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ABSTRACT
We consider a cache-enabled K-user erasure broadcast chan-
nel in which a server with a library ofN files wishes to deliver
a requested file to each user k who is equipped with a cache
of a finite memory Mk. Assuming that the transmitter has
state feedback and user caches can be filled during off-peak
hours reliably by decentralized cache placement, we charac-
terize the achievable rate region as a function of the mem-
ory sizes and the erasure probabilities. The proposed deliv-
ery scheme, based on the broadcasting scheme proposed by
Wang and Gatzianas et al., exploits the receiver side infor-
mation established during the placement phase. A two-user
toy example shows that the cache network with asymmet-
ric memory sizes might achieve better sum rate performance
than the network with symmetric memory sizes.

1. INTRODUCTION
The exponentially growing mobile data traffic is mainly due
to video applications, e.g., content-based video streaming).
Such video traffic has interesting features characterized by
its asynchronous and skew nature. Namely, the user de-
mands are highly asynchronous (since they request when
and where they wish) and a few very popular files are re-
quested over and over. The skewness of the video traffic to-
gether with the ever-growing cheap on-board storage mem-
ory suggests that the quality of experience can be boosted by
caching popular contents at (or close to) end users in wire-
less networks. A number of recent works have studied such
concept under different models and assumptions (see [1, 2, 3]
and references therein). In most of these works, it is assumed
that caching is performed in two phases: placement phase to
prefetch users’ caches under their memory constraints (typ-
ically during off-peak hours) prior to the actual demands;
delivery phase to transmit codewords such that each user,
based on the received signal and the contents of its cache,
is able to decode the requested file. In this work, we focus
on a coded caching model where a content-providing server
is connected to many users, each equipped with a cache of
finite memory [1]. By carefully choosing the sub-files to be
distributed across users, coded caching exploits opportunis-
tic multicasting such that a common signal is simultaneously
useful for all users even with distinct file requests. A number
of extensions of [1] have been developed including the case of
decentralized placement phase [5], the case of non-uniform
demands [4, 6, 9], the case of unequal file sizes [10], as well
as the case of unequal memory sizes [15]. Although the po-
tential merit of coded caching has been highlighted in these
works, many of them have ignored the inherent features of

wireless channels except a few recent works [7, 8].

In order to relax the unrealistic assumption of a perfect
shared link, we model the bottleneck link as an erasure
broadcast channel (EBC) to capture random failure or dis-
connection of any server-user link that a packet transmission
may experience especially during high-traffic hours (delivery
phase). The placement phase is performed either in a de-
centralized [5] or centralized manner [1] over the erasure-free
shared link. We further assume that the channel at hand is
memoryless and independently distributed across users and
that the server acquires the channel states causally via feed-
back sent by users. Under this setting, we have character-
ized the achievable rate region of the cache-enabled EBC
focusing on the special case with equal erasure probability,
memory size in [16]. It is found that state feedback is use-
ful to improve the performance of coded caching especially
in the regime of a small memory size (with respect to the
number of files) and with a large erasure probability. In this
paper, we extend the results [16] to a general setup with
asymmetric erasure probabilities and memory sizes. Our
contribution is the characterization of the achievable rate
region of the cache-enabled EBC under decentralized place-
ment. We prove that a multi-phase delivery scheme extend-
ing the algorithm proposed by Wang and Gatzianas et al.
[13, 14] to the case of receiver side information can achieve
the rate region. A toy example shows that the asymmetry
in user memory sizes is potentially beneficial to improve the
sum rate performance. Finally, we note that a recent work
in [15] has also studied the impact of asymmetric memory
sizes in decentralized coded caching. Contrary to our obser-
vation, this work essentially shows that as the asymmetry
in memory sizes grows, the gain of coded caching collapses.
Such conclusion is somehow misleading because it builds on
the assumptions of a perfect shared link as well as equal file
sizes, which is seldom the case in practice.

The structure of the paper is as follows. Section 2 introduces
first the system model and definitions, and then highlights
the main results of this work. Section3 provides a sketch of
achievability proof of the rate region of the cache-enabled
EBC with feedback, while section 4 proves the correspond-
ing converse part. Finally section 5 concludes the paper.
Throughout the paper, we use the following notational con-
ventions. The superscript notationXn represents a sequence
(X1, . . . , Xn) of variables. XI is used to denote the set of
variables {Xi}i∈I . The entropy of X is denoted by H(X).
We let [k] = {1, . . . , k}.



Figure 1: A cached-enabled erasure broadcast chan-
nel with K = 3.

Due to the space limitation, proofs for some lemmas are
omitted and will be deferred to the full version of the paper.

2. SYSTEM MODEL AND MAIN RESULTS
2.1 System model and definitions
We consider a cache-enabled network depicted in Fig. 1
where a server is connected to K users through an erasure
broadcast channel (EBC). The server has an access to N files
W1, . . . ,WN where file i, i.e. Wi, consists of Fi packets of
L bits each (FiL bits). Each user k has a cache memory Zk
of MkF packets for Mk ∈ [0, N ], where F , 1

N

∑N
i=1 Fi is

the average size of the files. Under such a setting, consider a
discrete time communication system where a packet is sent
in each slot over the K-user EBC. The channel input Xi ∈
Fq belongs to the input alphabet of size L = log q bits.
The channel is assumed to be memoryless and independently
distributed across users so that in a given slot we have

Pr(Y1, Y2, . . . , YK |X) =

K∏
k=1

Pr(Yk|X) (1)

Pr(Yk|X) =

{
1− δk, Yk = X,

δk, Yk = E
(2)

where Yk denotes the channel output of receiver k, E stands
for an erased output, δk denotes the erasure probability of
user k. We let Si ∈ S = 2{1,...,K} denote the state of the
channel in slot i which indicates the users who received cor-
rectly the packet. We assume that the transmitter obtains
the state feedback Si−1 at the end of slot i while all the
receivers know Sn at the end of the transmission.

The caching is performed in two phases: placement phase
and delivery phase. In placement phase, the server fills the
caches of all users Z1, . . . , ZK up to the memory constraint.
As in most works in the literature, we assume that the place-
ment phase is done without error and neglect the cost, since
it takes place usually during off-peak traffic hours. Once
each user k makes a request dk, the server sends codewords
so that each user can decode its requested file as a func-
tion of its cache content and received signals during de-
livery phase. We provide a more formal definition below.
A (M1, . . . ,MK , Fd1 , . . . , FdK , n) caching scheme consists of
the following components.

• N message files W1, . . . ,WN are independently and

uniformly distributed over W1 × · · · ×WN with Wi =

FFiq for all i.

• K caching functions are given by φk : F
∑N
i=1 Fi

q →
FFMkq map the files W1, . . . ,WN into the cache con-
tents

Zk , φk(W1, . . . ,WN ) (3)

for each user k.

• A sequence of encoding functions which transmit at
slot i a symbol Xi = fi(Wd1 , . . . ,WdK , S

i−1) ∈ Fq,
based on the requested file set and the channel feed-
back up to slot i − 1 for i = 1, . . . , n, where Wdk ,
dk ∈ {1, . . . , N}, denotes the message file requested by
user k.

• A decoding function of user k is given by the mapping

ψk : Fnq ×FFMkq ×Sn → FFdkq so that the decoded file

is Ŵdk = ψk(Y nk , Zk, S
n) as a function of the received

signals Y nk , the cache content Zk, as well as the state
information Sn.

A rate tuple (R1, . . . , RK) is said to be achievable if, for
every ε > 0, there exists a (M1, . . . ,MK , Fd1 , . . . , FdK , n)
caching strategy that satisfies the reliability condition

max
(d1,...,dK)∈{1,...,N}K

max
k

Pr(ψk(Y nk , Zk, S
n) 6= Wdk ) < ε

as well as rate condition

Rk <
Fdk
n
. (4)

Throughout the paper, we express the entropy and the rate
in terms of packets in oder to avoid the constant factor L =
log2 q. For simplicity reasons we denote for any parameter
ak for k ∈ [K] and any subset J ⊆ [K], āJ =

∏
k∈J (1−ak)

and aJ =
∏
k∈J ak

2.2 Decentralized cache placement
We mainly focus on decentralized cache placement proposed
in [5] and adapt it to the packet-based broadcast channel
(with no error). Under the memory constraint of MkF pack-
ets, each user k independently caches a subset of pkF pack-
ets of file i, chosen uniformly at random for i = 1, . . . , N ,
where pk = Mk

N
. By letting LK(Wi) denote the sub-file of

Wi stored exclusively in the cache memories (known) of the
users in K, the cache memory Zk of user k after decentralized
placement is given by

Zk = {LK(Wi) ∀k ⊆ K ⊆ [K], ∀i = 1, . . . , N} (5)

which satisfies the memory constraint for user k

|Zk| = pk

N∑
i=1

Fi = Npk

∑N
i=1 Fi

N
= MkF. (6)

2.3 Main results
In order to present the main results, we specify two special
cases.

Definition 1. The cache-enabled EBC (or the network)
is said symmetric if the erasure probabilities as well as the



memory sizes are the same for all users, i.e. δ1 = · · · = δK
and p1 = · · · = pK .

Definition 2. The rate vector is said one-sided fair in
the cache-enabled EBC if δk ≥ δj and for k 6= j implies{

p̄k
pk
Rk ≥ p̄j

pj
Rj

δkRk ≥ δjRj
(7)

For the special case where pk = 0 ∀k ∈ [K], it is reduced to
δkRk ≥ δjRj which coincide with the definition of one-sided
fair in [13, 14].

We focus on the case of most interest with N ≥ K and
assume further that users’ demands are all distinct.

Theorem 1. For K ≤ 3, or for the symmetric network
with K > 3, or for the one-sided fair rate with K > 3, the
achievable rate region of the cached-enabled EBC with state
feedback under decentralized cache placement is given by

K∑
k=1

∏k
j=1(1− pπj )

1−
∏k
j=1 δπj

Rπk ≤ 1 (8)

for any permutation π of {1, . . . ,K}.

The proof of Theorem 1 is provided in upcoming sections.
The following corollary holds.

Corollary 1. For K ≤ 3, or for the symmetric network
with K > 3, or for the one-sided fair rate with K > 3,
the minimum number of transmissions to deliver a distinct
requested file to each user in the cached-enabled EBC under
decentralized cache placement is given by

Ttot =

K∑
k=1

Θ(Fdπk )
∏k
j=1(1− pπj )

1−
∏k
j=1 δπj

(9)

as Fi →∞ for all i, for some permutation π determined by
the parameters.

The following remarks are in order. The results cover some
special cases of interest. For the symmetric cache-enabled
EBC (pk = p, δk = δ ∀k), the above region simplifies to

K∑
k=1

(1− p)k

1− δk Rπk ≤ 1, ∀π. (10)

Exploiting a polyhedron structure, the achievability for a
general K has been proved in [16]. For the case without
cache memory (pk = 0 ∀k), the region in Theorem 1 boils
down to the rate region of the EBC with state feedback [13,
14] given by

K∑
k=1

Rπk
1−

∏k
j=1 δj

≤ 1, ∀π. (11)

For the case of no erasure and equal file size (δk = 0, ∀k, Fi =
F,∀i), the number of transmission in Corollary 1 scaled by F

Figure 2: A two-user rate region for with (p1, p2) =
( 1

3
, 2

3
), (δ1, δ2) = ( 1

4
, 1

2
).

coincides with the rate-memory tradeoff under decentralized
cache placement for asymmetric memory sizes [15] given by

Ttot

F
=

K∑
k=1

[
k∏
j=1

(
1− Mj

N

)]
. (12)

Further, if the memory size is equal for all users, i.e. Mk =
M for all k, the number of transmission (12) boils down into
the rate-memory tradeoff under decentralized cache place-
ment [5] given by

Ttot

F
=
N

M

(
1− M

N

){
1−

(
1− M

N

)K}
. (13)

To illustrate the impact of the asymmetric memory sizes
and erasure probabilities, let us consider a two-user exam-
ple (case 1) with (p1, p2) = ( 1

3
, 2

3
) and (δ1, δ2) = ( 1

4
, 1

2
).

Theorem 1 yields the rate region given by

8

9
R1 +

16

63
R2 ≤ 1

16

63
R1 +

2

3
R2 ≤ 1. (14)

The region depicted in Fig. 2 is characterized by three ver-
tices ( 9

8
, 0) (0.78, 1.20), and (0, 63

16
). The vertex (0.78, 1.20),

achieving the sum rate of 1.98, corresponds to the case when
the requested files satisfy the ratio Fd2/Fd1 = 20/13. Let
us consider another example where two users have both a
memory size of p1 = p2 = 1

2
while keeping the erasure prob-

abilities as before. The maximum sum rate in the latter case
is 1.87 smaller than the former case.

3. ACHIEVABILITY
We provide a sketch of achievability proof of Theorem 1 by
focusing on the case of the one-sided fair rate vector. We
first revisit the broadcasting scheme proposed in [13, 14] for
the EBC with feedback, and then adapt it to the cached-
enabled network.

3.1 Revisiting the broadcasting scheme [13, 14]
We provide a high-level description of the broadcasting scheme
[13, 14] by assuming the number of private packets {Fk} is



arbitrarily large so that the length of each phase becomes de-
terministic. The broadcasting algorithm has two main roles:
1) broadcast new information packets and 2) multicast side
information or overheard packets thanks to state feedback.
From this reason, we can call phase 1 broadcasting phase and
phases 2 to K multicasting phase. Phase j consists of

(
K
j

)
sub-phases in each of which the transmitter sends packets
intended to a subset of users J for j = |J |. We let LJ (VK)
denote the part of packet VK received by users in J and
erased by [K] \ J . Here is a high-level description of the
broadcasting algorithm:

1. Broadcasting phase (phase 1): send each message Vk =
Wk of Fk packets sequentially for k = 1, . . . ,K. This
phase generates overheard symbols {LJ (Vk)} to be
transmitted via linear combination in multicasting phase,
where J ⊆ [K] \ k for all k.

2. Multicasting phase (phases 2 −K): for a subset J of
users, generate VJ as a linear combination of overheard
packets such that

VJ = FJ
(
{LJ\I∪I′(VI)}I′⊂I⊂J

)
(15)

where FJ denotes a linear function. Send VJ sequen-
tially for all J ⊆ [K] of the cardinality |J | = 2, . . . ,K.

The achievability result of [13, 14] implies the following
lemma.

Lemma 1. For K ≤ 3, or for the symmetric channel with
K > 3, or for the one-sided fair rate with K > 3, there exist
linear functions {FJ } as well as π, such that Fk independent
linear functions of Wk can be obtained from {LK(VJ )} for
k ∈ K and J ⊆ [K], for the total duration of

Ttot =

K∑
k=1

Θ(Fπk )

1−
∏k
j=1 δπj

.

The proof is omitted because the proof in section 3.2 covers
the case without user memories. In order to determine the
total transmission duration, we need to introduce further
some notions and parameters.

• A packet intended to J is consumed for a given user
k ∈ J if this user or at least one user in [K] \ J
receives it. The probability of such event is equal to
1−

∏
j∈[K]\J∪{k} δj .

• A packet intended to I creates a packet intended to
users in J for user k ∈ I ⊂ J ⊆ [K] if erased by
user k and all users in [K] \ J but received by J \ I.

The probability of such event is denoted by α
{k}
I→J =∏

j′∈[K]\J∪{k} δj′
∏
j∈J\I(1− δj). We let

N
{k}
I→J = t

{k}
J α

{k}
I→J (16)

denote the number of such packets, where t
{k}
J will be

defined shortly. We can also express N
{k}
I→J as

N
{k}
I→J =

∑
I′⊆I\k

|LJ\I∪I′(V {k}I )| (17)

Figure 3: Phase organization for K = 3 and packet
evolution viewed by user 1.

where we let V
{k}
I denotes the part of VI required for

user k.

• The duration tJ of sub-phase J is given by tJ =

maxk∈J t
{k}
J where

t
{k}
J =

∑
k∈I⊂J N

{k}
I→J

1−
∏
j∈[K]\J∪{k} δj

(18)

The total duration is given by summing up all sub-phases,
i.e. Ttot =

∑
J⊆[K] tJ .

Fig. 3 illustrates the phase organization for K = 3 and the
packet evolution viewed by user 1. The packets intended
to {1, 2, 3} are created both from phases 1 and 2. More
precisely, sub-phase {1} creates L23(V1) to be sent in phase
3 if erased by user 1 and received by others (ERR). The

number of such packets is N
{1}
1→123. Sub-phase {1, 2} creates

L3(V12),L23(V12) if erased by user 1 but received by user 3
(EXR), while sub-phase {1, 3} creates L2(V13),L23(V13) if
erased by user 1 and received by user 2 (ERX). The total
number of packets intended to {1, 2, 3} generated in phase

2 and required by user 1 is N
{1}
12→123 +N

{1}
13→123.

3.2 Proposed delivery scheme
We describe the proposed delivery scheme by focusing on
the one-sided fair rate vector. Namely, we assume without
loss of generality δ1 ≥ · · · ≥ δK , δ1R1 ≥ · · · ≥ δKRK , and
1−p1
p1

R1 ≥ · · · ≥ 1−p2
p2

RK .

We assume also that user k requests file Wk of size Fk pack-
ets for k = 1, . . . ,K. In the presence of users’ caches, the
packets to transmit in a given phase are composed by the
packets created in the placement phase and previous phases
of the algorithm.

Placement phase The placement phase creates packets
{LJ (Wk)} for J ⊂ [K] and for k = 1, ..,K. The size of
each sub-file given by

|LJ (Wk)| =
∏
j∈J

pj
∏

l∈[K]\J

(1− pl)Fk (19)

Obviously, the sub-file LJ (Wk) for k ∈ J are received by the
destination and shall not be transmitted in delivery phase.

Phase 1 The transmitter sends V1, .., VK sequentially un-
til at least one user receives it, where Vk = L∅(Wk) corre-
sponds to the order-1 packets created by placement phase



The length of sub-phase {k} is given by

tk =
|Vk|

1−
∏
j∈[K] δj

=

∏
j∈[K](1− pj)Fk
1−

∏
j∈[K] δj

. (20)

Phase 1 creates packets to be sent in phases 2 and 3. The
sub-phase {k} creates packets LJ (Vk) to be sent in a sub-
phase J ∪ {k}, where k /∈ J , whose number is given by

N
{k}
k→J∪{k} = |LJ (Vk)| = tk

∏
k∈J

(1− δk)
∏

k∈[K]\J

δk (21)

for J ⊆ [K] \ {k}.
Phases 2 . . .K For a subset J of users, generate VJ as
a linear combination of overheard packets during the place-
ment phase as well as during phases 1 to j − 1.

VJ = FJ
(
{LJ\I∪I′(VI)}I′⊂I⊂J ,LJ\{k}(Wk)

)
(22)

The duration tJ of sub-phase J is given by tJ = maxk∈J t
{k}
J

where

t
{k}
J =

∑
k∈I⊂J N

{k}
I→J + |LJ\{k}(Wk)|

1−
∏
j∈[K]\J∪{k} δj

(23)

Following similar steps as [14, Appendix C], it is possible to
prove that

∑
I⊆J

t
{k}
I =

∏
j∈[K]\J∪{k}(1− pj)

1−
∏
j∈[K]\J∪{k} δj

Fk (24)

As a result we prove in Appendix A that it holds

t
{k}
J =

∑
H⊆J\{k}

(−1)|H|
∏
j∈[K]\J∪{k}∪H(1− pj)

1−
∏
j∈[K]\J∪{k}∪H δj

Fk (25)

The length of a sub-phase J is given by the worst user
among the subset J . For the case of one-sided fair rate
vectors, it is possible to prove that there exists π̃ satisfying

arg max
k∈J

t
{k}
J = min

k∈J
(π̃−1(k)) ∀J ⊆ [K]. (26)

The proof is provided in Appendix B. Moreover, such per-
mutation corresponds to the identity permutation. This
means the user permutation (which determines the sub-phase
length) is preserved in all sub-phases for the one-sided fair
rate vector of Definition 2. The worst user, user 1 with the
largest erasure probability, yields the maximum t1J over all
subsets J including 1. Proved in Appendix D, the total
duration can be derived as follows

Ttot =
∑
J⊆[K]

max
k∈J

t
{k}
J =

∑
J⊆[K]

t
{k?}
J (27)

=

K∑
k=1

Fdk
∏k
j=1(1− pj)

1−
∏k
j=1 δj

(28)

where we let k? the smallest index in J . Dividing both sides

by Ttot and letting Rk =
Fdk
Ttot

, we readily obtain

K∑
k=1

∏k
j=1(1− pj)

1−
∏k
j=1 δj

Rk = 1 (29)

Since under the one-sided fair rate constraint of Definition 2
the above inequality implies all the other K!−1 inequalities

of the rate region as proved in Appendix C, this establishes
the achieability.

4. OPTIMALITY OF DELIVERY PHASE
In this section, we provide the converse part of Theorem
1.First we provide two useful lemmas.

Lemma 2. [11, Lemma 5] For the erasure broadcast chan-
nel, if U is such that Xi ↔ UY i−1

I Si−1 ↔ (Si+1, . . . , Sn),
∀ I,

1

1−
∏
j∈I δj

H(Y nI |U, Sn) ≤ 1

1−
∏
j∈J δj

H(Y nJ |U, Sn),

(30)

for any sets I,J such that J ⊆ I ⊆ {1, . . . ,K}.

Lemma 3. Under decentralized cache placement [5], the
following equality holds for any i and K ⊆ [K]

H(Wi | {Zk}k∈K) =
∏
k∈K

(1− pk)H(Wi).

Proof.

H(Wi | {Zk}k∈K)

= H(Wi | {LJ (Wl)}J∩K6=∅, l=1,...,N ) (31)

= H(Wi | {LJ (Wl)}J∩K6=∅) (32)

= H({LJ (Wi)}J∩K=∅) (33)

=
∑

J⊆[K]\K

H(LJ (Wi)) (34)

=
∑

J⊆[K]\K

∏
j∈J

pj
∏

k∈[K]\J

(1− pk)H(Wi) (35)

=
∏
k∈K

(1− pk)
∑

J⊆[K]\K

∏
j∈J

pj
∏

k∈[K]\K\J

(1− pk)H(Wi)

(36)

=
∏
k∈K

(1− pk)H(Wi) (37)

where the first equality follows from (5); the second equality
follows due to the independence between message files; the
third equality follows by identifying the unknown parts ofWi

given the cache memories of K and using the independence of
all sub-files; (34) is again from the independence of the sub-
files; (35) is from the law of large number similarly as in (6);
finally, the last equality is obtained from the following basic
property that we have

∑
J⊆L

∏
j∈J pj

∏
k∈L\J (1− pk) = 1

for a subset L = [K] \ K.

We apply genie-aided bounds to create a degraded erasure
broadcast channel by providing the messages, the channel
outputs, as well as the receiver side information (contents
of cache memories) to enhanced receivers. Without loss of
generality, we focus on the case without permutation and



the demand (d1, . . . , dK) = (1, . . . ,K). We have for user k,

n

k∏
j=1

(1− pj)Rk =

k∏
j=1

(1− pj)H(Wk) (38)

= H(Wk|ZkSn) (39)

≤ I(Wk;Y n[k] |ZkSn) + nε′n,k (40)

≤ I(Wk;Y n[k],W
k−1 |ZkSn) + nε′n,k (41)

= I(Wk;Y n[k] |W k−1ZkSn) + nε′n,k (42)

where the second equality is by applying Lemma 3 and not-
ing that Sn is independent of others, (40) is from the Fano’s
inequality; the last equality is from I(Wk;W k−1 |ZkSn) =
0. Putting all the rate constraints together, and letting
εn,k , ε′n,k/

∏k
j=1(1− pj),

n(1− p1)(R1 − εn,1) ≤ H(Y n1 |Z1S
n)−H(Y n1 |W1Z1S

n)

...

n

K∏
j=1

(1− pj)(RK − εn,K) ≤ H(Y n[K] |WK−1ZKSn)

−H(Y n[K] |WKZKSn) (43)

We now sum up the above inequalities with different weights,
and applying Lemma 2 for K − 1 times, namely, for k =
1, . . . ,K − 1,

H(Y n[k+1] |W kZk+1Sn)

1−
∏
j∈[k+1] δj

≤
H(Y n[k+1] |W kZkSn)

1−
∏
j∈[k+1] δj

(44)

≤
H(Y n[k] |W kZkSn)

1−
∏
j∈[k] δj

(45)

where the first inequality follows because removing condi-
tioning increases the entropy. Finally, we have

K∑
k=1

∏
j∈[k](1− pj)

1−
∏
j∈[k] δj

(Rk − εn)

≤ H(Y n1 |Z1S
n)

n(1− δ1)
−
H(Y n[K] |WKZKSn)

n(1−
∏
j∈[k] δj)

(46)

≤ H(Y n1 )

n(1− δ1)
≤ 1 (47)

which establishes the converse proof.

5. CONCLUSION
In this paper, we studied the decentralized coded caching
in the erasure broadcast channel with state feedback by in-
troducing the asymmetry in the user memory sizes as well
as the channel statistic. Our contribution is the character-
ization of the achievable rate region of the channel under a
general setting as a non-trivial extension of the work [16]
focusing on the case of the equal memory size and erasure
probability. A toy example with two users shows that the
asymmetry in memory sizes potentially improves the sum
rate performance. The detailed analysis as well as numeri-
cal examples for a large network dimension remain as future
works.
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APPENDIX
A. LENGTH OF SUB-PHASE
we first introduce a new variable g

{k}
J =

t
{k}
J
Fk

for k ∈ J ⊆
[K]. Using (24) we obtain∑

I⊆J

g
{k}
I = wj∈[K]\J∪{k} (48)

where wJ =
∏
j∈J (1−pj)

1−
∏
j∈J δj

. We first need to prove the follow-

ing lemma

Lemma 4. For any nonempty set [K] and J ⊆ [K]. It
holds ∑

I⊆J

∑
H⊆I

(−1)|H|w[K]\I∪H = w[K]\J (49)

Proof.∑
I⊆J

∑
H⊆I

(−1)|H|w[K]\I∪H =
∑
I⊆J

∑
H⊆I

(−1)|H|w[K]\(I\H)

(50)

=
∑
I⊆J

∑
H′⊆I

(−1)|I\H
′|w[K]\H′

(51)

=
∑
H′⊆J

∑
H′⊆I⊆J

(−1)|I\H
′|w[K]\H′

(52)

=
∑
H′⊆J

w[K]\H′
∑

H′⊆I⊆J

(−1)|I\H
′|

(53)

=
∑
H′⊆J

w[K]\H′
∑

I′⊆J\H′

(−1)|I
′|

(54)

= w[K]\J (55)

The last equality came from the fact that
∑
I⊆J (−1)|I| = 0

for all J 6= ∅.

We prove (25) by induction on |J |. for J = {i} we obtain∑
i∈I⊆J g

{i}
I = g

{i}
J = w[K]\J∪{i} and

∑
H⊆J\{i}(−1)|H|w[K]\J∪{i}∪H =

w[K]\J∪{i}. Thus for |J | = 1

g
{i}
J =

∑
H⊆J\{i}

(−1)|H|w[K]\J∪{i}∪H (56)

Now suppose (56) holds for any I ⊆ [K] such that |I| < |J |
and we prove in the following that it holds for J too. We
have ∑

i∈I⊆J

g
{i}
I = w[K]\J∪{i} (57)

= g
{i}
J +

∑
i∈I⊂J

g
{i}
I (58)

(59)

thus, using Lemma 4 we obtain

g
{i}
J = w[K]\J∪{i} −

∑
i∈I⊂J

g
{i}
I (60)

= w[K]\J∪{i} −
∑

i∈I⊂J

∑
H⊆I\{i}

(−1)|H|w[K]\I∪{i}∪H

(61)

= w[K]\J∪{i} −
∑

i∈I⊆J

∑
H⊆I\{i}

(−1)|H|w[K]\I∪{i}∪H

(62)

+
∑

H⊆J\{i}

(−1)|H|w[K]\J∪{i}∪H (63)

= w[K]\J∪{i} −
∑

I⊆J\{i}

∑
H⊆I

(−1)|H|w[K]\I∪H (64)

+
∑

H⊆J\{i}

(−1)|H|w[K]\J∪{i}∪H (65)

= w[K]\J∪{i} − w[K]\(J\{i}) +
∑

H⊆J\{i}

(−1)|H|w[K]\J∪{i}∪H

(66)

=
∑

H⊆J\{i}

(−1)|H|w[K]\J∪{i}∪H (67)

B. EXISTENCE OF THE PERMUTATION
∀ J ⊆ [K] s.t |J | ≥ 2 we set m = min(J ). ∀ i ∈ J we
have δm ≥ δi; δmRm ≥ δiRi and p̄m

pm
Rm ≥ p̄i

pi
Ri.

From (17), (19) and (23) we obtain

g
{i}
J =

1

1− δ[K]\J∪{i}

[ ∑
i∈I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i} + pJ\{i}p̄[K]\J∪{i}

]
(68)

and

g
{m}
J =

1

1− δ[K]\J∪{m}

[ ∑
m∈I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m} + pJ\{m}p̄[K]\J∪{m}

]
(69)

We prove by induction on |J | that Rmg
{m}
J ≥ Rig

{i}
J : For

|J | = 2 , J = {m, i} so

g
{i}
J =

1

1− δ[K]\J∪{i}

[
g
{i}
i δ̄mδ[K]\J∪{i} + pmp̄[K]\J∪{i}

]
(70)

and

g
{m}
J =

1

1− δ[K]\J∪{m}

[
g{m}m δ̄iδ[K]\J∪{m} + pip̄[K]\J∪{m}

]
(71)

Since δm ≥ δi, it holds 1
1−δ[K]\J∪{m}

≥ 1
1−δ[K]\J∪{i}

and

δ̄i ≥ δ̄m. Since p̄m
pm
Rm ≥ p̄i

pi
Ri, it holds pip̄[K]\J∪{m}Rm ≥

pmp̄[K]\J∪{i}Ri. In addition we have from (25) : g
{m}
m =



g
{i}
i =

p̄[K]

1−δ[K]
and δmRm ≥ δiRi, thus we obtain Rmg

{m}
J ≥

Rig
{i}
J .

Suppose that it holds for any I ⊆ [K] s.t. |I| < |J | and

m = min(I): Rmg
{m}
I ≥ Rig

{i}
I , and we prove it in the

following that it holds also for J .

Since δm ≥ δi, it holds 1
1−δ[K]\J∪{m}

≥ 1
1−δ[K]\J∪{i}

. Since
p̄m
pm
Rm ≥ p̄i

pi
Ri, it holds

pJ\{m}p̄[K]\J∪{m}Rm ≥ pJ\{i}p̄[K]\J∪{i}Ri. It is left to
prove that

Rm
∑

m∈I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m}

≥ Ri
∑

i∈I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i} (72)

We have∑
m∈I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m}

=
∑

{m,i}⊆I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m}

+
∑

m∈I⊂J\{i}

g
{m}
I δ̄J\Iδ[K]\J∪{m} (73)

=
∑

{m,i}⊆I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m}

+
∑

I⊂J\{i,m}

g
{m}
I∪{m}δ̄J\I\{m}δ[K]\J∪{m} (74)

on the other hand we have∑
i∈I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i}

=
∑

{m,i}⊆I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i}

+
∑

i∈I⊂J\{m}

g
{i}
I δ̄J\Iδ[K]\J∪{i} (75)

=
∑

{m,i}⊆I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i}

+
∑

I⊂J\{m,i}

g
{i}
I∪{i}δ̄J\I\{i}δ[K]\J∪{i} (76)

∀ {m, i} ⊆ I ⊂ J |I| < |J |; min(I) = m and i ∈ I so by

the hypothesis we have g
{m}
I Rm ≥ g

{i}
I Ri. In addition we

have δm ≥ δi thus∑
{m,i}⊆I⊂J

g
{m}
I δ̄J\Iδ[K]\J∪{m}Rm

≥
∑

{m,i}⊆I⊂J

g
{i}
I δ̄J\Iδ[K]\J∪{i}Ri (77)

We have δm ≥ δi so δ̄i ≥ δ̄m. Since Rmδm ≥ Riδi then
δ̄J\I\{m}δ[K]\J∪{m}Rm ≥ δ̄J\I\{i}δ[K]\J∪{i}Ri. ∀ I ⊂

J \ {m, i} we have from (25) g
{m}
I∪{m} = g

{i}
I∪{i}. Thus

Rm
∑

I⊂J\{i,m}

g
{m}
I∪{m}δ̄J\I\{m}δ[K]\J∪{m}

≥ Ri
∑

I⊂J\{m,i}

g
{i}
I∪{i}δ̄J\I\{i}δ[K]\J∪{i} (78)

and the proof is completed.

C. THE OUTERBOUND UNDER THE ONE-
SIDED FAIR RATE

Suppose ∃ π1 such that
∑K
j=1 Rπ1(j)wπ1(1)..π1(j) ≤ 1 and

for a given i ∈ [K] π1(i) ≤ π1(i + 1). We prove that for
any permutation π2 that satisfies π2(i + 1) = π1(i) = k ;
π2(i) = π1(i+1) = k′ and π1(j) = π2(j) ∀ j ∈ [K]\{i, i+1},
it holds

∑K
j=1 Rπ2(j)wπ2(1)..π2(j) ≤ 1. It suffices to show that

wπ1(1)..π1(i)Rπ1(i) + wπ1(1)..π1(i+1)Rπ1(i+1)

≥ wπ2(1)..π2(i)Rπ2(i) + wπ2(1)..π2(i+1)Rπ2(i+1)

⇔
(wπ1(1)..π1(i) − wπ2(1)..π2(i+1))Rπ1(i)

≥ (wπ2(1)..π2(i) − wπ1(1)..π1(i+1))Rπ1(i+1)

⇔
(wIk − wIkk′)Rk

≥ (wIk′ − wIkk′)Rk′ (79)

where I = π1(1)..π1(i − 1). By replacing the weigh by its
expression we obtain

wIk − w̃Ikk′ =
p̄Ik

1− δIk
− p̄Ikk′

1− δIkk′
(80)

= p̄Ik

[
1

1− δIk
− 1

1− δIkk′
+

pk′

1− δIkk′

]
(81)

= p̄Ik

[
(1− δIkk′)− (1− δIk)

(1− δIk)(1− δIkk′)
+

pk′

1− δIkk′

]
(82)

=
p̄Ik

1− δIkk′

[
δIk(1− δk′)

(1− δIk)
+ pk′

]
(83)

and similarly

wIk′ − w̃Ikk′ =
p̄Ik′

1− δIkk′

[
δIk′(1− δk)

(1− δIk′)
+ pk

]
(84)

thus (79) is equivalent to

δI(1− δk′)
(1− δIk)

p̄kδkRk −
δI(1− δk)

(1− δIk′)
p̄k′δk′Rk′ + (p̄kpk′Rk − p̄k′pkRk′) ≥ 0

(85)

Since k ≤ k′ then δk ≥ δk′ , so it is sufficient to prove that

δI(1− δk)

(1− δIk′)
[p̄kδkRk − p̄k′δk′Rk′ ]︸ ︷︷ ︸

A

+ (p̄kpk′Rk − p̄k′pkRk′)︸ ︷︷ ︸
B

≥ 0

(86)



This is satisfied if A ≥ 0 and B ≥ 0. The condition B is
equivalent to

Rk′

Rk
≤ p̄kpk′

p̄k′pk

∆
= θ (87)

We will examine condition A by considering the case pk′ ≥
pk and pk ≥ pk′ separately.

• Case θ > 1
In this case we have pk < pk′ , or p̄k > p̄k′ . Condition
A reduces to:

δkRk − δk′Rk′ ≥ 0.

• Case θ < 1
In this case we have pk > pk′ or p̄k < p̄k′ . Then we
have

Rk′

Rk
≤ p̄kpk′

p̄k′pk
≤ p̄kδk
p̄k′δk′

≤ δk
δk′

This means that B implies A so that the desired in-
equality holds once B holds. Since A is inactive, we
can then consider a looser bounds

δkRk − δk′Rk′ ≥ 0.

So we obtain the result. Starting by π1 as the identity we
can obtain all the remaining K!− 1 permutations.

D. TOTAL DURATION
We have

Ttot =
∑
J⊆[K]

max
j∈J

{
tjJ

}
(88)

=
∑
J⊆[K]

max
j∈J

{
gjJFj

}
(89)

=

K∑
i=1

∑
J :i=min(J )

max
j∈J

{
gjJFj

}
(90)

=

K∑
i=1

∑
J :i=min(J )

giJFi (91)

=

K∑
i=1

Fi
∑

i∈J⊆{i..K}

giJ (92)

=

K∑
i=1

Fiw[K]\{i..K}∪{i} (93)

=

K∑
i=1

Fiw{1..i} (94)

=

K∑
i=1

Fi

∏i
j=1(1− pj)

1−
∏i
j=1 δj

(95)

Since RRR is one sided fair, (91) follows from the fact that
arg maxj∈J (gjJRj) = arg maxj∈J (gjJFj) = min(J ). (93)

follows from the equality
∑
i∈I⊆J g

i
I = w[K]\J∪{i}.


