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Abstract—In this paper, we consider the secure communica-
tion in a K-user multi-antenna broadcast channel (BC) with
state feedback. We characterize the optimal secure degrees of
freedom (SDoF) region of multiple-input single-output (MISO)
channel. The SDoF region is achievable by a secret key based
linear scheme, which generates analog secret keys by sending
artificial noise and then performs space-time alignment scheme
secured by these secret keys. The optimality is proved by deriving
a new outer bound on the capacity region in a systematic way.
Interestingly, the proposed outer bounding technique also applies
to the erasure broadcast channel and provides a simpler proof
as compared to the existing one. Finally, an explicit connection
between the multi-antenna BC and the erasure BC is revealed.
We show that, with a large number of users, secrecy cannot be
guaranteed in the erasure BC, while it comes almost “for free”
in the multi-antenna BC when the number of transmit antennas
grows accordingly.

I. INTRODUCTION

In wireless communication systems, channel state infor-
mation at transmitter is usually obtained via feedback from
receivers. Hence, it may not be accurate due to the time-
varying nature of the underlying channel as well as limited
resource for the channel estimation/feedback. In fast fading
scenarios, the state information may be even outdated when
it becomes available at the transmitter. Recent works have
shown the usefulness of such feedback, even if it is com-
pletely outdated. In [4], [5], the authors have studied the state
feedback in the context of K-user broadcast erasure channel
and characterized the capacity region under some symmetry
conditions. In [1], Maddah-Ali and Tse have considered K-
user multi-input single-output (MISO) broadcast channel with
K antennas and characterized its degrees of freedom (DoF)
region, i.e., the prelog factor of capacity at high signal-
to-noise ratio (SNR), for most cases of interest. The main
finding of these works is that by exploiting the multicasting
opportunity created by the overheard signals (side information)
at receivers, an unbounded capacity gain can be achieved.
Such idea of the opportunistic multicasting has been widely
applied in various multiuser networks (see e.g. [2], [6], [8]
and references therein).

In this work, we consider the state feedback in the K-user
secured MISO broadcast channel so that the transmitter must
convey each message to its intended receiver reliably while
keeping it secret to all other receivers. As for the non-secured
communication setups, a number of recent contributions have

shown that a non-negligible gain can be achieved in the
secured networks with state feedback [2], [3], [7], [8]. While
in [8] the optimal secrecy DoF (SDoF) of the multi-antenna
broadcast channel has been characterized for the case of two
users, the work [2] has characterized the secrecy capacity of
the K > 2-user the secured erasure broadcast channel with
state feedback under some symmetry conditions. The latter
result has been also extended to other secured networks [3].

The main contribution of our work is the characterization
of the SDoF region in the K-user MISO broadcast channel
with state feedback. The achievability builds on a secret key
based linear scheme consisting of three phases, as a secured
counterpart of the scheme in [1]. In phase 0, each user acquires
an analog secret key when the transmitter sends some artificial
noise. Such keys, available at the transmitter thanks to the
state feedback, can be used to secure the data to be sent in the
subsequent phases 1 and 2. The transmission of the secured
data is performed with space-time interference alignment [1].
To prove the optimality, we propose a systematic way to derive
an outer bound, which can be applied to a large class of
channels. For instance, it can be used straightforwardly to
the erasure broadcast channel studied in [2]. The proof in
[2], which relies on the properties of discrete entropies, is
unfortunately not suitable for our channel model. Finally, we
observe that, with a large number K of users, the secrecy sum
capacity of the erasure BC vanishes with K as O(1/ logK),
whereas the secrecy sum DoF of the MISO BC scales as
Θ(K/ logK) when the number of transmit antennas grows
accordingly with M ≥ K. In other words, in a large network,
it is too costly to provide secrecy in the erasure BC, while the
secrecy comes almost “for free” in a multi-antenna BC.

Throughout the paper, we use the following notational
conventions. Boldface lower-case letters vvv and upper-case
lettersMMM are used to denote vectors and matrices, respectively.
We use the superscript notation Xn to denote a sequence
(X1, . . . , Xn) of variables. XI is used to denote the set of
variables {Xi}i∈I. Matrix transpose and Hermitian transpose
are denoted by AAAT and AAAH, respectively. Logarithm is in base
2. The entropy and differential entropy of X are denoted by
H(X) and h(X), respectively. o(·), O(·), Θ(·) are standard
Landau notations. εn is a shorthand for o(1) when n→∞.

Due to the space limitation, proofs for the lemmas are
omitted and will be deferred to the full version of the paper.



II. CHANNEL MODEL AND MAIN RESULT

We consider the discrete-time K-user MISO broadcast
channel with M transmit antennas. Then, the corresponding
channel outputs at time instant t is given by

yk,t = hhhH

k,txxxt + zk,t, k = 1, . . . ,K

where hhhH

k,t ∈ C1×M is the channel coefficient vector for
the k th user; z1,t, . . . , zK,t are the additive white Gaussian
noises (AWGN) ∼ NC(0, 1) and are assumed to be indepen-
dent to each other; the input vector xxxt ∈ CM×1 is subject
to the average power constraint 1

n

∑n
t=1 tr(xxxtxxxH

t ) ≤ snr.
Note that since we normalize the noise variances, snr is
identified with the SNR at the transmitter side. We assume
fast fading channel such that {hhhk,t}t are independent and
identically distributed (i.i.d.) across time. The matrix SSSt =
[hhh1,t · · · hhhK,t]H ∈ S is called the state matrix at instant t. At
the end of instant t, each receiver k feeds back the channel
vector hhhH

k,t to the transmitter through a noiseless channel.
Thus, SSS1, . . . ,SSSt−1 are available to the transmitter at instant t
whereas the state matrices are known to all users at the end of
the transmission. We make a further assumption on the state
matrix.

Assumption 1 (channel symmetry): At any instant t, the
rows of the state matrix SSSt are independent and identically
distributed. Furthermore, we limit ourselves to the class of
fading processes in which the state matrix SSSt has full rank
and bounded entries almost surely at any time instant t.

Under these assumptions, we define the code and the
optimal SDoF region summarized below.

Definition 1 (code and SDoF region): The encoder and the
set of decoders are formally defined as follows:

• A sequence of stochastic encoders given by
{
Ft :

W1 × · · · × WK × St−1 7−→ CM×1
}n
t=1

where the
messages W1, . . . ,WK are uniformly distributed over
W1, . . . ,WK , respectively.

• The decoder of user k, k = 1, . . . ,K, is given by the
mapping Ŵk : C1×n × Sn 7−→Wk.

A SDoF tuple (d1, . . . , dK) is said to be achievable if there
exists a code that satisfies simultaneously the following

• reliability condition: lim sup
n→∞

Pr
{
Wk 6= Ŵk

}
= 0, ∀ k;

• secrecy condition:

lim sup
n→∞

1

n
I(Wk; {Y nl }l 6=k, Sn) = 0, ∀ k; (1)

• rate condition: lim
snr→∞

lim inf
n→∞

log |Wk(n,snr)|
n log snr ≥ dk, ∀ k.

The union of all achievable tuples (d1, . . . , dK) is called the
optimal SDoF region.

Note that the perfect secrecy condition above imposes each
message be secret to all K−1 other users even if they collude.
The main result of this work is stated in the following theorem.

Theorem 1 (SDoF of K-user BC): The optimal SDoF region
of the K-user MISO BC with M transmit antennas (M ≥ K)

is the set of tuples (d1, . . . , dK) satisfying

K − 1

K
dπ1

+

K∑
k=1

1

k
dπk
≤ 1, (2)

for any permutation π of {1, . . . ,K}. In particular, the sum
SDoF is

K∑
k=1

dk ≤
K

K−1
K +

∑K
k=1

1
k

. (3)

The proof of this result is deferred to the upcoming sections.
Some comments are in place on the above result. First, we
remark that the above result covers some existing results as
special cases including the SDoF region of the two-user MISO
broadcast channel [8] as well as the DoF region of the K-
user MISO broadcast channel [1]. In fact, compared to the
non-secured broadcast setup, the secured scheme requires an
additional phase of artificial noise transmission, in order to
generate analog “secret keys”. The resource overhead for the
secret key generation is represented by the first term (K−1)

K dπ1

in (2), where K−1
K corresponds to the normalized length of

the secret key generation phase (phase 0) with respect to the
broadcast phase (phase 1). Without this term, the region boils
down into that of the K-user non-secured broadcast channel.
Finally, there is an explicit connection between our result and
the secrecy capacity of the erasure BC, which will be discussed
in section V.

III. ACHIEVABILITY

Lemma 1: The SDoF region (2) is a polyhedron, all the
vertices of which are in the following form

dk =


1

K−1
K +

∑|K|
j=1

1
j

, k ∈ K

0, k /∈ K

for some K ⊆ {1, . . . ,K}.
It is thus enough to show that each corner point is achievable.
After briefly reviewing the space-time interference alignment
scheme, we present our secret key based linear scheme and
show that all corner points are achievable. Since we are only
interested in DoF of the channel, we remove the AWGN for
simplicity of presentation unless otherwise indicated.

A. Space-time interference alignment revisited

Essentially, the scheme proposed in [1] consists of two
phases: 1) broadcast of new information symbols, and 2) multi-
cast of side information (overheard symbols). In the first phase,
fresh information symbols are sent to all the users successively.
At the end of the first phase, each user feeds back the channel
state to the transmitter. The transmitter then reconstructs the
overheard signals of each user (up to the background noise
level) and generates side information as a function of such
signals. In the second phase, the side information is multicast
to the users. Mathematically, we recall the following high level
description of the scheme.
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Fig. 1. The three-phase secure broadcasting scheme for three receivers

• In the first phase of T1 = t1K channel uses, the
transmitter generates K sets of information symbols rep-
resented by K independent matrices VVV 1, . . . ,VVV K , with
VVV k ∈ CM×t1 containing information for user k. The
matrices are transmitted successively. Due to the broad-
cast nature of the wireless medium, each user receives
some linear functions of these matrices. Without loss
of generality, we let Ljk(VVV k) denote the vector of all
symbols received by user j when VVV k is transmitted.
Further we let L̄k(VVV k) , {Ljk(VVV k)}j 6=k denote the
vector of overheard symbols on VVV k by other K−1 users.

• In the second phase of T2 channel uses, the transmitter,
thanks to the state feedback, reconstructs the overheard
symbols L̄1(VVV 1), . . . , L̄K(VVV K). Then, the side informa-
tion symbols are generated as a linear function of the
overheard symbols, i.e., F(L̄1(VVV 1), . . . , L̄K(VVV K)). The
latter is sent through the MISO channel and each user k
receives a linear function of the side information symbols,
denoted by GkF(L̄1(VVV 1), . . . , L̄K(VVV K)).

The achievability result in [1] implies the following lemma.
Lemma 2: There exist T1 and T2 with (T1 + T2)/T1 =∑K
k=1

1
k and a linear function F, such that T1 independent

linear functions of VVV k can be obtained from {Lkj(VVV j)}Kj=1

and GkF(L̄1(VVV 1), . . . , L̄K(VVV K)), almost surely.
It is easy to verify that each user achieves T1

T1+T2
=

1∑K
k=1

1
k

DoF per channel use.

B. Proposed secret key based linear scheme

In order to secure the K-user MISO broadcast channel,
we propose a secret key based linear scheme as a secure
counterpart of the above space-time interference alignment.
Namely, the proposed scheme consists of secret key generation
(phase 0) followed by secure broadcasting (phase 1), and side
information multicasting (phase 2). The construction of our
proposed scheme is illustrated in Fig. 1 for the case of three
users.

1) Achieving the symmetric SDoF: In the secret key gen-
eration phase of T0 = t1(K− 1) channel uses, the transmitter
sends T0 i.i.d. vectors uuu1, . . . ,uuuT0

∼ CN(0, snrM IM ). Each
user k receives hhhH

k,1uuu1, . . . ,hhh
H

k,T0
uuuT0

and put them into a
matrix EEEk ∈ C(K−1)×t1 . The state information {hhhk,t}t is
known at the transmitter at the end of phase 0, thanks to state
feedback, so that the matrix EEEk can be reconstructed by the
transmitter (up to the background noise level). Then, EEEk is
used as analog secret keys to “hide” the useful information

VVV k. Specifically, in phase 1, the transmitter sends the useful
symbol vector superimposed by the analog secret keys, i.e.,
ṼVV k = VVV k + AAAEEEk where AAA ∈ CM×(K−1) is a constant full
rank matrix (e.g., AAA = [IK−1 0(K−1)×(M−K+1)]

T) that scales
the dimension of EEEk up to the dimension of VVV k. The matrices
{ṼVV k} are sent exactly in the same way as {VVV k} in the previous
subsection. Phase 2 remains unchanged.

According to Lemma 2, T1 independent equations of ṼVV k can
be recovered almost surely from the received signal of user k.
SinceAAA andEEEk are known to user k, T1 independent equations
of VVV k can be found reliably by user k. The corresponding DoF
is T1

T0+T1+T2
= 1

K−1
K +

∑K
k=1

1
k

. It remains to show that the per-
user DoF is secured. Due to the symmetry, by focusing on
user 1 without loss of generality, we aim to show that VVV 1

cannot be inferred from the received signals of all other K−1
users. To this end, we analyze the mutual information between
the useful signal VVV 1 and the received signals of other users.

I(VVV 1;Y n2 , . . . , Y
n
K , S

n)

= I(VVV 1;Y n2 , . . . , Y
n
K |Sn)

≤ I(VVV 1;EEE2, . . . ,EEEK , {Lkk(ṼVV k)}Kk=2, {L̄k(ṼVV k)}Kk=1,

{GkF(L̄1(ṼVV 1), . . . , L̄K(ṼVV K))}Kk=1 |Sn) (4)

= I(VVV 1;EEE2, . . . ,EEEK , {Lkk(ṼVV k)}Kk=2, {L̄k(ṼVV k)}Kk=1, |Sn)

= I(VVV 1;EEE2, . . . ,EEEK , L̄1(ṼVV 1) |Sn) (5)
= I(VVV 1; L̄1(VVV 1) + L̄1(AAAEEE1) |EEE2, . . . ,EEEK , S

n) (6)
= T1o(log snr)

where the first equality is from the independence between
VVV 1 and the channel state; (4) follows because providing
additional observations of user 1 on VVV 2, . . . ,VVV K does not
reduce the mutual information; (5) is from the Markov chain
VVV 1 ↔ (EEE2, . . . ,EEEK , L̄1(ṼVV 1)) ↔ {Lkk(ṼVV k), L̄k(ṼVV k)}k 6=1;
(6) is from the linearity of L̄1; finally, the last equal-
ity is from the fact that h(L̄1(AAAEEE1) |EEE2, . . . ,EEEK , S

n) =
rank(L̄1)Θ(log snr) by construction1.

2) Achieving other corner points in the SDoF region: Now
let us assume that the transmitter sends messages to only K ′

out of K users, say, user 1 to user K ′. However, each message
should be kept secret to all K − 1 other users. We need a
slightly more general version of Lemma 2 in this case.

Lemma 3: There exist T1 and T2 with (T1 + T2)/T1 =
K
K′

∑K′

k=1
1
k as well as a linear function F, such that

t1K independent linear functions of VVV k can be obtained
from {Lkj(VVV j)}Kj=1 and GkF(L̄1(VVV 1), . . . , L̄K′(VVV K′)), al-
most surely, for k = 1, . . . ,K ′.
Specifically, three phases are as follows:
• key generation phase (phase 0) is the same with T0 =
t1(K − 1) channel uses;

• secured broadcasting phase (phase 1) lasts T1 = t1K
′

channel uses;
• multicasting phase (phase 2) lasts T2 = T1

K
K′

∑K′

k=1
1
k−

T1 channel uses, so that, according to Lemma 3, K
K′T1

1Proof is omitted and will be added in the full version.



independent linear equations of VVV k can be recovered by
user k, k = 1, . . . ,K ′.

This scheme achieves the symmetric DoF among the K ′ active
users K

K′
T1

T0+T1+T2
= 1

K−1
K +

∑K′
k=1

1
k

. For brevity, we omit the
verification of secrecy constraints, which follows closely to
the proof of the symmetric DoF.

We conclude this section by providing an example of
M = K = 3. In this case, the region is characterized by
three types of corner points. The symmetric DoF

(
2
5 ,

2
5 ,

2
5

)
is

achieved by sending 6 symbols to each user over the whole
duration of T0 +T1 +T2 = 4 + 6 + 5 = 15 channel uses. This
yields the sum SDoF of 6

5 , smaller than the DoF 6
11 without

secrecy constraints. The corner point
(

6
13 ,

6
13 , 0

)
is achieved

by sending 6 information symbols to users 1 and 2 over the
duration of T0+T1+T2 = 4+4+5 = 13 channel uses. Finally,
the

(
3
5 , 0, 0

)
is achieved by sending 6 symbol to user 1 over

T0 + T1 + T2 = 4 + 2 + 4 = 10 channel uses. The last corner
point coincides with the achievable DoF of the MIMO wire-
tap channel with three-antenna transmitter, a single-antenna
legitimate receiver, and a two-antenna eavesdropper [8].

IV. CONVERSE

From the following proposition, the converse part of Theo-
rem 1 is straightforward.

Proposition 1 (K-user capacity outer bound): Any achiev-
able secrecy rate (R1, . . . , RK) for the K-user MISO broad-
cast channel must satisfy

K − 1

K
max
k

Rk +

K∑
k=1

1

k
Rπk
≤ CSU-MISO,

for any permutation π of {1, . . . ,K}; CSU-MISO ,
maxpX I(X;Yk |S) is the single-user MISO channel capacity.2

The rest of the section is dedicated to the proof of the
proposition. Due to the symmetry, we only need to prove
the case without permutation. The proof relies on the channel
output symmetry through the following lemma.

Lemma 4: Let U be such that h(YI,i |Y i−1I , Si, U) =
h(YI′,i |Y i−1I , Si, U), ∀ i, ∀ I, I′ ⊆ {1, . . . ,K} with |I| = |I′|.
Then,

1

|I|h(Y nI |U, Sn) ≤ 1

|J|h(Y nJ |U, Sn), (7)

for any sets I, J such that J ⊆ I ⊆ {1, . . . ,K}.
Three main steps are needed. First, we apply the genie-aided
bounds, independent of the secrecy constraints. Then, we apply
the secrecy constraints. Finally, we combine both bounds.

A. Genie-aided bounds

Let us define Ik , {1, . . . , k}, k = 1, . . . ,K. First, without
the secrecy constraint, we have, by providing (W k, Y nIk) to

2It is independent of k due to the channel output symmetry assumption.

user k + 1, k = 1, . . . ,K − 1, and using Fano’s inequality,

n(R1 − εn) ≤ I(W1;Y n1 |Sn)

= h(Y n1 )− h(Y n1 |W1S
n)

...

n(RK − εn) ≤ I(WK ;Y nIK |WK−1Sn)

= h(Y nIK |WK−1Sn)− h(Y nIK |WKSn)

Summing up the above inequalities with different weights, and
applying Lemma 4 for K − 1 times, namely,

1

k + 1
h(Y nIk+1

|W kSn) ≤ 1

k
h(Y nIk |W kSn),

k = 1, . . . ,K − 1, we obtain
K∑
k=1

n

k
(Rk − εn) ≤ h(Y n1 |Sn)− 1

K
h(Y nIK |WKSn). (8)

B. Applying the secrecy constraint
Then, providing (WK−1, Y nIK−1

) to user K, and applying
the secrecy constraint (1), we have

n(RK − εn)

≤ I(WK ;Y nIK |WK−1Sn)− I(WK ;Y nIK−1
|WK−1Sn)

= h(Y nIK |WK−1Sn)− h(Y nIK−1
|WK−1Sn)

+ h(Y nIK−1
|WKSn)− h(Y nIK |WKSn)

= h(Y nIK |WK−1Sn)− h(Y nIK−1
|WK−1Sn)

− h(Y nK |Y nIK−1
WKSn)

≤ h(Y nIK |WK−1Sn)− h(Y nIK−1
|WK−1Sn)

− h(ZnK |Sn) (9)

≤ h(Y nIK |WK−1Sn)− K − 1

K
h(Y nIK |WK−1Sn)

− h(Zn) (10)

=
1

K
h(Y nIK |WK−1Sn)− h(Zn)

=
1

K
h(Y nIK |WKSn) +

1

K
I(WK ;Y nIK |WK−1Sn)

− h(Zn)

≤ 1

K
h(Y nIK |WKSn) +

n

K
RK − h(Zn) (11)

where (9) is the application of h(Y nK |Y nIK−1
WKSn) ≥

h(Y nK |Xn, Y nIK−1
WKSn) = h(ZnK); (10) is from Lemma 4;

the last inequality is from nRK = H(WK) ≥
I(WK ;Y nIK |WK−1Sn). From (11) ,

n(RK − εn) ≤ 1

K − 1
h(Y nIK |WKSn)− K

K − 1
h(Zn).

Due to the symmetry, we have, for any k,

n(Rk − εn) ≤ 1

K − 1
h(Y nIK |WKSn)− K

K − 1
h(Zn),

which implies

n
(
max
k

Rk − εn
)
≤ 1

K − 1
h(Y nIK |WKSn)− K

K − 1
h(Zn).

(12)



C. Combining both bounds

Summing up the above bounds (8) and (12) with weights,

K∑
k=1

1

k
Rk +

K − 1

K
max
k

Rk

≤ 1

n
(h(Y n1 |Sn)− h(Zn)) + εn

≤ 1

n

n∑
i=1

(h(Y1i |Si)− h(Zi)) + εn

≤ max
pXi

I(Xi;Y1i |Si) + εn

= CSU-MISO + εn

which completes the proof by letting n→∞.

V. CONNECTION TO THE ERASURE BROADCAST CHANNEL

The multi-antenna BC is closely related to the erasure
BC. The former is a state-dependent Gaussian noise channel
whereas the latter is a state-dependent deterministic channel.
While optimal DoF regions are characterized for the multi-
antenna BC (e.g., [1], [8] and the current work), exact capacity
regions can be obtained, with [2] or without (e.g., [4], [5])
secrecy constraints. To highlight the connection, let us consider
the erasure BC with the i.i.d. erasure (with probability δ)
across users. The capacity region obtained in [2] can be
rewritten as

αK−1
αK(αK − αK−1)

Rπ1 +

K∑
k=1

1

αk
Rπk
≤ 1, (13)

αk , 1− δk

which is in exactly the same form as the SDoF region in (2),
if we let αk = k instead of 1 − δk and replace the DoF by
rate. The achievability schemes for both cases are based on
similar ideas of key generation except that analog keys from
artificial noise are used in our setting (as well as [8]).

The achievability schemes for both cases have a similar
structure consisting of three phases. In the erasure channel,
the digital secret keys, generated by sending random packets,
are used to encrypt messages, whereas our analog secret keys
is created by the artificial noise. Quite remarkably, it turns
out that the converse of the capacity region (13) can be
proved, in an alternative way, using the same techniques we
propose in this paper, namely, the three steps described in
the previous section. As a matter of fact, we can obtain the
following equivalent of Lemma 4 for the erasure channel,
before applying the three-step procedure.

Lemma 5: For the erasure broadcast channel with indepen-
dent erasure events (with probability {δk}) for different users,
if U is such that Xi ↔ UY i−1I Si−1 ↔ (Si+1, . . . , Sn), ∀ I,

1

βI
H(Y nI |U, Sn) ≤ 1

βJ
H(Y nJ |U, Sn),

with βI , 1−
∏
i∈I

δi, (14)

for any sets I, J such that J ⊆ I ⊆ {1, . . . ,K}.
With a large number K of users, the sum SDoF of the

MISO BC is O(K/ logK) provided that M ≥ K. Therefore,
the scaling is the same with or without secrecy. From (3),
it is clear that, to send K symbols securely, one only needs
K−1
K channel uses to generate secret keys in addition to the∑K
k=1

1
k channel uses for data transmission. The extra cost

is negligible (goes to 1) when K is large. This is due to the
high diversity order of the channel that scales with K when
M ≥ K. As a matter of fact, in average K secret key symbols
are generated per channel use. On the other hand, from (13),
the sum secrecy capacity of the symmetric erasure BC is

RE-BC
sum =

K
1−δK−1

(1−δK)(1−δ)δK−1 +
∑K
k=1

1
1−δk

. (15)

In this case, secrecy costs in average τK , 1−δK−1

(1−δK)(1−δ)δK−1

channel uses for every K symbols sent. Obviously, if δ is
bounded away from 1, then τK = Θ(δ−(K−1)), i.e., grows
exponentially with K. And the sum capacity vanishes expo-
nentially with K as RE-BC

sum = Θ(KδK−1). In fact, even when
δ can be optimized for each K, the sum secrecy capacity of
symmetric erasure BC is vanishing with K.

Proposition 2: For any erasure probability δ, the sum se-
crecy capacity of the symmetric erasure BC satisfies RE-BC

sum ≤
Θ(1/ logK) when K → ∞, with equality when δ = 1 −
Θ(K−1).
Therefore, in a sharp contrast with the MISO BC, it is too
costly to provide secrecy in the erasure BC when the number
of users is large. Intuitively, the low “diversity” of the erasure
BC is the cause to blame, i.e., secret key generation is highly
inefficient is this regime.
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APPENDIX

ELEMENTS OF PROOFS

Proof of Lemma 1: The SDoF region in (2) is the polyhe-
dron characterized by K! inequalities. We let f(dπ1

, . . . , dπK
)

denote the left hand side of (2). Since this function is linear
in (dπ1 , . . . , dπK

) with decreasing weights 1 + K−1
K > 1

2 >
· · · > 1

K , the permutation maximizing f(dπ1
, . . . , dπK

) is such
that dπi

> dπj
whenever i < j. Since this is exactly the

same structure as the MISO broadcast channel without secrecy
constraints, we follow the similar footsteps as [1, section V]
to prove that any point in the polyhedron such that di > 0 for
all i and di 6= dj for some i 6= j cannot be a corner point.

Proof of Lemma 2 and Lemma 3: Since Lemma 3
includes Lemma 2 as a special case, it is enough to prove the
former. To prove the existence of such (T1, T2), we rely on
the construction based on the scheme proposed in [1]. In the
first phase, we sent K ′ ≤ K matrices VVV 1, . . . ,VVV K′ ∈ CM×t1
suceesively. These matrices are intended to user 1, . . . ,K ′,
respectively. We let the T1 be the duration of this phase, i.e.,
T1 = t1K

′ channel uses. The second phase of length T2 can
be divided into two sub-phases:
• first, T1(K−1)

2 “order-2” symbols are formed based on
{Ljk(VVV k)}j 6=k=1...K′ , specifically as

{Ljk(VVV k) + Lkj(VVV j)}j 6=k=1...K′ .

These “order-2” symbols are coded linearly with the state
feedback received during the transmission in phase 2A,
using the “order-2” scheme in [1]. The length of this
phase is

T2A =
T1(K−1)

2

DoF2(M,K ′)

where DoF2(M,K ′) , K−1
2

1∑K′
k=2

1
k

. At the end of
phase 2A, both users k, j ∈ {1 . . .K ′} can recover
Ljk(VVV k) + Lkj(VVV j), and then both Ljk(VVV k) and
Lkj(VVV j).

• second, T1(K −K ′) “order-1” symbols are directly gen-
erated as {Ljk(VVV k)}j=K′+1...K,k=1...K′ . These “order-
1” symbols are coded linearly with the state feedback
received during the transmission in phase 2B, using the
“order-1” scheme in [1]. The length of this phase is

T2B =
T1(K −K ′)
DoF1(M,K ′)

.

where DoF1(M,K ′) , K′∑K′
k=1

1
k

. At the end of
phase 2B, each users k ∈ {1 . . .K ′} can recover
{Ljk(VVV k)}j=K′+1...K .

At the end, each user k obtains Lkk(VVV k) from
phase 1, {Ljk(VVV k)}j 6=k=1...K′ from phase 2A, and
{Ljk(VVV k)}j=K′+1...K from phase 2B, i.e., in total t1K
equations {Ljk(VVV k)}j,k=1...K of VVV k. The length of phase 2
is T2 = T2A + T2B = T1

K
K′

∑K′

k=1
1
k − T1.

Proof of Lemma 4: This lemma has been proved in [8].
For completeness, we provide the following sketch. For J ⊆ I,

h(Y nI |U, Sn)

=

n∑
i=1

h(YI,i |Y i−1I , U, Sn)

=

n∑
i=1

h(YI,i |Y i−1I , U, Si−1, Si)

=

n∑
i=1

(
K

|I|

)−1 ∑
I′:|I′|=|I|

h(YI′,i |Y i−1I , U, Si−1, Si)

≤
n∑
i=1

|I|
|J|

(
K

|J|

)−1 ∑
J′:|J′|=|J|

h(YJ′,i |Y i−1I , U, Si−1, Si)

=

n∑
i=1

|I|
|J|h(YJ,i |Y i−1I , U, Si−1, Si)

≤
n∑
i=1

|I|
|J|h(YJ,i |Y i−1J , U, Si−1, Si) (16)

where the first equality is from the chain rule; the second
one is due to the current input does not depend on future
states conditional on the past outputs/states and U ; the third
one is from the assumption of entropy symmetry; the fourth
step is from the monotonicity of average entropy; the fifth
step again from the assumption of entropy symmetry; the final
step is from removing the terms Y i−1

I\J in the condition, which
increases the entropy. Following the first three steps as above,
we also have

h(Y nJ |U, Sn) =

n∑
i=1

|I|
|J|h(YJ,i |Y i−1J , U, Si−1, Si)

from which and (16), we obtain (7).
Proof of Lemma 5: Let us define Si as the set of indices

of the receivers not in erasure at time instant i, i.e., Si , {k :
Yk,i = Xk,i}. Then, we have, for J ⊆ I,

H(Y nI |U, Sn)

=

n∑
i=1

H(YI,i |Y i−1I , U, Sn)

=

n∑
i=1

H(YI,i |Y i−1I , U, Si−1, Si)

=

n∑
i=1

Pr{Si ∩ I 6= ∅}H(Xi |Y i−1I , U, Si−1, Si ∩ I 6= ∅)

=

n∑
i=1

(
1−

∏
i∈I

δi
)
H(Xi |Y i−1I , U, Si−1)

≤
(
1−

∏
i∈I

δi
) n∑
i=1

H(Xi |Y i−1J , U, Si−1) (17)

where the first equality is from the chain rule; the second
equality is due to the current input does not depend on future
states conditional on the past outputs/states and U ; the third
one holds since YI,i is deterministic and has entropy 0 when



all outputs in I are erased (Si ∩ I = ∅); the fourth equality
is from the independence between Xi and Si; and we get the
last inequality by removing the terms Y i−1

I\J in the condition
of the entropy. Following the same steps, we have

H(Y nJ |U, Sn) =
(
1−

∏
i∈J

δi
) n∑
i=1

H(Xi |Y i−1J , U, Si−1)

from which and (17), we obtain (14).
Proof of Proposition 2: Since the sum secrecy capacity

(15) vanishes exponentially with K for any erasure probability
δ bounded from 1, we assume in the following that δ = 1−εK
with εK = Θ(K−l) for some l > 0. That is, δ goes to 1 when
K is large. Then, it follows that

δK = Θ(e−K
−l+1

) =


Θ(K−∞), l < 1

Θ(1), l = 1

1−Θ(K−l+1), l > 1

and similar for δK−1. Thus, we have

τK ,
1− δK−1

(1− δK)(1− δ)δK−1

= Θ

(
1

(1− δ)δK−1
)
.

We can exclude the case l < 1 since it would also lead to
exponential decreasing of the sum secrecy capacity. Therefore,
we have l ≥ 1 instead and τK = Θ(Kl).

Next, we consider duration of data transmission assuming
l ≥ 1. Then,

µK ,
K∑
k=1

1

1− δk

=

∫ K+1

1

dx
1− δx +O

(
δ − δK+1

(1− δ)(1− δK+1)

)
=

∫ K+1

1

dx
1− δx +O

(
Kl
)

= K +
log 1−δ

1−δK+1

log δ
+O

(
Kl
)

= K +
logΘ

(
K−l

K−l+1

)
log(1−Θ(K−l))

+O
(
Kl
)

= Θ(Kl logK) +O
(
Kl
)

= Θ(Kl logK).

Obviously, τK + µK = Θ(Kl logK) and the sum secrecy
capacity is Θ(K−l+1/ log(K)) with l ≥ 1 and is Θ(K−∞)
otherwise, which completes the proof.


