorem 1. To that end, we first consider the three-hop case.

1) The Three-Hop Case (N = 3): The expression (29) for the mutual information can be rewritten as (30), where we define

P 1 H 1 H * 1 and Q (2) H * 2 ∆ * 2,t2 H * 3 H 3 ∆ 2,t2 H 2 .
Let us denote the inner sum by I •,T1 and we can bound it with the result from Theorem 1, i.e.,

I (2) (snr)+(n 1 -1) ≥ I •,T1 (snr) ≥ K 1 -1 K 1 n1-1 I (2) (snr)-2 with 
I (2) (snr) log   I⊆{1,...,n1} snr |I| det (P 1 ) I det Q (2) I   . Now, it is sufficient to bound 1 T2 t2 I (2) (snr) in order to bound I T2,T1 . Note that only Q (2) depends on ∆ 2,t2 . Replacing ∆ 2,t2 with R θ , we notice that I snr |I| det (P 1 ) I det Q (2)
I is real and multilinear function of e ±j2πθi , i = 1, . . . , n 2 . Following exactly the same footsteps in Section IV, we obtain the following bounds by approximating the integral with Riemann sum n 2 times

I (3) (snr) + (n 2 -1) ≥ 1 T 2 T2 t2=1 I (2) (snr) ≥ K 2 -1 K 2 n2-1 I (3) (snr) -2 with 
I (3) (snr) log U n 2 I⊆{1,...,n1}
snr |I| det (P 1 ) I det Q (2) I dθ.

Note that the above expression can be simplified since only det Q (2) I depends on θ. Thus, we have, for any > 0,

U n 2 det I + Q (2) I dθ = U n 2 det ( I + (H * 2 R * θ H * 3 H 3 R θ H 2 ) I ) dθ = U n 2 det I + R * θ H * 3 H 3 R θ H 2,•,I H * 2,•,I dθ = U n 2 det ( I + R * θ Q 3 R θ S 2,•,I ) dθ = U n 2 |I| det I + -1 R * θ Q 3 R θ S 2,•,I dθ = |I| J ⊆{1,...,n2} -|J | det (Q 3 ) J det (S 2,J ,I ) (31) = J ⊆{1,...,n 2 } |J |≤|I| |I|-|J | det (Q 3 ) J det (S 2,J ,I ) (32) 
where we define Q 3 H * 3 H 3 ; H 2,J ,I is the submatrix of H 2 formed by the rows and columns with indices in J and I, respectively; in particular, we obtain H 2,•,I if we take all the rows in H 2 ; S 2,J ,I H 2,J ,I H * 2,J ,I ; (31) is from (4); we impose |J | ≤ |I| in (32) since det (S 2,J ,I ) = 0 otherwise.

By letting → 0, we obtain

U n 2 det Q (2) I dθ = J ⊆{1,...,n 2 } |J |=|I| det (Q 3 ) J det (S 2,J ,I ) .
Finally, we have the following upper and lower bounds on I T2,T1

I (3) (snr) + (n 1 -1) + (n 2 -1) ≥ I T2,T1 ≥ K 1 -1 K 1 n1-1 K 2 -1 K 2 n2-1 I (3) (snr) -4 (33) 
with

I (3) (snr) log I⊆{1,...,n1} J ⊆{1,...,n2} |I|=|J |
snr |I| det (Q 3 ) J det (S 2,J ,I ) det (P 1 ) I .

Note that to obtain the lower bound in (33), we used the fact that K1-1 K1 ≤ 1.

2) The General Case: In the general case, lower and upper bounds on I T N -1 ,...,T1 are summarized by the following theorem.

Theorem 3: In an N -hop layered relay channel, the average mutual information of the proposed rotate-and-forward scheme is lower and upper bounded as

I (N ) (snr) + N -1 i=1 (n i -1) ≥ I T N -1 ,...,T1 (snr) ≥ N -1 i=1 K i -1 K i ni-1 I (N ) (snr) -2(N -1) I T N -1 ,...,T1 = 1 T T N -1 t N -1 =1 • • • T1 t1=1 log det I + snrH N ∆ N -1,t N -1 H N -1 • • • ∆ 1,t1 H 1 H * 1 • • • ∆ * N -1,t N -1 H * N ( 29 
)
I T2,T1 = 1 T T2 t2=1 T1 t1=1 log det I + snrH 3 ∆ 2,t2 H 2 ∆ 1,t1 H 1 H * 1 ∆ * 1,t1 H * 2 ∆ * 2,t2 H * 3 = 1 T 2 T2 t2=1 1 T 1 T1 t1=1 log det I + snr∆ 1,t1 P 1 ∆ * 1,t1 Q (2) (30) 
with

I (N ) (snr) log Ii⊆{1,...,ni}, ∀ i |Ii|=|Ij |, ∀ i =j snr |I1| det (P 1 ) I1 × det (Q N ) I N -1 N -1 i=2 det S i,Ii,Ii-1 . (34) 
Proof: We prove the theorem by induction in a straightforward manner. For N = 2 and N = 3, (34) holds. Now, let us suppose that (34) holds for N , we can rewrite

I T N ,...,T1 = 1 T N T N t N =1 I T N -1 ,...,T1,•
where I T N -1 ,...,T1,• is defined similarly as I T1,• in the previous case (N = 3). Since (34) holds for N , it can be applied to bound I T N -1 ,...,T1 . By repeating exactly the same steps in the case N = 3, we can prove that (34) also holds for N + 1.

B. DMT Analysis

Now, we prove that, in the multi-hop case with i.i.d. circularly symmetric complex Gaussian distributed channel coefficients, the rotate-and-forward scheme is DMT optimal when the number of antennas in each relay layer is equal to 2. To this end, we lower bound the expression (34) by only considering equal subsets as stated below.

I (N ) (snr) = log   I⊆{1,2} snr |I| det (P 1 ) I det (Q N ) I × N -1 i=2 det (S i,I,I ) .
We can rewrite the terms in the log(•) function explicity as

1 + snr h 1,1 2 N -1 i=2 |h i,11 | 2 h N,1 2 + snr h 1,2 2 N -1 i=2 |h i,22 | 2 h N,2 2 
+ snr 2 N i=1 h i,1 2 h i,2 2 u i
where h i,j denotes the vector of the j th row of the channel matrix H i for 1 ≤ i ≤ N -1, and h i,jk is the entry corresponding to the j th row and k th column of matrix H i . Note that k |h i,jk | 2 = h i,j 2 ; h N,j denotes the j th column of matrix H N . Furthermore, the u i are independent random variables uniformly distributed on the interval [0, 1]. Now, using the method of the previous sections, we can compute the DMT of this lower bound, which turns out to be optimal. Let us operate the following change of random variables:

u i = snr -γi , h i,j 2 = snr -αi,j , |h i,jk | 2 = snr -β i,jk .
Using again the Laplace integration method, we obtain that the DMT of the lower bound is the solution of the following optimization problem:

d(r) = min 2(α 1,1 + α 1,2 + α N,1 + α N,2 ) + N -1 i=2 (β i,11 + β i,12 + β i,21 + β i,22 ) + N i=1 γ i subject to max 0, 1 -α 1,1 - N -1 i=2 β i,11 -α N,1 , 1 -α 1,2 - N -1 i=2 β i,22 -α N,2 , 2 -α 1,1 -α 1,2 -α N,1 -α N,2 - N -1 i=2 min{β i,11 , β i,12 }+min{β i,21 , β i,22 } - N i=1 γ i < r.
It is easy to check that the solution of this optimization problem leads to the optimal DMT d 2,2 (r). As an illustration, the dominating outage event for r = 0 occurs, e.g., when α 1,1 = α 1,2 = 1, which corresponds to the situation where all the entries of H 1 are small. For r = 1, outage occurs, e.g., when γ 1 = 1, which corresponds to the situation where H 1 is essentially rank one.

Remark 6.1: The analysis performed here only applies to the case where each relay has 2 antennas. We believe that the result can be extended to the general case with arbitrary number of antennas at the relays, with the same conclusion. However, in order to establish this result, the knowledge of the joint distribution of the subdeterminants det(S i,I,I ) = det(H i,I,I H * i,I,I )

for all I = {1, . . . , k}, k = 1, . . . , n i would be required, which remains unfortunately out of reach beyond the case n i = 2.

VII. DECODE-AND-FORWARD WITH DISTRIBUTED ROTATION

In the following, we show another application of the distributed rotation in the context of decode-and-forward relaying. As will be pointed out later on, the relaying complexity, especially the signaling, is reduced thanks to the distributed rotation.

A. Protocol Description

As in [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF], [START_REF] Jing | Distributed space-time coding in wireless relay networks[END_REF], we consider a wireless channel with a singleantenna source-destination pair and multiple half-duplex relays

y R,i [t] = g i x[t] + z R,i [t], y D [t] = n i=1 h i x i [t] + z D [t]
where x, x i , y R,i , and y D denote the transmitted signal from the source, transmitted signal from the i th relay, received signal at the i th relay, and received signal at the destination, respectively; g i and h i are the channel gains between the source and the i th relay and between the i th relay and the destination, respectively; z R,i and z D are independent AWGN.

We propose a decode-and-forward scheme based on a fixed DRS {∆ t }, t = 1, . . . , K n . The two-slot protocol works as follows. The length of each slot is T = K n symbols time. During the first slot, the source broadcasts a codeword x ∈ C T ×1 that belongs to a code C T with rate R bits per channel use (BPCU), i.e., |C T | = 2 T R . At the end of the first slot, each relay tries to decode the message. Let D denote the set of indices of succeeding relays and D the failing ones. During the second slot, the failing relays remain silent. For each succeeding relay i ∈ D, the transmitted signal is

x i [t] = e j2πϕi,t x[t], t = 1, . . . , T
where ϕ i,t defined as in Definition 1. The received signal at the destination is

y[t] = i∈D h i x i [t] + z D [t] = hD [t]x[t] + z D [t]
with the equivalent fast fading channel gain

hD [t] h T D ∆ t,D 1 |D| where h D ∈ C |D|×1 is a vector of {h i } i∈D ; ∆ t,D diag e j2πϕi,t , i ∈ D .

B. Outage Analysis

First, the end-to-end outage probability of the equivalent channel is

P 1 2T T t=1 log 1 + snr hD [t] 2 < R = P 1 T T t=1 log det I + snr∆ t,D 1•1 * ∆ * t,D h * D h T D I T (snr) < 2R = P (O D (R))
where I T has exactly the same form as defined in (3) with different channel matrices. We can thus reuse the results obtained before and get the following theorem. Theorem 4: The diversity-multiplexing tradeoff of the proposed decode-and-forward scheme with distributed rotation is

d(r) = n(1 -2r) + , for i.i.d. Rayleigh fading channel when K → ∞.
Proof: The end-to-end outage probability can be developped as

P (O D (R)) = D⊆{1,...,n} P O D (R) D = D P (D = D) .
As shown in [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF], D = D means that all n -|D| source-relay channels are in outage. Thus, we have

P (D = D) . = snr -(n-|D|)(1-2r) + , ∀ D. (35) 
Now, we would like to show

P O D (R) D = D . = snr -|D|(1-2r) + . ( 36 
)
To this end, we apply Corollary 1, (6), and (7) for K → ∞, and we have

P O D (R) D = D . = P (I (snr) < 2R) (37) 
where I is defined in [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF] with

P = snr 1 D 1 * D and Q = h * D h T D . Since P is of rank one, it follows that I (snr) = log 1 + snr h D 2 . (38) 
Plugging (38) into (37), (36) is straightforward. Finally, from (35) and (36), the theorem is proved. The proposed scheme is a fixed relaying scheme in that relaying functions are decided before any communication and do not depend on the channel condition. Hence, it is a flexible cooperation scheme. Theorem 4 says that same DMT performance as the distributed space-time coding proposed in [START_REF] Laneman | Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[END_REF] is achieved. As opposed to conventional distributed spacetime coding scheme, no signaling on the decoding status of each relay is needed. As a matter of fact, the destination only need to know the equivalent scalar channel gain hD [t]. The latter can be estimated as in any fast fading channel.

Remark 7.1: Although we only consider the orthogonal DF scheme in this paper, the DRS can be applied to the nonorthogonal DF scheme with little modification. With two-slot non-orthogonal DF scheme, the source transmits a codeword of length 2T composed of two parts x 1 x 2 . After receiving x 1 , the relays try to decode the message. For the succeeding relays, x 2 can be anticipated and the DRS is applied to x 2 . In this way, x 2 goes through an artificial fast fading channel as in the orthogonal case. Also note that exactly the same idea can be applied to the dynamic decode-and-forward scheme [START_REF] Azarian | On the achievable diversitymultiplexing tradeoff in half-duplex cooperative channels[END_REF] with multiple relays.

Remark 7.2: Since the destination and the source do not need to know the existence of the relays and that the performance can only be improved with the presence of the relays, the proposed scheme in the non-orthogonal case is an oblivious cooperative scheme [START_REF] Katz | Cooperative schemes for a source and an occasional nearby relay in wireless networks[END_REF].

VIII. CONCLUSIONS

We have proposed a framework of distributed rotation for cooperative relaying and shown that even simple time-varying linear processing can recover spatial diversity. The framework has been applied to both linear and nonlinear relaying schemes. Thanks to the tractability of the proposed schemes, we have proved that the optimal diversity-multiplexing tradeoff of some non trivial channel setting can be achieved with linear relaying. Furthermore, an oblivious decode-and-forward scheme based on distributed rotation has been proposed.
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The authors would like to thank Emre Telatar for inspiring comments at the early stage of this work. where R θ I diag e j2πθi , i ∈ I ; P I,• denotes the submatrix of P formed by the rows indexed by I; Q •,I is similarly defined with the columns. In fact, one can show that, for any m ≤ n, det (A m×n R * θ B n×m ) is a multilinear function of e -j2πθi , i = 1, . . . , n. This can be proved by induction on n, which we do not detail here. As such, we can deduce from (40) that det (I + snrR θ P R * θ Q) is a multilinear function of e ±j2πθi , i = 1, . . . , n, which completes the proof for Property 1. Property 2 is a direct consequence of Property 1. By integrating θ i over U = [0, 1), terms containing θ i in the original multilinear function disappear. Hence, a new multilinear function of the rest of the θ's is obtained.

To prove Property 3, it is enough to show that 
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 1 Fig. 1. The two-hop layered relay channel model.
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 22 > snr = O exp(-µ snr ) when snr → ∞. For instance, with i.i.d. Rayleigh fading, it is readily shown that µ = 1 2 . Now, let us define the event B { G > snr } and partition the outage event O as O = (O ∩ B ) ∪ (O ∩ B ).
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 2 Fig. 2. An example of Riemann sum approximation of 1 0 log (a + b cos(2πθ)) dθ with K = 8. The Riemann sum area is represented by the dark rectangles. The additional light rectangles are needed in order to cover the area of integration.
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 1 Case m = p > n: Let us set |l ij | 2 = snr -αij and |r ij | 2 = snr -βij . The DMT of the above upper bound is the lower bound of d (r). It follows that d LB (r) = min n i=1

APPENDIX A. Proofs of Lemma 1 e

 1 To prove the lemma, we first note thatdet (I + snrR θ P R * θ Q) = I⊆{1,...,n} snr |I| det (R θ P R * θ Q) I = I⊆{1,...,n} snr |I| det (R θ I P I,• R * θ Q •,I ) j2πθi det (P I,• R * θ Q •,I ) (40)

1 0

 1 θ I P I,• R * θ Q •,I ) dθ = det (P I ) det (Q I ) (41)from which and (39) we obtain[START_REF] Sendonaris | User cooperation diversity-Part I: System description[END_REF]. In order to prove (41), we rewriteR θ I P I,• R * θ Q •,I = R θ I P I R * θ I Q I + P I, Ī R * θĪ QĪ ,I .(42) Then, we use the following equalities det A + e j2πθi u v * = det (A) + e j2πθi u (adj (A)) v * , ∀ A, u, v, where adj (A) is the adjugate matrix of A, to show thatdet A + e j2πθi u v * dθ i = det (A) .(43)Finally, it follows thatU n det (R θ I P I,• R * θ Q •,I ) dθ = U |I| det (R θ I ) × U | Ī| det P I R * θ I Q I + P I, Ī R * θĪ QĪ ,I dθĪ dθ I = U |I| det (R θ I ) det P I R * θ I Q I dθ I (44) = det (P I ) det (Q I )where (44) is obtained by applying (42) and (43). More precisely, we rewriteP I, Ī R * θĪ QĪ ,I = i∈ Ī e -j2πθi u i v * iwith u i and v * i the ith column of P I, Ī and the ith row of QĪ ,I , respectively, and then apply (43) successively with all θ i in θĪ.

  • • • x[T ] ∈ C m×T spanning over T symbols time is transmitted by the source with T = K n . At instant t, each relay transmits a rotated version of what it received at instant t -1.The rotation used by the relay i is e j2πϕi,t as in Definition 1.

	Note that this is equivalent to defining D[t] =	snr n snr + 1	∆ t .
	Thus, we have, by defining c	snr n snr + 1	,

  . over time and circularly symmetric, ∆ t z R [t] and therefore the equivalent noise c G∆ t z R [t] + z D [t + 1] are independent of ∆ t and i.i.d. over time. It is thus without loss of generality to rewrite the signal model as

With a slight abuse of terminology, the outage probability of a scheme means the outage probability of the equivalent channel created by the relaying scheme.

It can be proved by basic maths and is omitted for conciseness.