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From Theory to Practice and Back
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Abstract

The problem of modeling and control of multi–terminal high–voltage direct–current transmission systems is addressed in this
paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework—based on
port–Hamiltonian representations—of the various network topologies used in this application. Second, to prove that the system
can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Close connections
between the proposed PI and the popular Akagi’s PQ instantaneous power method are also established. Third, to reveal the transient
performance limitations of the proposed controller that, interestingly, is shown to be intrinsic to PI passivity–based control. Fourth,
motivated by the latter, an outer–loop that overcomes the aforementioned limitations is proposed. The performance limitation of the
PI, and its drastic improvement using outer–loop controls, are verified via simulations on a three–terminals benchmark example. A
final contribution is a novel formulation of the power flow equations for the centralized references calculation.

Keywords: multi–terminal HVDC transmission systems; passivity–based control; port–Hamiltonian systems; PI control;
nonminimum–phase systems; PQ and DC voltage control; performance limitations; power flow equations.

1. Introduction

In the last few years it has been observed an ever widespread
utilization of renewable energy utilities, mainly based on wind
and solar power [18, 7]. Because of its intermittent nature the
integration of this generating units to the existing alternating–
current (AC) distribution network poses a challenging problem
[6, 24]. For this, and other reasons related to reduced losses and
problems with reactive power and voltage stability in AC sys-
tems, the option of high–voltage direct–current (HVDC) trans-
mission systems is gaining wide popularity, see [7, 22, 20] for
additional motivations and details.

The main components of an HVDC system are AC to DC
power converters, transmission lines and voltage bus capaci-
tors. The power converters connect the AC sources—that are
associated to renewable generating units or to AC grids—to an
HVDC grid through voltage bus capacitors. Two notable fea-
tures distinguish HVDC systems from standard AC ones: the
absence of a global signal (the synchronization frequency) and
the central role played by the power converters, the dynamics
of which are highly nonlinear.

For its correct operation, HVDC systems—like all electri-
cal power systems—must satisfy a large set of different reg-
ulation objectives that are, typically, associated to the multi-
ple time–scale behavior of the system. One way to deal with
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this issue, that prevails in practice, is the use of hierarchical ar-
chitectures. These are nested control loops, at different time
scales, each one providing references for an inner controller
[21, 38]. This paper focuses mainly on the “innermost” con-
trol loop for HVDC transmission systems, that is, the control at
the power converter level—in the sequel referred as inner–loop
control. The objective of the inner–loop control is to asymptot-
ically drive the HVDC system towards a desired steady–state
regime determined by the user. Regulation should be achieved
selecting a suitable switching policy for the converters. A major
practical constraint is that the control should be decentralized.
That is, the controller of each power converter has only avail-
able for measurement its corresponding coordinates, with no
exchange of information between them.

Starting from single AC/DC converter models many strate-
gies have been proposed for the inner–loop control of the power
converters used in HVDC systems [2, 23, 26], with the domi-
nating structure consisting of nested PI loops: an inner current
control loop and an outer loop to regulate the capacitor volt-
age. The rationale used to justify this structure is the time–scale
separation between currents and voltages. However, with the
notable exception of [34], the performance claims are not cor-
roborated by rigorous stability proofs. Because of the absence
of theoretical analysis, a time–consuming and expensive proce-
dure to tune the gains of the PIs is then required to complete
the design. This is typically done based on the linearization of
the system that, because of the highly nonlinear behavior of the
converters and the wide range of the operating regimes, often
yields below–par performances.

The main objective of this paper is to contribute, if modestly,
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towards the development of a general, theoretically–founded
procedure for the modeling, analysis and control of HVDC sys-
tems. With the intention to bridge the gap between theory and
applications, one of the main concerns is to establish connec-
tions between existing engineering solutions, usually derived
via ad–hoc considerations, and the solutions stemming from
theoretical analysis. In particular, it is shown that modifying
the theoretically–based inner–loop controller to incorporate the
standard considerations of outer–loop control considerably im-
proves its transient performance.

The contributions of the paper are the following.

(C1) To propose a unified, physically motivated, modeling
framework of the various network topologies used in
HVDC systems. This framework is based on port–
Hamiltonian (pH) models of the system components [11,
35, 40] combined with a suitable graph theoretic represen-
tation of their interconnection [12]. The lines are mod-
eled as simple series resistance–inductance (RL) circuits
and the capacitors are assumed to be leaky elements, all
components being linear. Although many different kinds
of power converters are used in applications the dominant
structure is the so–called voltage–source rectifier (VSR),
which are the ones considered in the paper. The network
is described via a meshed topology, which allows for pos-
sible direct connection of the VSRs with the transmission
lines.

(C2) In the spirit of [16, 19, 29] it is proved that the incremen-
tal model of the VSR defines a passive map with respect
to some suitably designed output. A consequence of this
fundamental property is that a decentralized PI passivity–
based controller (PBC) globally asymptotically stabilizes
(GAS) any assignable equilibrium, with no restriction im-
posed on the (positive) gains of the PI–PBC. It is also
shown that the proposed PI–PBC is closely related with
Akagi’s PQ instantaneous power method [2] that was de-
rived (without a stability analysis) invoking power balance
considerations and is standard in applications.

(C3) It is well–known that passive systems are minimum phase
and have relative degree one [5, 35]. Consequently, the at-
tainable performance of a PI–PBC is limited by its asso-
ciated zero dynamics. Another contribution of the paper
is the proof that, in HVDC systems, the zero dynamics is
“extremely slow”, stymying the achievement of fast tran-
sient responses. On the other hand, it is also shown that
other inner–loop PI controllers reported in the literature
may exhibit unstable behavior because the zero dynamics
associated to the corresponding outputs are non–minimum
phase.

(C4) Common engineering practice is followed to improve the
transient performance, by adding an outer–loop that deter-
mines the PI–PBC reference signals—the widely diffused
droop control [3, 31]. After revisiting its standard formu-
lation, a modification of the standard PI–PBC is proposed,
showing that the intrinsic performance limitation are over-
come, further preserving global asymptotic stability. The

drastic improvement with this outer controller is finally
verified via simulations on a three–terminals benchmark
example.

(C5) A final contribution relates to the design of the last outer–
loop controller in terms of a centralized reference calcula-
tor. Although there is no universal agreement to define the
tasks of this control loop it usually relates to the regulation
of the flow of active and reactive power to be injected into
the network while keeping the voltage of the capacitors
near a desired constant value. Most popular approaches,
which usually invoke ad–hoc considerations, are reviewed
and contextualized in the present framework.

The remaining part of the paper is structured as follows. In
Section 2, the mathematical model of the system is established
(C1). Then, to determine the achievable behaviors, a study of
the assignable equilibria is necessary. This analysis is done
in Section 3. The main contribution (C2) is next developed in
Section 4, with the design of the decentralized passivity–based
PI controller. Slow transients exhibited in simulations motivate
the subsequent performance analysis (C3), that is carried out in
Section 5. Sections 6 and 7 are then devoted to revisit standard
outer–loop controllers (C4) and the problem of references
calculation (C5). Conclusions and future work follow then in
Section 8.

Notation All vectors are column vectors. Given positive inte-
gers n, m, symbols 0n ∈Rn denotes the vector of all zeros, 1n ∈
Rn the vector with all ones, In the n×n identity matrix, 0n×m the
n×m column matrix of all zeros. x := col(x1, . . . ,xn) ∈ Rn de-
notes a vector with entries xi ∈R, when clear from the context it
is simply referred as x := col(xi). diag{ai} is a diagonal matrix
with entries ai ∈R and bdiag{Ai} denotes a block diagonal ma-
trix with entries the matrices Ai. For a function f : Rn→R, ∇ f
denotes the transpose of its gradient. The subindex i, preceded
by a comma when necessary, denotes elements corresponding
to the i-th subsystem.

2. Energy–based Modeling

In [12] it was shown that electrical power systems can be rep-
resented by a directed graph1 where the relevant electrical com-
ponents correspond to edges and the buses correspond to nodes.
Moreover, to underscore the physical structure of the compo-
nents, they are modeled as pH systems. In this section the same
procedure is applied to describe the dynamics of HVDC trans-
mission systems.

2.1. Assumptions

As indicated in the Introduction, the relevant components
for an HVDC transmission system are: VSRs, RL transmission

1A directed graph is an ordered 3-tuple, G = {V ,E ,Π}, consisting of a
finite set of nodes V , a finite set of directed edges E and a mapping Π from E
to the set of ordered pairs of V , where no self-loops are allowed.
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lines and voltage bus capacitors. Throughout the paper the fol-
lowing assumptions—which are widely accepted in practice—
are made.

(A1) Balanced operation of the three phase line voltages.

(A2) Synchronized operation of the VSRs2.

(A3) Ideal four quadrant operation of the VSRs.

Assumptions A1 and A2 considerably simplify the model-
ing and control problems, as they allow the description of the
three–phase dynamics of the VSRs in suitably oriented dq0
reference frames, where the value of the 0–component is al-
ways zero, thus reducing the three AC quantities to two DC
quantities. Consequently, it is possible to express the regula-
tion objective as a standard equilibrium stabilization problem of
the nonlinear dynamical system describing the behavior of the
HVDC system. Assumption A3 directly follows by assuming
an HVDC transmission system based on VSRs instead of cur-
rent source rectifiers, which is an alternative converter topology
used in HVDC systems. As a matter of fact, since the VSRs do
not depend on line–commutations, all the four quadrants of the
operating plane are possible, hence Assumption A3 is automat-
ically satisfied for the system under consideration [1].

2.2. Network topologies: A graph description
It is possible to distinguish two kinds of topologies used

in HVDC transmission systems: radial and meshed topology
[13, 4, 15], which are illustrated in Fig. 1. The radial topol-
ogy is widely used for systems in which a certain number of
off–shore stations feeds on–shore stations with no connection
between them. This is the case for example of on–shore sta-
tions situated on opposite seacoasts while the off–shore stations
are placed in their middle [4, 22]. However, in a more general
setting one has to consider the situation in which the stations
are directly connected with lines, that corresponds to a meshed
topology. In the interest of brevity, a systematic way to build
global pH models is presented only for the meshed topology.
For a radial topology, analogous results can be obtained, for
which the interested reader is referred to [41].

Figure 1: Nodal representation of HVDC transmission systems with radial and
meshed topologies.

In order to give a formal representation of a topology the fol-
lowing definitions are adopted. A bus is called a VSR-bus if a

2Synchronized operation of the VSRs is usually achieved via robust phase–
locked–loop detection ofthe latching frequencies [38].

VSR is connected to it and a bus is called a capacitor-bus when
only a capacitor is connected to it. Furthermore, a bus is called a
reference-bus when all the voltages of the buses in the network
are measured with respect to it. As the reference-bus is assumed
to be at ground potential, it is also denoted as ground. A general
topology is then described by the incidence matrix M associ-
ated to the graph, where the nodes represent the ground, the
VSR and the capacitor-buses; the edges represent the VSRs,
the lines and the single capacitors that are interconnected to the
ground or to the voltage buses.

In a meshed topology, each VSR is connected to the ground
and to a VSR–bus, while the lines directly connect VSR–buses,
according to a determined meshed structure. The number n of
VSRs is the same as voltage buses, ground excluded, and is
lower or equal to the number ` of lines. Formally, this can be
represented by a graph G := {V ,E ,Π} constituted by: n+ 1
ordered nodes, where n nodes are associated to the VSR–buses
and one node to the ground; n+` ordered edges, where n edges
are associated to the VSRs and ` edges to the lines. The inci-
dence matrix then — following the mentioned order — takes
the form

M =

[
In M
−1>n 0>`

]
∈ R(n+1)×(n+`), (2.1)

where M is the incidence matrix of the subgraph obtained by
eliminating the VSR edges and the ground node.

Remark 2.1. In a meshed topology the only relevant compo-
nents are the VSRs and the RL transmission lines. As a matter
of fact, because a VSR is associated to each node, the voltage
bus capacitors can be represented by an equivalent VSR output
capacitor, that results to be the parallel interconnection of all
capacitors attached to the node.

2.3. Port–Hamiltonian models of the elements

As explained above, the edges of the graph G contain the
electrical components of the HVDC system, namely n VSRs
and ` RL transmission lines, while the nodes are the buses. In
this section, a pH representation of each of these elements is de-
rived, which are then interconnected—through power preserv-
ing interconnections—via the graph. Besides its physically ap-
pealing nature, the choice of a pH model is motivated by the fact
that—similarly to [16]—this structure is instrumental to derive
the passivity property exploited in the controller design. To en-
hance readability the models of the VSRs and the transmission
lines are presented separately.

2.3.1. Voltage source rectifiers
In [11, 16, 41] the well–known average model of a single

VSR shown in Fig. 2, expressed in dq–coordinates and written
in (perturbed) pH form is given. Similarly, a set of n VSRs can
also be represented in pH form as

ẋR = [JR(u)−RR]∇HR +E1V −E3iR

vR = E>3 ∇HR,
(2.2)

with the following definitions.
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- State space variables the collection of inductors fluxes
(φd,i,φq,i) and capacitor charges qc,i of every VSR, that
is, xR := col(col(φd,i),col(φq,i),col(qc,i)) ∈ R3n.

- Energy function

HR(xR) :=
1
2

x>R QRxR, QR := bdiag{L−1
R ,L−1

R ,C−1
R },

with
LR := diag{Lr,i}, CR := diag{Cr,i},

where Lr,i,Cr,i are the inductance and capacitance of each
VSR, respectively3.

- Duty cycles u := col(uRd ,uRq) ∈ R2n, where uRd :=
col(ud,i) and uRq := col(uq,i).

- External voltage sources V := col(vd,i) ∈ Rn, where vd,i is
the d component of the AC sources. These voltages are
assumed constant and positive.

- Port variables the out–going currents iR := col(idc,i) ∈ Rn

and the voltages vR := col(vdc,i) ∈ Rn.

- Interconnection matrix

JR(u) :=
n

∑
i=1

(JR0,iLr,iωi +JRd,iud,i +JRq,iuq,i) (2.3)

where ωi are the AC sides frequencies and

JR0,i :=


−1 in (i,n+i)

1 in (n+i,i)

0 elsewhere

JRd,i :=


1 in (i,2n+i)

−1 in (2n+i,i)

0 elsewhere
JRq,i :=


−1 in (n+i,2n+i)

1 in (2n+i,n+i)

0 elsewhere

- Dissipation matrix RR := bdiag{RR,RR,GR}, where RR :=
diag{Rr,i} and GR := diag{Gr,i} , with Rr,i,Gr,i the resis-
tance and conductance of each VSR.

- Port matrices E1 :
[
In 0 0

]>, E3 :=
[
0 0 In

]> ∈
R3n×n.

Remark 2.2. Note that, in view of the skew–symmetry of
JR(u), the VSRs satisfy the power balance equation

ḢR︸︷︷︸
stored power

=− x>R QRRRQRxR︸ ︷︷ ︸
dissipated power

+x>R QRE1V − x>R QRE3iR︸ ︷︷ ︸
supplied power

(2.4)

3Unless indicated otherwise all physical parameters of the system are pos-
itive constants.

Figure 2: Schematic diagram of the equivalent circuit of a VSR in dq frame.

2.3.2. Transmission lines
A set of ` RL transmission lines can be represented by the pH

system
ẋL =−RL∇HL + vL

iL =−∇HL,
(2.5)

with the following definitions.

- State space variables the collection of inductor fluxes xL :=
col(φ`,i) ∈ R` of every line.

- Energy function

HL(xL) :=
1
2

x>L QLxL, QL := diag{ 1
L`,i
},

where L`,i is the inductance of the line.

- Port variables the voltages at the terminals vL :=
col(vL,i) ∈ R` and the inductors currents iL := col(i`,i) ∈
R`.

- Dissipation RL = diag{R`,i}, with R`,i the resistance of the
line.

2.4. Overall interconnected system
The interconnection laws can be obtained following the ap-

proach used in [36], where Kirchhoff’s current and voltage laws
(KCL and KVL, respectively) are expressed in relation to the
incidence matrix. For a meshed topology then it follows

[KCL] MIe = 0n+1,

[KVL] M>V = Ve,
(2.6)

where Ie := col(iR, iL), Ve := col(vR,vL) and V :=
col(v1, . . . ,vn), v0 are the edge currents, the edge voltages, the
nodes potentials and the ground potential, respectively. The
ground potential v0 = 0 by definition. From (2.6) and (2.1) then
follows

iR +MiL = 0n, −1>n iR = 0,

v = vR, M>v = vL.
(2.7)

Recalling the expression for iL from (2.2) and vR from (2.5) it
is easy to get

iR = M∇HL, vL = M>E>3 ∇HR. (2.8)
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To obtain the overall pH representation it is then sufficient to
combine (2.2), (2.5) and (2.8), thus leading to

ẋ = [J (u)−R]∇H +EV, (2.9)

with the following definitions.

- State space variables x := col(xR,xL) ∈ R3n+`.

- Energy function H (x) := HR(x)+HL(x).

- Duty cycles (controls) u := col(uRd ,uRq) ∈ R2n.

- Interconnection matrix

J (u) :=
[

JR(u) −E3M
M>E>3 0`×`

]
, (2.10)

- Dissipation matrix

R := bdiag{RR,RL}> 0. (2.11)

- Input matrix E :=
[
E>1 0>`×n

]>
.

Remark 2.3. To simplify the notation in the pH representation
it is selected a state representation of the system using energy
variables, that is, inductor fluxes and capacitor charges, instead
of the more commonly used co–energy variables, i.e., induc-
tor currents and capacitor voltages. See (4.8) and [25] for the
derivation of the pH model in the latter coordinates. The coor-
dinates are indeed related by

id =
φd

L
, iq =

φq

L
, vC =

qC

C
, iL =

φL

L`
. (2.12)

Remark 2.4. For ease of presentation it is assumed that the
state of the system lives in R3n+`. Due to physical and tech-
nological constraints it is actually only defined in a subset of
R3n+`. In particular, the voltage of the DC link vC is strictly
bounded away from zero.

3. Assignable Equilibria

A first step towards the development of a control strategy
for the system (2.9) is the definition of its achievable, steady–
state behavior, which is determined by the assignable equilibria.
That is, the (constant) vectors x? ∈ R3n+` such that

[J (u?)−R]∇H (x?)+EV = 03n+`

for some (constant) vector u? ∈ R2n. To identify this set the
following lemmata are established.

Lemma 3.1. The equilibria of the transmission line coordinates
are given by

x?L = (RLQL)
−1M>E>3 QRx?R. (3.1)

Proof. Setting to zero the left–hand side of (2.5), calculated at
x?L, gives

0` =−RLQLx?L + v?L ⇒ x?L = (RLQL)
−1v?L.

Moreover, from (2.8) it follows that v?L = M>E>3 QRx?R, that re-
placed in the equation above completes the proof. ���

Lemma 3.2. The equilibria of the VSRs coordinates are the
solution of the n quadratic equations, i = 1 . . .n

− Ri
L2

r,i

[
(φ ?

d,i)
2 +(φ ?

q,i)
2
]
− Gi

C2
r,i
(q?C,i)

2 +
vd,i
Lr,i

φ ?
d,i−

1
Cr,i

q?C,ii
?
dc,i = 0,

(3.2)
with col(i?dc,i) = MR−1

L M>col(q?C,i).

Proof. In [28] it is shown that the set of admissible equilibria
of a VSR is obtained by setting equal to zero the power balance
of the VSR, that for n VSRs is equivalent to (3.2). To complete
the proof, it is now sufficient to recall definitions

col(i?dc,i) = i?R, E>3 QRx?R = col(q?C,i),

together with (2.8), (3.1). ���

The main result of the section is now presented, the proof of
which follows immediately from the lemmata above.

Proposition 3.3. The set of assignable equilibria of the system
(2.9) is given by

E := {x? ∈ R3n+` | (3.1) and (3.2) hold}. (3.3)

From the derivations above it is clear that the equilibria of
the network are univocally determined by the equilibria of the
VSRs. Moreover, the latter should satisfy the quadratic equa-
tions (3.2), which are the well–known power flow steady–state
equations (PFSSE) of the individual VSR subsystems. A ques-
tion of interest is how to select from this set the equilibrium
points that correspond to some desired behavior. In the latter
definition there are many practical considerations to be taken
into account, the discussion of which is postponed to Sections
6 and 7.

Remark 3.4. It is well–known that for affine systems of the
form ẋ = f (x)+ g(x)u the assignable equilibrium set is given
by

{x? ∈ Rn | g⊥(x?) f (x?) = 0}

where g⊥(x) is a full–rank left annihilator of g(x). Moreover,
given x?, the corresponding equilibrium control u? is univocally
determined by

u? =−
[
(g>g)−1g> f

]
(x?).

Since (2.9) is clearly of this form this relations hold true for the
HVDC transmission system under study. See [28] for additional
details on this issue.

Remark 3.5. Differently from the single VSR case, the set of
assignable equilibria does not coincide, but is strictly contained,
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in the set where the power of the system is balanced, that is

E ⊂P, P := {x? ∈ R3n+` | ḢR = 0}.

This fact is clearly explained in [28], where it is proved that
a necessary condition for E ≡P , is the system to be of co-
dimension one.

4. Main Result: Inner Loop Control

As indicated in the Introduction, this paper mainly focuses on
the inner–loop control of HVDC transmission systems, that is,
the control at the VSR level. For, in this section it is presented a
decentralized, globally asymptotically stabilizing, PI–PBC for
the HVDC transmission system (2.9). The construction of the
controller is inspired by previous works of the authors on PI–
PBC, reported in [16] and [19], which exploit the property of
passivity of the incremental model. The interested reader is re-
ferred to these references for additional details.

As indicated above, it is assumed that a desired operating
point x? ∈ E has already been selected—further discussions on
its choice are deferred to Sections 6 and 7. To place the pro-
posed PI–PBC in context, in the last part of this section the
most commonly used inner–loop controls for HVDC transmis-
sion systems are briefly reviewed and a connection is estab-
lished with the widely popular Akagi’s PQ method.

4.1. Passivity of the incremental model

Along the lines of Proposition 1 in [16], it is possible to es-
tablish passivity of the incremental model of the overall HVDC
transmission system (2.9) with respect to a suitable defined out-
put. As is well–known, global regulation of a passive output
can be achieved with a simple PI controller. Regulation of the
state to the desired equilibrium then follows provided a suitable
detectability assumption is satisfied [35].

Proposition 4.1. Consider the HVDC transmission system
(2.9). Let x? ∈ E be the desired equilibrium with corresponding
(univocally defined) control u? ∈ R2n. Define the error signals

x̃ = x− x?, ũ = u−u? (4.1)

and the output signal

y :=
[

col(yd,i)
col(yq,i)

]
∈ R2n, (4.2)

with

yd,i := x∗>R QRJRd,iQRxR, yq,i := x∗>R QRJRq,iQRxR.

The mapping ũ→ y is passive. More precisely, the system ver-
ifies the dissipation inequality

Ḣd ≤ y>ũ, (4.3)

with storage function Hd(x̃) = 1
2 x̃>Qx̃.

Proof. The proof mimics the proof of Proposition 1 in [16].
First of all, it is possible to write

J (u)Qx = J0Qx+g(x)u,

where the following definitions

J0 :=
[

∑
n
i=1(JR0,iLr,iωi) −E3M

M>E>3 0`×`

]
, g(x) :=

[
gRd(xR) gRq(xR)

0`×n 0`×n

]
,

with

gRd(xR) : =
[
JRd,1QRxR . . . JRd,nQRxR

]
,

gRq(xR) : =
[
JRq,1QRxR . . . JRq,nQRxR

]
are adopted. Hence, it is possible to write (2.9) in the alternative
form

ẋ = (J0−R)Qx+EV +g(x)u

= (J0−R)Q(x̃+ x?)+EV +g(x)(ũ+u?)

= (J0−R)Qx̃+g(x)ũ+g(x̃)u?
(4.4)

where (4.1) has been used to get the second equation and the
fact that the assignable equilibria x? and corresponding (con-
stant) control u? satisfy

(J0−R)Qx?+EV +g(x?)u? = 0,

is used to obtain the third equation.
The derivative of Hd along the trajectories of the incremental

model (4.4) yields

Ḣd =−x̃>QRQx̃+ x̃>Qg(x)ũ =−x̃>QRQx̃+ y>ũ

where the skew–symmetry of J0, JRd,i and JRq,i is used in
the first equation, and the fact that the output signal can be
rewritten as

y = g>(x?)Qx = g>(x?)Qx̃

is used to obtain the second identity. The proof is completed
recalling that the dissipation matrix verifies R > 0 to obtain the
bound (4.3). ���

4.2. PI passivity–based control
The first main result of the paper is then presented.

Proposition 4.2. Consider the HVDC transmission system
(2.9), with a desired steady–state x? ∈ E , in closed–loop with
the decentralized PI control

u =−KPy−KIζ , ζ̇ = y, (4.5)

with y given in (4.2) and gain matrices

KP =

[
KPd 0

0 KPq

]
∈ R2n×2n, KI =

[
KId 0
0 KIq

]
∈ R2n×2n,

(4.6)
where KPd = diag{kPd,i},KPq = diag{kPq,i}, KId = diag{kId,i},
KIq = diag{kIq,i}. The equilibrium point (x?,K−1

I u?) is globally
asymptotically stable (GAS).

6



Proof. Define the Lyapunov function candidate

W (x̃, ζ̃ ) := Hd(x̃)+
1
2

ζ̃
>KI ζ̃ , (4.7)

where ζ̃ := ζ −K−1
I u?. The derivative of W (x,ζ ) along the tra-

jectories of the closed–loop system (2.9)-(4.5) is given by

Ẇ =−x̃>QRQx̃+ y>ũ+ ζ̃
>KIy

=−x̃>QRQx̃+ y>ũ− (ũ>+ y>KP)y

=−x̃>QRQx̃− y>KPy≤ 0,

which proves global stability. Asymptotic stability follows, as
done in [16], using LaSalle’s arguments. Indeed, from the in-
equality above and the definition of R in (2.11) it is clear that
all components of the error state vector x̃ tend asymptotically to
zero. ���

Remark 4.3. The proposed PI–PBC is decentralized in the
sense that, for its implementation, each VSR control requires
only the measurement of its corresponding inductor currents
and capacitor voltage. Guaranteeing this property motivates the
choice of block diagonal gain matrices (4.6).

Remark 4.4. The PI–PBC requires the selection of the desired
values for the inductor currents and capacitor voltages that,
clearly, cannot all be chosen arbitrarily. Instead, they have to be
selected from the set of assignable equilibrium points E , that
is determined by the PFSSE. This set has a rather simple struc-
ture: the quadratic equation (3.2) defines the VSRs variables
from which it is possible to univocally determine the transmis-
sion lines coordinates via (3.1).

4.3. Other inner–loop controllers reported in the literature

In this section some of the inner–loop controllers for VSRs
reported in the literature are reviewed. The vast majority of
the papers reported on this topic—and, in general, of control of
power converters [21, 26]—uses the description of the dynam-
ics in co–energy variables. To facilitate the reference to these
works, the following model—that is immediately obtained from
(2.2) and (2.12)—is provided4:

Li̇d =−Rid +Lωiq− vCud + vd

Li̇q =−Lωid−Riq− vCuq

Cv̇C = idud + iquq−GvC− idc.

(4.8)

The total energy of the VSR is

H (id , iq,vC) :=
1
2
(
Li2d +Li2q +Cv2

C
)
,

and the power balance is

Ḣ =−R(i2d + i2q)−Gv2
C +P−Pdc, (4.9)

4For ease of presentation the discussion here is restricted to a single VSR.
The extension to multiple VSRs being straightforward.

where the active and DC powers are defined as

P = vd id , Pdc = vCidc. (4.10)

It is also common to define the reactive power as Q = vd iq.
A caveat regarding the subsequent analysis is, however, nec-

essary. When the VSRs are connected to the transmission lines
the currents idc are linked to the currents on the line via (2.7),
which are clearly nonconstant. However, to simplify the analy-
sis, it is assumed that they are constant. This can be justified by
exploiting the fact that their rate of change is slow (with respect
to the VSR dynamics). Under this assumption the assignable
equilibrium set of (4.8) is given as

E = {x ∈ R3 | R(i2d + i2q)− vd id +Gv2
C + idcvC = 0}. (4.11)

Since vd and idc are constant, it is then clear that the regula-
tion of P, Q and Pdc are equivalent to the regulation of id , iq and
vC, respectively. In practice, because of the small losses of the
VSR, the value of P slightly differs from Pdc, and consequently
there is no interest in regulating the pair id and vC at the same
time.

In the literature, it is common to distinguish two modes of
operation for a VSR:

- PQ control mode, when the VSR is required to control the
active and reactive power. This is achieved regulating to
zero the output

yI =

[
id− iref

d
iq− iref

q

]
, (4.12)

where the superscript (·)ref is used to denote reference
values—that do not necessarily belong to the assignable
equilibrium set. These kind of schemes are also called di-
rect current control [32].

- DC voltage control mode, when the VSR is required to
control reactive power and DC voltage. In this case, the
regulated output is

yV =

[
vC− vref

C
iq− iref

q

]
. (4.13)

These kind of schemes are also called direct output voltage
control [32].

To regulate the outputs (4.12) and (4.13) different controllers
have been proposed in the literature, ranging from simple PI
control [23, 26] to feedback linearization [8, 9, 33]. Some of
these papers include (invariably local) stability analysis. In Sec-
tion 5 it is proved that yI and yV , used for the PIs or with re-
spect to which feedback linearization is performed, have unsta-
ble zero dynamics. Consequently, applying high gains in the PIs
will induce instability and the internal behavior of the feedback
linearizing schemes will be unstable.5 Simulations in Subsec-

5This well–known phenomenon of nonlinear systems [17] is akin to can-
cellation of unstable zeros of the plant with the unstable poles of the controller
in linear systems.
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tion 5.4 show that instability indeed arises for these schemes.
For the sake of comparison the passive output (4.2) in co–

energy variables, for a single VSR, is provided:

y =
[

v?Cid− i?dvC
v?Ciq− i?qvC

]
, (4.14)

where (i?d , i
?
q,v

?
C)∈E , that is, they belong to the assignable equi-

librium set.

Remark 4.5. The PI–PBC is universal, in the sense that it can
operate either in PQ or DC voltage control mode, depending on
which equilibria are assigned as desired references, and which
one is consequently determined via the PFSSE. One impor-
tant advantage of this universal feature is that there is no need
to switch between different controllers when the VSRs are re-
quested to change their mode of operation—this is in contrast
with other inner–loop schemes that require switchings between
controllers, which is clearly undesirable in practice.

4.4. Relation of PI–PBC with Akagi’s PQ method

A dominant approach for the design of controllers for reac-
tive power compensation using active filters (for three–phase
circuits) is the PQ instantaneous power method proposed by
Akagi, et al. in [2]. It consists of an outer–loop that generates
references for the inner PI loops. The references are selected
in order to satisfy a very simple heuristic: the AC active power
P has to be equal to the DC power Pdc, thus ensuring the maxi-
mal power transfer from the AC to the DC side, and the reactive
power should take a desired value. Now, using (4.10) define the
active AC and DC powers at the equilibrium as

P? = vd i?d , P?
dc = v?Cidc.

Consider then the following equivalences

P?Pdc = P?
dcP⇔ v?Cid = i?dvC⇔ y1 = 0,

with y1 the first component of the passive output (4.14). Sim-
ilarly, for the reactive power

Q?Pdc = P?
dcQ⇔ v?Ciq = i?qvC⇔ y2 = 0,

with y2 the second component of the passive output (4.14).
In other words, the objective of the PI–PBC to drive the passive
output y to zero can be reinterpreted as a power equalization
objective identical to the one used in Akagi’s PQ method.

5. Performance Limitations of Inner–Loop PIs

Quality assessment of control algorithms is a difficult task—
epitomized by the classical performance versus robustness
tradeoff, neatly captured by the stability margins in linear de-
signs. The situation for nonlinear systems, where the notions
of (dominant) poles and frequency response are specious, is
far more complicated. In any case, it is well–known that the
achievable performance in control systems is limited by the
presence of minimum phase zeros [14, 27, 30].

In this section an attempt is made to evaluate the performance
limitations of the inner–loop PI controllers discussed in the pre-
vious section. Towards this end, the zero dynamics of the VSR
system (4.8) for the outputs y (4.2), yI (4.12) and yV (4.13)
are computed. All three outputs have relative degrees {1,1},
hence their zero dynamics is of order one but, while it is ex-
ponentially stable for the passive output y it turns out that—
for normal operating regimes of the VSR—it is unstable for yI
and yV . If the zero dynamics is unstable cranking up the con-
troller gains yields an unstable behavior. This should be con-
trasted with the passive output y that, as shown in Proposition
4.2 yields an asymptotically stable closed–loop system for all
positive gains.6

To simplify the derivations only the case of i?q = 0 is con-
sidered. This assumption is justified since it corresponds to
fix to zero the desired value of the reactive power, which is
a common operating mode of VSRs. Moreover, this is done
without loss of generality because it is possible to show—alas,
with messier calculations—that the stability of the zero dynam-
ics is the same for the case of i?q 6= 0. This situation may arise
when the VSR is associated to an AC grid and not to a renew-
able energy source. In this section, it is possible to prove that
the (first order) zero dynamics associated to (4.2), is “extremely
slow”—with respect to the overall bandwidth of the VSR. Since
this zero “attracts” one of the poles of the closed–loop system,
it stymies the achievement of fast transient responses. This sit-
uation motivates the inclusion of an outer–loop controller that
generates the references to the inner–loop PI. This modification
is presented in Section 6.

5.1. Zero dynamics analysis of the passive output y
Before presenting the main result of this subsection, an im-

portant observation is done: the zero dynamics of the VSR
model (4.8) and of its corresponding incremental version are
the same. Indeed, the zero dynamics describes the behavior
of the dynamical system restricted to the set where the output
is zero. Since the incremental model dynamics is the same as
the original model dynamics—simply adding and substracting
a constant—their zero dynamics coincide.

Proposition 5.1. Fix (i?d , i
?
q,v

?
C) ∈ E with i?q = 0. The zero dy-

namics7 of the VSR (4.8) with respect to the output (4.14) is
exponentially stable and is given by

v̇C =−λvC +λv?C, λ :=
R(i?d)

2 +G(v?C)
2

L(i?d)
2 +C(v?C)

2 . (5.1)

Proof. By setting the output (4.14) identically to zero and using
the fact that i?q = 0, it is easy to get

id =
i?d
v?C

vC, iq =
i?q
v?C

vC = 0. (5.2)

6This discussion pertains only to the behavior of the adopted mathematical
model of the VSR. In practice, other dynamical phenomena and unmodeled
effects may trigger instability even for the PI–PBC.

7With some abuse of notation, the zero dynamics is represented using the
same symbols of the system dynamics.
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Replacing (5.2) into (4.8) gives

L
i?d
v?C

v̇C =−R
i?d
v?C

vC− vCu1 + vd , (5.3)

0 =−Lω
i?d
v?C

vC− vCu2, (5.4)

Cv̇C =
i?d
v?C

vCu1−GvC− idc. (5.5)

To eliminate u1 it suffices to multiply (5.5) by v?C
i?d

and add it to
(5.3), yielding(

Cv?C
i?d

+
Li?d
v?C

)
v̇C =−

(
Ri?d
v?C

+
Gv?C
i?d

)
vC + vd−

v?C
i?d

idc.

The proof is completed by noting from (4.11) that, for
(i?d , i

?
q,v

?
C) ∈ E with i?q = 0, it follows that

vd−
v?C
i?d

idc =
R(i?d)

2 +G(v?C)
2

i?d

and by pulling out the common factor 1
i?dv?C

. ���

Remark 5.2. The parameters R and G, that represent the losses
in the VSR, are usually small—compared to L and C. Conse-
quently, λ will also be a small value, placing the pole of the
zero dynamics very close to the origin and inducing slow con-
vergence.

Remark 5.3. It is interesting to note that the rate of exponential
convergence of the zero dynamics can be rewritten as

λ =
1
2

P?−P?
dc

H (i?d , i
?
q,v?C)

,

that is half the ratio between the steady–state dissipated
power and the steady–state energy of the system. This rela-
tionship holds true also for the case i?q 6= 0.

5.2. Zero dynamics analysis of yI

Before analyzing the zero dynamics of the PQ and DC volt-
age control outputs, (4.12) and (4.13), respectively, it is im-
portant to recall that their references do not necessarily belong
to the assignable equilibrium set. However, the reasonable as-
sumption that the zero dynamics admits an equilibrium for the
chosen reference values can be done. If this is not the case the
zero dynamics is unstable. Moreover, similarly to the case of
the passive output, it is assumed that iref

q = 0.

Proposition 5.4. Fix iref
d ∈ R, iref

q = 0. The zero dynamics of
the VSR (4.8) with respect to the output (4.12) is given by

Cv̇C =−GvC +
αI

vC
− iref

dc , αI := vd iref
d −R(iref

d )2 (5.6)

where iref
dc is a constant value for idc satisfying

(iref
dc )

2 > 4GαI . (5.7)

- If αI > 0 the zero dynamics has one equilibrium and it is
stable.

- If αI < 0 the zero dynamics has two equilibria one stable
and one unstable.

- If αI = 0 the zero dynamics is a linear asymptotically sta-
ble system.

Proof. Setting the output (4.12) equal to zero with i∗q = 0 and
replacing into (4.8) gives

0 =−Riref
d − vCu1 + vd (5.8)

0 =−Lωiref
d − vCu2 (5.9)

Cv̇C = iref
d u1−GvC− iref

dc , (5.10)

where the superscript (·)ref has been added to idc. Replacing u1
obtained from (5.8) into (5.10) yields directly (5.6). Condition
(5.7) is then necessary and sufficient for the existence of a (real)
equilibrium of (5.6). If αI = 0 the dynamics reduces to

Cv̇C =−GvC− iref
dc .

The proof is completed by recalling that vC > 0 and looking
at the plots of the right hand side of (5.6) for αI positive and
negative in Fig. 3. ���

Remark 5.5. From Fig. 3, if αI < 0, it is easy to see that
the stable equilibrium point is the largest one. For standard
values of the system parameters it turns out that this equilibrium
is located beyond the physical operating regime of the system,
hence it is of no practical interest.

Remark 5.6. The parameters R and G are usually very small
and iref

dc can take positive or negative values in standard opera-
tion. Then condition (5.7) is always verified while αI can take
positive or negative values.

Remark 5.7. The situation αI = 0, when the zero dynamics is
linear and asymptotically stable, is unattainable in applications.
Indeed, assuming that in steady–state all signals converge to
their reference values, it can be shown that αI = 0 if and only
if GvC + idc = 0 that, given the small values of G is not realistic
in practice.

5.3. Zero dynamics analysis of yV

Proposition 5.8. Fix vref
C ∈ R, iref

q = 0. The zero dynamics of
the VSR (4.8) with respect to the output (4.13) is given by

L
did
dt

=−Rid−
αV

id
+ vd , αV := iref

dc vref
C +G(vref

C )2 (5.11)

where iref
dc is a constant value for idc satisfying

v2
d >−4RαV . (5.12)

- If αV < 0 the zero dynamics has two equilibria and they
are both stable.
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Figure 3: Plot of v̇C versus vC for the cases of (a) αI > 0 and (b) αI < 0. The arrows in the horizontal axis indicate the direction of the flow of the zero dynamics.

- If αV > 0 the zero dynamics has two equilibria one stable
and one unstable.

- If αV = 0 the zero dynamics is a linear asymptotically sta-
ble system.

Proof. Setting the output (4.13) equal to zero with i∗q = 0 and
replacing into (4.8) gives

L
did
dt

=−Rid− vref
C u1 + vd , (5.13)

0 =−Lωid− vref
C u2, (5.14)

0 = idu1−Gvref
C − idc. (5.15)

Replacing u1 obtained from (5.15) into (5.13) yields directly
(5.11). Condition (5.12) is necessary and sufficient for the exis-
tence of a (real) equilibrium of (5.11). The proof is completed
invoking the same arguments used in the proof of Proposition
5.4 and are omitted for brevity. ���

Remark 5.9. Remarks 5.6 and 5.7 apply verbatim to (5.11) and
αV of Proposition 5.8.

5.4. Simulated evidence of the performance limitations
Although Proposition 5.1 proves that the zero dynamics for

the passive output y is exponentially stable, it turns out that, for
the components used in standard HVDC transmission system,
the convergence rate is λ ≈ 0.04, which is extremely slow. As
indicated above this dominating dynamics stymies the achieve-
ment of fast transient responses—a situation that is shown in
the following simulations. Also, simulated evidence of the un-
stable behavior of the PI inner–loops using the outputs (4.12)
and (4.13) is presented.
A three–terminals HVDC transmission system with a simple
meshed topology is considered, as illustrated in Fig. 4, where
the corresponding graph is also given. The model of the system
is given by (2.9), that is a system of dimension 3n+`= 11 with
2n = 6 inputs. Parameters of the VSRs and of the transmission
lines are given in Table 1.

Consider then the following control objectives: all the sta-
tions are required to regulate the reactive power to zero; the
stations associated to the wind farms (WF1, WF2) are required

WF1

WF2

AC
GRID

Figure 4: Schematic representation of an HVDC transmission system consti-
tuted by three stations, associated to two wind farms (WFs) and an AC grid,
with associated graph. The graph is represented by filled circles for the VSRs-
buses and the unfilled circle for the ground node. Blue and red edges charac-
terize VSRs and lines, respectively.

Table 1: System parameters.
Value Value

Rr,i 0.01 Ω Gr,i 0 Ω−1

Lr,i 40 mH Cr,i 20 µF
Vi 130 kV ωi 50 Hz
R`,12 26 Ω L`,12 3.76 mH
R`,23 20 Ω L`,23 2.54 mH

to regulate the active power to desired (constant) values; the re-
maining station, called slack bus (SB), must regulate the voltage
around its nominal value. In Table 2, the corresponding refer-
ences of direct current and DC voltages are furnished, together
with the corresponding assignable equilibria, that are calculated
via the PFSSE defined by (3.3). Changes in references occur
every T s over a time interval of 5T s. It should be noticed
that from 0 to 2T the power flow is uniquely directed from both
wind farms stations to the AC grid, while at 2T and next 3T
the wind farms stations start demanding power to the AC grid,
thus reversing the direction of the power flow. This situation
can arise when the power produced by the wind farms is insuf-
ficient to supply local loads.

5.4.1. PI–PBC
In this subsection the simulations on the three–terminals

benchmark example of the decentralized PI–PBC defined in
Subsection 4.2 are presented, illustrating the stability properties
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Figure 5: Responses of VSRs variables under the decentralized PI–PBC.

Table 2: System references.

SB WF1 WF2 SB WF1 WF2
0 −1260 900 1000 100 142.595 158.951
T −1588 900 1800 100 153.650 179.691
2T −266 500 −200 100 109.004 104.004
3T 905 −400 −200 100 69.419 60.877
4T −849 1300 −200 100 128.708 124.532

and performance limitations previously discussed. Setting T =
2000 s the controllers (4.5) are designed with identical parame-
ters and diagonal matrices kP,i = diag{1,1}, kI,i = diag{10,10}.
The behavior of the VSRs are depicted in Fig. 5.

As expected, the direct currents of each station attain the
assignable equilibria defined in Table 2, while the quadrature
currents are always kept to zero after a very short transient.
Moreover, the DC voltage at the slack bus is maintained near
the nominal value of 100 kV , as required, while the DC voltage
variation at the wind farms stations, balances the fluctuation
of power demand. Even though the desired steady–state is at-
tained for all practical purposes, the convergence time of direct
currents and DC voltages is extremely slow. This poor transient
performance behavior is independent of the controller gains. In-
deed, extensive simulations show that the system maintains the
same slow convergence time even with larger gains, thus vali-
dating the performance limitations analysis realized in subsec-
tion 5.1.

5.4.2. PQ and DC voltage controllers
The behavior of the system under the standard PQ and DC

voltage controllers of Subsection 4.3 is next analyzed. In agree-
ment with the control requirements described above, two PQ
controllers are designed to regulate direct and quadrature cur-
rents of the wind farm stations and one DC voltage controller
is designed to regulate DC voltage and quadrature current of
the slack bus. Simple PI controllers defined over the outputs
(4.12), (4.13) are considered, designed with identical gains kP,i,

kI,i tuned via simulations. The behavior of the VSRs are de-
picted in Fig. 6, with T = 4 s. This value should be con-
trasted with the value (T = 2000 s) used for the PI–PBC. It
is easy to see that the PQ and DC voltage controllers correctly
(and rapidly) regulate the station at the desired references be-
tween 0 and 8 s. This good behavior is not surprising, because
PQ controllers applied to VSRs that are injecting power and a
DC voltage controller applied to VSRs that is absorbing power,
have associated globally asymptotically stable zero dynamics,
as proved in Subsections 5.2, 5.3. On the other hand, as shown
in the figures, when at stations WF1 and WF2 the power flow
is reversed (respectively at t = 12 s and t = 8 s), the correspon-
dent DC voltages go unstable, because in these cases the zero
dynamics is unstable. Similar unstable behavior appears also at
the slack bus station.

6. Adding an outer–loop to the PI–PBC

To overcome the transient performance limitations of the PI–
PBC exhibited in Subsection 5.4.1, in this section it is pro-
posed to add an outer–loop that takes as input some desired
references—indicated with (·)ref—and generates as output the
references to the inner–loop scheme—see Fig. 7. The latter will
replace the desired equilibria in the definition of the passive
output (4.14), associated to each VSR. Because in this paper
the discussion is restricted to the performances of the PI–PBC
in nominal operating conditions, the following assumption is
made.

Assumption 6.1. The input references (·)ref of the outer–loop
control belong to the set of assignable equilibria E .

In common practice, the references taken as input by the
outer–loop control may not belong to the assignable set, thus
posing the more general problem of designing an outer–loop
that ensures convergence to an (a priori unknown) equilibrium
point, i.e. the so-called primary control problem [10, 39, 3].
However, in the present case the attention is exclusively focused
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Figure 6: Responses of VSRs variables under the decentralized PQ and DC voltage controllers.

on the aspect of overcoming of performance limitations and a
robustness analysis is left for future investigation.

6.1. New output with droop control

A commonly used outer–loop control is the so–called con-
ventional droop control, which replaces—at the i–th VSR—the
direct current i?d,i with its desired reference iref

d,i plus a devia-
tion (droop) term proportional to the voltage error, leaving some
constant references for i?q,i and v?C,i. More precisely, the follow-
ing assignments are made in (4.14)

i?d,i← iref
d,i + kd,i(vref

C,i− vC,i), i?q,i← iref
q,i , v?C,i← vref

C,i, (6.1)

where kd,i > 0 is called the droop coefficient. Replacing (6.1)
in the passive output (4.14) yields the new output

yN,i :=
[

vref
C,iid,i− iref

d,ivC,i− kd,i(vref
C,i− vC,i)vC,i

vref
C,iiq,i− iref

q,ivC,i

]
. (6.2)

The simulations show that the performance of the modified
PI–PBC, that is, adding a PI around the new outputs (6.2), is
significantly better than the original PI–PBC and that, under
Assumption 6.1, the same closed–loop equilibrium point is pre-
served.

Remark 6.2. In several papers, e.g., [3, 33], the assumption
that the inner–loop PI and the VSRs are much faster than the
network dynamics is made. Under this assumption, a glob-
ally asymptotically stabilized VSR can be equivalently mod-
eled as the parallel interconnection of two AC current sources
connected to the network through a voltage bus capacitor, that
is assumed to operate at the same time scale of the network.
The resulting reduced model is linear and conditions for local
asymptotic stability can be easily established [3, 39].

Remark 6.3. In contrast to [3, 31], the droop control laws
are defined with respect to DC voltages that do not necessar-
ily all coincide with the same nominal value vnom

C . Then, the

trade–off between having the voltages converge to the nominal
voltage, and satisfying a pre–determined active power distri-
bution (sharing) between the VSRs, is completely captured by
the power flow steady-state equations that determine the set of
assignable equilibria. The reader is referred to Section 7 for
further details on this problem.

6.2. A GAS outer–loop controller

It is evident from (6.2), that the inclusion of additional
state–dependent terms to the first component of yN,i invalidates
the stability result obtained in Proposition 4.2, as the new
output yN,i is not passive. Moving from these considerations, a
modified version of the PI–PBC (4.5) is proposed. The latter,
if properly designed, allows to overcome the performance
limitations of the passive output, while preserving global
asymptotic stability of the closed–loop system. This modifica-
tion consists of an additional linear feedback that affects only
the proportional part of the PI–PBC. The following proposition
is then presented.

Proposition 6.4. Consider the HVDC transmission system
(2.9), with a desired steady–state x? ∈ E , in closed–loop with
the PI control

u =−KPy−KIζ −KLQx̃, ζ̇ = y, (6.3)

with y given in (4.2), gain matrices KP,KI as in (4.6) and
KL ∈ R2n×(3n+`) verifying

R0 := R+g(x?)KPg>(x?)+
1
2

[
g(x?)KL +K>L g>(x?)

]
> 0.
(6.4)

Then, the equilibrium point (x?,K−1
I u?) is globally asymptoti-

cally stable (GAS).

Proof. Using the same Lyapunov function (4.7) employed in
the proof of Proposition 4.2, the derivative along the trajectories
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Figure 7: Control architecture of HVDC transmission systems under nominal operating conditions.

of the closed–loop system (2.9)–(6.3) is given by

Ẇ =−x̃>QRQx̃+ y>ũ+ ζ̃
>KIy

=−x̃>QRQx̃+ y>ũ− (ũ>+ y>KP + x̃>QK>L )y

=−x̃>QRQx̃− x̃>Qg(x?)KPg>(x?)Qx̃− x̃>QK>L g>(x?)Qx̃

=−x̃>QR0Qx̃ < 0,

where in the third equivalence the output definition
y = g>(x?)Qx̃ is used, while the last equivalence follows from
condition (6.4). ���

Loosely speaking, the Proposition 6.3 states that the prop-
erty of global asymptotic stability of the closed–loop system
(2.9)–(4.5)—that is the HVDC transmission system controlled
via PI–PBC—is preserved for any additional linear feedback
that affects only the proportional part of the controller and any
gain matrix KL which verifies condition (6.4). However, beside
this stability result, Proposition 6.4 does not provide any hint
on how to select the controller gains in order to overcome the
performance limitations of the PI–PBC, nor how to preserve the
decentralization property that – for some inappropriate choice
of the gain matrix – can be even lost. Taking inspiration from
the conventional droop controller discussed in the previous sec-
tion, the following assignment is made:

KL :=
[

0 0 KD 0
0 0 0 0

]
,

where KD := diag{kD,i} ∈ Rn×n is a positive matrix to be de-
fined. With this choice it is easy to see that the controller (6.3)
can be decomposed in n decentralized controllers of the form[

ud,i
uq,i

]
=

[
kPd,iyd,i− kId,izd,i− kD,i(vC,i− v?C,i)

kPq,iyq,i− kIq,izq,i.

]
,

˙[zd,i
zq,i

]
=

[
yd,i
yq,i

]
,

(6.5)
that correspond to n PI–PBC plus an additional linear

feedback in the local DC voltage error. Straightforward
calculations—here omitted for brevity—show that it is always
possible to determine a gain matrix KD, such that (6.4) is
verified, thus guaranteeing global asymptotic stability of the
closed–loop system.

Remark 6.5. The modified PI–PBC (6.5) can be interpreted,
similarly to the droop controller (6.1), as an outer–loop provid-

ing references for the the standard PI–PBC, but only affecting
its proportional part. It is indeed easy to see that it corresponds
to assume the following inner–loop control scheme[

ud,i
uq,i

]
=

[
kPd,i(v?P

C,iid,i− i?P
d,ivC,i)− kId,izd,i

kPq,i(v?P
C,iiq,i− i?P

q,ivC,i)− kIq,izq,i

]
,

˙[zd,i
zq,i

]
=

[
v?I

C,iid,i− i?I
d,ivC,i

v?I
C,iiq,i− i?I

q,ivC,i

]
,

together with the following outer–loop assignments of the pro-
portional and integral references

i?,Pd,i ← iref
d,i + kD,i

vC,i− vref
C,i

vC,i
, i?,Pq,i ← iref

q,i , v?,PC,i ← vref
C,i

i?,Id,i ← iref
d,i, i?,Iq,i ← iref

q,i , v?,IC,i← vref
C,i,

(6.6)

where, as done before, the notation (·)ref indicates the
(assignable) references of the outer–loop.

6.3. Simulations
To illustrate the previous discussion on outer–loop con-

trollers, the three–terminals benchmark example described in
Subsection 5.4—controlled via decentralized PI–PBC—is con-
sidered. The same control parameters of Subsection 5.4.1 are
employed, and the benefits in terms of performance, provided
by adding an outer–loop control to the PI–PBC controllers of
the form (6.6), are further analyzed. For the choice of the con-
troller gains a very simple heuristic, often invoked in conven-
tional droop control, is selected. Because droop coefficients are
supposed to quantify the additional dissipation injected into the
voltage dynamics, and because the rate of convergence of the
same depend from the value of the capacitances, define

di =
Gi + kD,i

Ci
, i ∈ [1,n] (6.7)

as a measure of the convergence rate of the i-th station, with
Gi and kD,i the conductance and the droop coefficient of the
VSR, respectively. A possible choice of droop coefficients is to
define a common convergence rate d such that di = d for every
i, that is equivalent to define an uniform convergence rate over
the three stations. In the three–terminals benchmark example,
because parameters are supposed to be identical at each VSR,
the droop coefficients will take identical values, namely kD,i =
5 ·10−2. The behavior of the VSRs are illustrated in Fig. 8. In
contrast to the simulations of the basic PI–PBC of Subsection
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Figure 8: Responses of VSRs variables with the decentralized PI–PBC plus GAS outer controller.

5.4.1 when the references change every T = 2000 s, now they
are a thousand times faster that is, every T = 2 s. It is easy to
see that, compared to Fig. 5, the responses maintain the same
shape while the convergence occurs with a rate ≈ 103 faster.

Remark 6.6. Under Assumption 6.1, the responses of the
VSRs under the PI–PBC plus conventional droop control—here
omitted for brevity—are very similar to the responses of the
GAS outer controller, depicted in Fig. 8. However, if As-
sumption 6.1 is not verified, e.g. in perturbed operating con-
ditions, significant differences occurs between the VSRs re-
sponses. It is indeed possible to verify that, while the con-
ventional droop control ensures convergence to an (assignable)
equilibrium point independently from the assigned references,
the GAS outer controller may experience instability.

7. Centralized References Calculator

In this section, a reformulation of the problem of choosing
appropriate references for the droop or inner PI controllers pre-
sented in the previous sections is provided. In power systems
literature, this is often referred as references calculator [10] and
it is in general characterized by a centralized architecture —see
Fig. 7.

It is next shown how certain simple constrains—widely em-
ployed for the references calculation—can be mathematically
formalized using the PFSSE. It is worth mentioning that the
constraints adopted here, are only special cases of a more com-
plex optimization problem, that in general requires to take into
account many other aspects, related to technical and economi-
cal issues. However, the following analysis is limited to some
of the most relevant technical aspects, leaving a more diverse
investigation as a future work.

Consider an HVDC transmission system with meshed topol-
ogy composed by n VSRs (stations), and described by the pH
system (2.9). The set of assignable references is determined by

the following PFSSE

−Ri(iref
d,i)

2−Ri(iref
q,i)

2−Gi(vref
C,i)

2+

+ vd,iiref
d,i− vref

C,iMiR
−1
L M>i vref

C = 0,
(7.1)

for i∈ [1,n], where the row vector Mi ∈Rn is the i–th row of the
matrix M, that coincide with (3.2), but in co-energy variables.
The PFSSE consist in n quadratic, coupled equations in 3n vari-
ables, one for each station. A possibility is then to directly
assign 2n variables, that correspond to the desired references,
while the remaining n variables can be easily determined via
(7.1) and then be provided to the inner–loop controllers. How-
ever, the choice of which variables have to be chosen as desired
references is not arbitrary, but depends on the control objectives
to satisfy. It is next illustrated how the problem of defining ref-
erences in conformity with some natural control objectives can
be formalized using the PFSSE.
Assume the following requirements for the n stations: keep the
DC voltage of only one station (called slack bus) close to the
nominal value, guarantee a proportional active power distribu-
tion (power sharing) among the stations, regulate the reactive
power to a desired value at each station. These requirements
can be easily reformulated as constraints over the PFSSE as
follows:

- regulation of the DC voltage of the slack bus

vref
C,n = vd

C,n,

where vd
C,n represents the DC voltage nominal value;

- proportional power sharing

Pref
i = αiPref

n ⇒ iref
d,i =

[
vd,n

vd,i
αi

]
iref
d,n, i ∈ [1,n−1]

where αi is a ratio that determines the proportional active
power distribution of the i-th station with respect to the
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slack bus;

- regulation of the reactive power

Qref
i = Qd

i ⇒ iref
q,i =

Qd
i

vd,i
, i ∈ [1,n]

where Qd
i represents the exact reactive power required to

be injected (or absorbed) by the i-th station.

It is easy to see that the equations above constitute indeed a
set of 2n assignments for the PFSSE, that can be consequently
solved with respect to the remaining variables.

8. Conclusions and Future Perspectives

The present work covers different aspects of modeling, anal-
ysis and control of multi–terminal HVDC transmission sys-
tems. The main contribution is a decentralized, globally asymp-
totically stable, PI control for a very general class of multi–
terminal HVDC transmission systems. For this purpose, start-
ing from a graph description of the network, a pH represen-
tation has been obtained, thus revealing the intrinsic passivity
properties of the system. The result is a direct extension of the
previous works on PI control of VSRs, to a sufficiently gen-
eral interconnected system, with the important property that the
control is decentralized, a fundamental requirement for large–
scale systems. To provide some connections between the pro-
posed controller and standard techniques, widely used in liter-
ature, a comparative analysis of stability and performances is
provided, shedding some light on limitations and benefits of
different approaches. In particular it is proved—and validated
via simulations—that the popular current and voltage control
techniques possibly lead to unstable behaviors of the controlled
system, while the proposed PI–PBC, although ensuring conver-
gence, has clear performance limitations. The theoretical anal-
ysis that substantiates these claims is based on a detailed, non-
linear zero dynamics analysis of a single VSR with respect to
the outputs used for all these controllers. To overcome the per-
formance limitations of the PI–PBC, an outer–loop controller is
added. This outer–loop takes the form of a voltage droop—that
is the de facto standard in the power systems community. Tak-
ing inspiration from its usual formulation an alternative con-
troller that overcomes the performance limitation of the PI–
PBC is then developed, further showing that global asymptotic
stability is preserved.

A future research line pertains to the use of more accurate
models for the description of the system, that may improve the
control quality. For instance, the behavior of long transmission
lines is best described by means of the Telegrapher’s equations,
thus leading to an infinite dimensional pH representation, which
can still be handled with existing theory [37]. Because the con-
ventional droop controller destroys the passivity property—that
is instrumental for the stability analysis of the PI–PBC—current
research is under way to establish some stability properties of
the PI–PBC plus conventional droop control. A further pos-
sibility is the development of new provably stable outer–loop

primary controllers, that ensure convergence to an (a priori un-
known) equilibrium point, while the references do not belong
to the set of assignable equilibria. Although the latter approach
is of theoretical interest, it is the authors’ belief that a rigor-
ous analysis of the droop control—to substantiate its widely ac-
knowledged robustification features—would better contribute
to bridge the gap between theory and engineering practice. It
would also be of interest to investigate in detail new strategies
for the references calculation, moving away from the PFSSE. A
viable possibility is to consider the latter as a problem of static
optimization, that allows a simple characterization of the con-
trol objectives. A final, long term, objective is the experimental
validation of the proposed PI–PBC plus droop control scheme.
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