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Abstract

In this paper we investigate when a parameterized controller, designed for a plant
depending on unknown parameters, admits a realization which is independent of
the parameters. It is argued that adaptation is unnecessary for this class of
parameterized controllers. We prove that standard model reference controllers
(state and output–feedback) for linear time invariant systems with a filter at the
plant input admit a parameter independent realization. Although the addition of
such a filter is of questionable interest, our result formally, and unquestionably,
establishes the deleterious effect of such a modification, which has been widely
publicized in the control literature under the name L1–adaptive control.

Keywords: Adaptive control, model reference control, controller
parameterizations.

1. Introduction and Problem Formulation

The following question is addressed in this paper. Consider a linear time–
invariant (LTI) parameterized plant

ẋ = A(θ)x+B(θ)u

y = C(θ)x,

with state x ∈ R
n, u ∈ R

m, y ∈ R
p the plant input and output, respectively, and

θ ∈ R
q a vector of constant parameters; and an LTI parameterized controller

ξ̇ = Ac(θ)ξ +Bc(θ)

[

y

r

]

u = Cc(θ)ξ,
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with ξ ∈ R
nξ and r ∈ R

s some external reference. Their feedback interconnection
generates a closed–loop transfer matrix

Y (s) = Pcl(s, θ)R(s).

Under which conditions does there exists a partial change of coordinates

χ = T (θ)

[

x

ξ

]

, (1)

with T (θ) : Rnξ×(n+nξ) such that the following holds true.

(i) The dynamics of the controller in the coordinates χ is independent of the
parameters θ.

(ii) The transfer matrix Pcl(s, θ) remains invariant.

A controller verifying these conditions is said to admit a parameter–independent
realization or, in short, that it is a PIRC.

Our interest in this question stems from model reference adaptive control
(MRAC) where it is assumed that the parameters of the plant θ are unknown but
a parameterized controller that matches a desired reference model is assumed to
be known. The scheme is made adaptive replacing in the controller the unknown
vector θ by an on–line estimate θ̂, which is generated via a parameter identifier.
The rationale behind this approach is, clearly, that if the estimated parameters
θ̂ converge to their true value θ then—modulo some technical conditions—the
adaptive controller will achieve the control objective.1

From this perspective it is clear that for a PIRC there is no need to make the
scheme adaptive! Indeed, we can simply plug–in the parameter–free controller,
which will generate the ideal closed–loop transfer matrix Pcl(s, θ), ensuring the
control objective.

Interestingly, this very simple observation has been totally overlooked by the
adaptive control community. In particular, a flood of publications—see [2] and
references therein—is devoted to the analysis and design of “adaptive” schemes,
which turn out to be based on PIRC. The parameterized controller proposed in
[2] consists of the addition of an LTI filter to a classical state–feedback model
reference controller (MRC). This simple modification to the state–feedback MRC
is called “L1–AC architecture” in [2].

The main contributions of the paper are the proofs of the following facts.

1As is well–known [6], consistent parameter estimation is not necessary to achieve the control
objective, this is the so–called self–tuning property of adaptive control.
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R1 Standard state–feedback and output–feedback MRC are not PIRC.

R2 Adding any LTI, strictly proper, input filter to the standard state–feedback
MRC makes it a PIRC. Hence the L1–AC architecture is a PIRC.

R3 Output–feedback MRC can be rendered a PIRC adding a suitably chosen

LTI input filter.

The first result is rather obvious and, as seen below, the proof is straightfor-
ward. In view of the discussion above, the second result puts a serious question
mark on the relevance of L1–AC. Since there is no reason why we should like
to add an input filter to output–feedback MRC the last fact is of little practical
interest, but is given to underscore the deleterious effect of adding input filters
to the plant.

In [4] R2 was established for the case of first–order plants with first order
filters and a regulation objective, i.e., r constant. The generalization to n–th
order plants was reported in [5] for the case of stabilization, i.e., r = 0. To the
best of our knowledge, these are the only two publications that have addressed
the issues raised in this paper.

The remaining of the paper is organized as follows. State–feedback MRC, and
it’s filtered version, are studied in Section 2. Section 3 is devoted to output–
feedback MRC. The analysis of state–feedback MRC is carried–out using state
realizations of both, the plant and the controller. On the other hand, for the
analysis of output–feedback MRC it is more natural to use polynomial repre-
sentations. We wrap–up the paper with some concluding remarks regarding the
adaptive implementations of the various MRC in Section 4.

2. State–feedback Model Reference Control

In its simplest version state–feedback MRC deals with single–input, LTI sys-
tems of the form

ẋ = Ax+ bu (2)

where x ∈ R
n is assumed to be measurable,

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a1 −a2 −a3 . . . −an
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where ai ∈ R, i ∈ n̄ := {1, . . . , n} are unknown coefficients, and b = en—the n–th
vector of the Euclidean basis.2 We are also given a reference model

ẋm = Amxm + br

where the state xm ∈ R
n and r ∈ R is a bounded reference, Am ∈ R

n×n is the
Hurwitz matrix

Am =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−am1 −am2 −am3 . . . −amn















with ami ∈ R+, i ∈ n̄, designer chosen coefficients.
Defining the vector of unknown parameters

θ = col(a1 − am1 , a2 − am2 , . . . , an − amn ),

where col(·) denotes column vector, it is clear that

A+ bθ⊤ = Am. (3)

Hence, invoking (3), we can write (2) in the equivalent parameterized system
form

ẋ = (Am − bθ⊤)x+ bu. (4)

A parameterized controller that achieves the model matching objective is clearly

u = θ⊤x+ r. (5)

This MRC is made adaptive adding an identifier that generates the estimated
parameters, denoted θ̂ ∈ R

n.
In [2] it is proposed to add a filter at the plant input, that is, to compute u via

u = F (p)(θ̂⊤x+ r)

where F (p) ∈ R(p), p := d
dt
, is strictly proper and stable. More precisely,

F (p) =
Nf (p)

Df (p)
, (6)

2This assumption is made to simplify the notation and without loss of generality. See Remark
R3 in [5].
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where,

Df (p) =

nDf
∑

i=0

dfip
i, Nf (p) =

nNf
∑

i=0

nfip
i

with nDf
> nNf

and Df (p) and Nf (p) are coprime with designer chosen coef-
ficients. This simple modification to the state–feedback MRC is called “L1–AC
architecture” in [2].

A state realization of the filtered state–feedback MRC is

ξ̇ = Af ξ + bf (θ
⊤x+ r)

u = c⊤f ξ, (7)

where
F (p) = c⊤f (pI −Af )

−1bf ,

and nξ = nDf
.

Proposition 1. Consider the plant (4). The classical state–feedback MRC (5)
is not a PIRC. On the other hand, for any filter (6), its filtered version (7) is a
PIRC.

Proof 1. The fact that the static state–feedback (5) is not a PIRC is obvious,
as there is no way it can be implemented without knowledge of θ.

We will prove now that applying to (7) the partial coordinate transformation
(1), with3

T =
[

bf b
⊤ | Inξ

]

,

verifies the conditions (i) and (ii) of Section 1. First, we compute the transfer
matrix of the plant (4) in closed–loop with (7) as

Pcl(s, θ) =
[

In 0
]

[sI(n+nξ) −Acl(θ)]
−1

[

0
bc

]

,

where

Acl(θ) =

[

Am − bθ⊤ bc⊤f
bfθ

⊤ Af

]

,

is the closed–loop system matrix. Now, the closed–loop system in the coordinates
col(x, χ) takes the form

[

ẋ

χ̇

]

= T Acl(θ)T
−1

[

x

χ

]

+ T

[

0
bc

]

r (8)

3Notice that the proposed T is independent of θ.
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where

T =

[

In 0
bfb

⊤ Inξ

]

is the full–coordinate transformation matrix. Now, the transfer matrix of (4) in
closed–loop with (8) verifies

[

In 0
]

[sI(n+nξ) − T Acl(θ)T
−1]−1T

[

0
bc

]

=

[

In 0
]

T [sI(n+nξ) −Acl(θ)]
−1

[

0
bc

]

= Pcl(s, θ),

proving that the closed–loop transfer matrix is invariant to the change of coordi-
nates.

To complete the proof it remains to show that the controller dynamics in (8)
is independent of θ. Towards this end we compute

T Acl(θ)T
−1 =

[

In 0
bfb

⊤ Inξ

] [

Am − bθ⊤ bc⊤f
bfθ

⊤ Af

] [

In 0
−bfb

⊤ Inξ

]

=

[

In 0
bfb

⊤ Inξ

] [

Am − bθ⊤ − bc⊤f bfb
⊤ bc⊤f

bfθ
⊤ −Af bfb

⊤ Af

]

.

The θ–dependent term in the dynamics of χ is

−bfb
⊤bθ⊤ + bfθ

⊤,

which is equal to zero because b⊤b = 1.

3. Output–feedback Model Reference Control

The classical problem of output–feedback MRC deals with the single–input
single–output LTI plant

D(p)y = N(p)u (9)

where y, u ∈ R,

D(p) =

n
∑

i=0

dip
i, N(p) =

m
∑

i=0

nip
i

with the relative degree
d := n−m ≥ 1,

and D(p) and N(p) are coprime—whose coefficients are unknown in MRAC.
We make the following assumptions

A.1 n and d are known.
6



A.2 nm = 1.

While A.1 is a classical assumption in MRC, we remark that A.2 pertains to the
high–frequency gain of the plant, which is assumed here to be equal to one. This
assumption is made, without loss of generality, to simplify the notation.

The MRC objective is to asymptotically drive to zero the tracking error

e = y −
1

Dm(p)
r (10)

where

Dm(p) =

d
∑

i=0

dmip
i

is a Hurwitz polynomial and r ∈ R is a bounded reference. Consistent with
Assumption A.2 we take dmd = 1.

Instrumental for the development of MRC is the lemma below, known as the
direct control model reference parameterization, first established by Monopoli [3]
and Astrom and Wittenmark [1], see also [6] for a modern derivation of the result.

Lemma 1. Consider the plant (9) and the tracking error (10). There exists a
vector θ ∈ R

2n such that

Dm(p)e = u− θ⊤φ+ ǫt

where ǫt is an exponentially decaying term due to initial conditions,4 and φ ∈ R
2n

is the regressor vector given by

φ =
1

λ(p)
[u, u̇, . . . , u(n−2), y, ẏ, . . . , y(n−2), λ(p)y, λ(p)r]⊤ (11)

with
λ(p) = Σn−1

i=0 λip
i, λn−1 = 1,

a designer chosen Hurwitz polynomial.

Classical MRC consists of a state realization of the transfer matrix (11) and
the control signal

u = θ⊤φ. (12)

We consider also adding a filter at the input of the plant, hence compute the
control input via

u = F (p)(θ⊤φ). (13)

We will refer to this scheme as filtered output–feedback MRC.

4These term will be omitted (without loss of generality) in the sequel.
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Proposition 2. Consider the plant (9) and the tracking error (10).

(i) The output–feedback MRC (11), (12) is not a PIRC.

(ii) The filtered output–feedback MRC (6), (11), (13) is a PIRC for any filter
F (p) verifying the conditions:

C1 nNf
≥ nDf

+ d.

C2 Df (s)−Nf (s) is a stable polynomial.

Proof 2. The key question is whether we can eliminate the parameter–dependent

term θ⊤φ from the controller equations. Since the part of the controller dynamics
that generates φ, that is (11), is independent of the parameters it plays no role
in the analysis. In output–feedback MRC there is no remaining dynamics, but
only the output map (12). The proof of (i) follows then immediately.

To establish the proof of claim (ii) we analyze the error equations

Dm(p)e = u− θ⊤φ

u = F (p)(θ⊤φ). (14)

The question then reduces to the analysis of the transfer function from e to u that
results after eliminating θ⊤φ from (14). If this transfer function, denoted Heu(s),
is stable and proper the controller can be implemented without knowledge of
θ—nor signal differentiation—and the scheme is a PIRC. The transfer function
of interest is

Heu(s) =
NfDm

Nf −Df

(s), (15)

where we have used (6). Finally, claim (ii) follows noting that the conditions C1
and C2 ensure that the transfer function (15) is proper and stable.

4. Concluding Remarks

It has been argued in the paper that it is unnecessary to add adaptation to a
PIRC. The basic premise that justifies this statement is that the control action
of the ideal, known–parameter controller can be generated without knowledge of
the parameters! However, against this conclusion, the following questions may
be raised.

1. Is the set of plants that can be stabilized with the adaptive version of the
controller larger than the set stabilized by its LTI, parameter–independent
realization?

2. Under which conditions the adaptive controller actually converges to its LTI,
parameter–independent realization?
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Answers to these questions have been provided for the L1–AC architecture in [4]
and [5] for the case of r = 0 and a first order filter. In particular, it has been shown
that the answer to the first question above is negative. This fact is established
showing that if the characteristic polynomial of the closed–loop transfer matrix
Pcl(s, θ) is not Hurwitz then the L1–AC, with a a state predictor–based estimator,
generates unbounded trajectories. Furthermore, it has been shown that, if the
L1–AC ensures boundedness of trajectories, then it always converges to its LTI,
parameter–independent realization. This fact is proven writing the L1–AC in the
form

ξ̇ = Afξ + bf (θ
⊤x+ r) + bf θ̃

⊤x

u = c⊤f ξ,

where θ̃ = θ̂− θ is the parameter error. Then, it is shown that, if the trajectories
are bounded, we always have

lim
t→∞

|θ̃⊤(t)x(t)| = 0.

As a final remark we bring to the readers attention the fact that it is not
possible to establish similar results for filtered output–feedback MRC. Indeed,
there are systems that can be stabilized with MRAC that cannot be stabilized
with an LTI controller. Also, there are scenarios where trajectories of the MRAC
are bounded but the perturbation term θ̃⊤φ does not converge to zero.
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