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Adaptation is Unnecessary in L 1 -"Adaptive" Control

I. WHAT MAKES "ADAPTIVE" AN ADAPTIVE CONTROLLER?

The basic premise upon which adaptive control is based is the existence of a parameterized controller that achieves the control objective. It is, moreover, assumed that these parameters are not known but that they can be estimated on-line from measurements of the plant signals. Towards this end, an identifier is added to generate the parameter estimates. Then, applying in an ad-hoc manner a certainty equivalence principle, these estimates are directly applied in the aforementioned control law.

Let us illustrate the discussion above with the simplest example of direct, adaptive, state-feedback stabilization of single-input, linear time-invariant (LTI) system of the form

ẋ = Ax + bu (1) 
where the state x ∈ R n is assumed to be measurable, u ∈ R is the control signal, A ∈ R n×n is the system matrix and b ∈ R n the input vector. It is assumed that there exists a vector θ ∈ R n such that A + bθ ⊤ =: Am is a Hurwitz matrix, but this vector is unknown. In this case, the ideal control law takes the form

u = θ ⊤ x, (2) 
that, as mentioned above, is made adaptive adding an identifier that generates the estimated parameters θ ∈ R n . In this way, we obtain the adaptive control law

u = θ⊤ x. (3) 
Defining the parameter error

θ := θ -θ, (4) 
the control law may be written as

u = θ ⊤ x + θ⊤ x.
If the parameter estimates converge to the desired value θ the control signal converges to the ideal control law (2) and asymptotic stabilization is achieved-provided x remains bounded. 1A key observation is that the ideal control signal (2) cannot be implemented without knowledge of the unknown parameters. If this were not the case adaptation would be unnecessary and we simply would plug in the controller that results when θ = 0! In a (long) series of recent papers-see, e.g., [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] and the extensive list of references therein-it has been proposed to replace (3) by

u = -k(u -θ⊤ x), (5) 
where k > 0 is a design parameter. Combining ( 5) with a standard state prediction-based estimator is called in [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] L1-adaptive control, which in the sequel we refer to as L1-AC.

The purpose of this paper is to prove, via a proposition given below, that adaptation is unnecessary in L1-AC in the following precise sense. F1 For any parameter estimation law, the control signal (5) exactly coincides with the output of the LTI, full-state feedback, perturbed, PI controller

v = -K ⊤ I x + k θ⊤ x u = v -K ⊤ P x, (6) 
with the gains KP , KI ∈ R n are independent of the parameters θ. F2 The term θ⊤ x converges to zero. Hence, the L1-AC always converges to a controller that can be obtained without knowledge of the unknown parameters.

F3 If the implementable PI controller 2 v = -K ⊤ I x u = v -K ⊤ P x, (7) 
does not stabilize the plant (19) then the L1-AC does not stabilize it either.

II. IS ADAPTATION NECESSARY IN L1-ADAPTIVE CONTROL?

We analyze in this paper the L1-AC proposed in [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] to address the basic problem of stabilization of single-input, LTI systems discussed in the previous section. In L1-AC, besides the (overly restrictive) assumption of measurable state, it is assumed that the system can be represented in canonical form

A =        0 1 0 . . . 0 0 0 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 -a1 -a2 -a3 . . . -an        , (8) 
where ai ∈ R, i ∈ n := {1, . . . , n} are unknown coefficients, and that the input vector b is known. In the sequel we set b = en, the n-th vector of the Euclidean basis, which is done without loss of generality in view of the assumption of known b. The system (19) can also be expressed in the form

ẋ = Amx -b(θ ⊤ x -u) (9) 
with

Am =        0 1 0 . . . 0 0 0 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 -a m 1 -a m 2 -a m 3 . . . -a m n        (10)
where a m i > 0, i ∈ n, are designer chosen coefficients and θ ∈ R n is a vector of unknown parameters, given by

θ = col(a1 -a m 1 , a2 -a m 2 , . . . , an -a m n ), (11) 
where col(•) denotes column vector. In the L1-AC proposed in [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] the control law is computed via [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF]. The parameters are updated using the classical state predictor-based estimator

ẋ = Am x -b( θ⊤ x -u) θ = γx(x -x) ⊤ P b (12) 
where γ > 0 is the adaptation gain and P > 0 is a Lyapunov matrix for Am, that is,

P Am + A ⊤ m P = -Q, where Q ∈ R n×n is a positive definite matrix.
The proposition below formally establishes the facts F1-F3 stated in the previous section.

Proposition 1: Consider the plant (19) with A given by ( 8) and b = en.

P1 Independently of the parameter estimation, the signal u generated by the L1-AC control law (5) exactly coincides with the output of the perturbed, full-state feedback, LTI, implementable PI controller [START_REF] Van Heusden | Analysis of L 1 -adaptive output feedback control[END_REF] with

KI = k col(a m 1 , a m 2 , a m 3 , . . . , a m n ) KP = k en. ( 13 
)
P2 If the L1-AC controller ( 5), [START_REF] Teel | Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials[END_REF] ensures boundedness of trajectories then the perturbation term verifies

lim t→∞ | θ⊤ (t)x(t)| = 0. (14) 
Consequently, the (bounded state) L1-AC always converges to the PI controller. P3 If the PI ( 7), (13) does not ensure stability of the closed-loop system then the L1-AC (5), [START_REF] Teel | Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials[END_REF] does not ensure boundedness of trajectories. Proof: To establish P1 we use the definition of the parameter error (4) to write the control signal (5) as

u = -k(u -θ ⊤ x) + k θ⊤ x. (15) 
Now, pre-multiplying the plant dynamics (9)-that is equivalent to (19)-by e ⊤ n , and rearranging terms, we get

u -θ ⊤ x = e ⊤ n ( ẋ -Amx),
that, upon replacement in (15), yields

u = -ke ⊤ n ( ẋ -Amx) + k θ⊤ x.
The proof is completed defining the signal

v = u + ke ⊤ n x,
and using the definition of Am given in [START_REF] Ortega | When is a parameterized controller suitable for adaptive control?[END_REF].

To prove P2 we first write the dynamics of the system (9) in closed-loop with the L1-AC (12), (15),

ẋ = Am x -b θ⊤ x θ = γxx ⊤ P b ẋ u = A0 x u + 0 k θ⊤ x , (16) 
where3 A0 = A b kθ ⊤ -k , and x = xx is the prediction error. Consider the function

V (x, θ) = 1 2 x⊤ P x + 1 2γ | θ| 2 ,
whose derivative along the trajectories of ( 16) is

V = - 1 2 x⊤ Qx.
Since it has been assumed that all trajectories are bounded we can invoke LaSalle's invariance principle to conclude that all trajectories converge to the largest invariant set contained in {x = 0}. The proof is completed analyzing the first equation of ( 16).

The proof of P3 is established proving the converse implication, i.e., that the trajectories of the L1-AC are bounded implies stability of the plant in closed-loop with the PI. In point P2 we proved that if the trajectories of (16) are bounded (14) holds true. Now, the system in the third equation of ( 16) is an LTI system whose input, i.e., θ⊤ x converges to zero and whose output col(x, u) is bounded, for all initial conditions col(x(0), u(0)), consequently the matrix A0 is stable.

III. SOME FURTHER REMARKS

R1

The property P1 in Proposition 1 underscores that the stabilization mechanism of L1-AC is independent of the parameter adaptation, instead it is an elementary linear systems principle. As shown in the proposition, the effect of the adaptation appears as a perturbation term k θ⊤ x to the implementable PI controller that, if trajectories are bounded, asymptotically converges to zero. This explains why in L1-AC it is suggested to increase the adaptation gain-hoping that this term will die-out quickly. Moreover, L1-AC includes a parameter projection that, due to the use of utterly high adaptation gains, induces a bang-bang-like behavior in the estimate that, in average, behaves like a constant value. See [START_REF] Boskovic | Performance analysis of a simple L 1adaptive controller[END_REF] for some conclusive simulated evidence. R2 The qualifier "implementable" is essential to appreciate the significance of our results. Of course, all (linearly parameterized) adaptive controllers can be implemented as an LTI system perturbed by the parameter error but the resulting LTI system depends on unknown plant parameters. Due to the inclusion of the input filter, this is not the case in L1-AC-rendering irrelevant the use of adaptation. In [START_REF] Ortega | When is a parameterized controller suitable for adaptive control?[END_REF] this deleterious effect of the input filter has been shown to be pervasive for all model reference controller structures, not just the state-feedback, canonical system representation treated in this paper. R3 In [START_REF] Ortega | Adaptive" control always converges to a linear PI control and does not perform better than the PI[END_REF] it has been shown that there exists kc > 0 such that the PI controller ( 7), (13) ensures global asymptotic stability of the closed-loop system for all k > kc, all unknown parameters ai, i ∈ n, and all Hurwitz matrices Am of the form [START_REF] Ortega | When is a parameterized controller suitable for adaptive control?[END_REF]. On the other hand, to the best of the authors' knowledge, it is not known whether there exists suitable values of γ and k such that the origin of ( 16) is (asymptotically) stable for all unknown parameters ai, i ∈ n, and all Hurwitz matrices Am of the form [START_REF] Ortega | When is a parameterized controller suitable for adaptive control?[END_REF]. R4 We have assumed for simplicity the case of regulation to zero and taken the input filter used in L1-AC as D(s) = k s+k . The proposition extends verbatim to the case of nonconstant reference and general (stable, strictly proper) LTI filters D(s). See [START_REF] Ortega | When is a parameterized controller suitable for adaptive control?[END_REF] and [START_REF] Ortega | Adaptive" control always converges to a linear PI control and does not perform better than the PI[END_REF]. R5 As shown in [START_REF] Ortega | Adaptive" control always converges to a linear PI control and does not perform better than the PI[END_REF] the characteristic polynomial of A0 satisfies4 det(sIn -A0) = s det(sIn -A) + k det(sIn -Am). (17) From which it is clear that, if the plant is unstable, it is necessary to take "large" values of k to stabilize the L1-AC, see (16). This is in contradiction with the main promotional argument of L1-AC, namely that "it compensates for the mismatch between the ideal system and the plant within the frequency range of the lowpass filter D(s)". Moreover, it is recognized in [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] that "the allowed bandwidth of the filter D(s) is limited by robustness considerations"-contradicting, again, the need for large k. It is interesting to note that in the limit, as k → ∞, from (5) we recover the good old model reference adaptive controller u = θ⊤ x! R6 In [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] it is argued that the inclusion of the input LTI filter and the use of large adaptation gains "decouples the estimation and control loops"-a notion that is never explained mathematically. In adaptive control "decoupling" between the adaptation and the control loops is (partially) achieved using small adaptation gains that ensure the estimated parameters vary slowly-with respect to the variation of the plant states. Leaving aside the numerical problems and unpredictable transient behavior generated with large adaptation gains, Point P2 of Proposition 1 clarifies this decoupling effect, namely, making the L1-AC converge faster to the implementable PI controller. R7 In [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] the condition5 

(pIm -Am) -1 bθ ⊤ p p + k ∞ < 1 ( 18 
)
where p := d dt and • ∞ is the L∞-induced operator norm, 6 is imposed to derive some L∞ bounds on some suitably chosen signalsthat, interestingly, do not include the tracking error. Clearly, this condition is far more restrictive than the condition k > kc discussed in Remark R3 above, which ensures stability of the PI. As a matter of fact, in [START_REF] Ortega | Comments on L 1 -adaptive control: Stabilization mechanism, existing conditions for stability and performance limitations[END_REF] it is shown that, for scalar systems, (18) cannot be satisfied for all systems and reference models. R8 The present paper extends the results of [START_REF] Ortega | Comments on L 1 -adaptive control: Stabilization mechanism, existing conditions for stability and performance limitations[END_REF], where we treat only scalar systems. It is similar in spirit to the proof of [START_REF] Van Heusden | Analysis of L 1 -adaptive output feedback control[END_REF] that output feedback L1-AC is, actually, nonadaptive. It also complements the recent report [START_REF] Ioannou | L 1 adaptive control: Stability and robustness properties and misperceptions[END_REF] where the claims of robustness and performance improvement of L1-AC are scrutinized via theoretical analysis and a series of numerical examples. The interested reader is also referred to [START_REF] Boskovic | Performance analysis of a simple L 1adaptive controller[END_REF], [START_REF] Ioannou | L 1 adaptive control: Stability and robustness properties and misperceptions[END_REF] where the issues of numerical instability due to high-gain adaptation and bang-bang behavior of the control due to parameter projection L1-AC, are discussed. The inability of L1-AC to track non-constant references is widely acknowledged, see [START_REF] Ortega | Comments on L 1 -adaptive control: Stabilization mechanism, existing conditions for stability and performance limitations[END_REF] for a particular example. A freezing property of high-gain estimators, that puts a question mark on the interest of using it, is proven in [START_REF] Barabanov | Is normalization necessary for stable MRAC?[END_REF], see also [START_REF] Ortega | Comments on L 1 -adaptive control: Stabilization mechanism, existing conditions for stability and performance limitations[END_REF]. R9 The motivation to crank up the adaptation gain in L1-AC is related with some transient performance bounds claimed by the authors. Indeed, it is easy to show [START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] that, if the initial conditions of the predictor coincide with the initial conditions of the plant, the prediction error is upper-bounded by a constant that is inversely proportional to the adaptation gain. The intrinsic fragility of results relying on particular initial conditions is a key issue often overlooked by (mathematically oriented) researchers in our community. See Sidebar 2. R10 It is not surprising that L1-AC has been successful in some applications. As shown above, it (essentially) coincides with a full state feedback PI controller that, as is well-known, is robust and can reject constant disturbances and track constant references, a scenario that seems to fit the realm of applications reported for this controller.

ur(s) = C(s) [1 -C(s)]M (s) [M (s)r(s) -yr(s)]. (23) 
This is referred to as limiting controller and it is stated that "it is equivalent to the L1-AC under fast adaptation". Notice that the controller (23)-for a plant with output yr-can be implemented without knowledge of the original plant parameters. This is the justification given to the sentence in the abstract of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] mentioned above.

It is, furthermore, argued that the "architectures of both controller are fundamentally different". The motivation for this statement is that, in contrast with L1-AC, the implementation of the limiting controller involves the inversion of M(s) while "the estimation loop in L1-AC computes the approximate desired systems inverse".

For the case treated in our paper

C(s) = k s + k , σ(t) = θ ⊤ x(t), σ(t) = θ⊤ (t)x(t).
For scalar plants the controller (23), with yr(t) ≡ y(t), M (s) = 1 s + am , r(t) ≡ 0, exactly coincides with the PI controller reported in our paper. 7 Numbers in brackets refer to the equations of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF].

As usual in the manipulation of stable transfer functions the calculations of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] neglect the exponentially decaying terms due to initial conditions. This kind of assumption is untenable in nonlinear systems, like adaptive controllers, since it is well-known that even for globally exponentially stable systems the trajectories can be driven to infinity when perturbed by exponentially decaying disturbances [START_REF] Teel | Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials[END_REF].

In Proposition 1 we consider general n-th order plants with arbitrary initial conditions, and prove that the output of the L1-ACincluding the parameter estimator with arbitrary adaptation gainexactly coincides with the output of an implementable PI perturbed by a term coming from the adaptation. It is also established that this term converges to zero, therefore the L1-AC alway converges to the PI. It is easy to prove that the latter result cannot be recovered with the transfer function manipulations of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF]. Indeed, defining in the standard way an estimation error σ(t) := σ(t)σ(t), and doing the calculations above with the original plant it follows that the control signal (21) can be written as

u(s) = C(s) [1 -C(s)]M (s) [M (s)r(s) -y(s)] + C(s) 1 -C(s) σ(s).
Unfortunately, from this equation we cannot conclude that the L1-AC converges to the implementable LTI controller. Indeed, because of the constraint C(0) = 1, the perturbing term σ(t) passes through an integrator. Since we do not know if this signal is integrable we cannot even claim that its contribution to the control signal is bounded-let alone converging to zero.

In the light of this discussion, the interest of the "approximation" and "equivalence" statements of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] is questionable and they are certainly far from substantiating the claim made in the abstract of the paper-a fact that Proposition 1 presents in a crystal-clear manner.

SIDEBAR 2: COMMENTS REGARDING THE ANALYSIS DONE IN

THE L1-AC LITERATURE As indicated in Remark R9 trajectory-dependent claims in control theory are intrinsically fragile. Indeed, the whole body of control theory has been developed to design controllers whose performance is guaranteed independently of the initial conditionsfor instance, ensure stability (in the sense of Lyapunov) of a desired equilibrium point or finite gain of an operator. When the result is valid for a specific initial condition, this property is valid only for that specific trajectory, and cannot be extrapolated to any other one. Hence, in the presence of unknown and unpredictable disturbances, or measurement errors, that will drive away the state from that trajectory, nothing can be said about the new trajectory.

To illustrate this point consider the simple case of the LTI plant ẋ1 = -x1, ẋ2 = x2 -x1.

Clearly, for all initial conditions in the set {x ∈ R 2 | x1 = x2}, the corresponding trajectory is bounded and converges to zero. But, obviously, all trajectories starting outside this set grow unbounded.

Unfortunately, the analysis of L1-AC reported in the literature is trajectory dependent since it relies on the assumption that the initial state of the estimator [START_REF] Teel | Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials[END_REF] coincides with the initial state of the plant, that is x(0) = x(0). Since the plant state cannot be exactly measured, or maybe subject to disturbances that would require an unpractical resetting of the estimator, this condition is always violated in practice.

Actually, to achieve stabilization it is enough that θ converges to the set {K ∈ R n | A + bK ⊤ is Hurwitz }. This is the fundamental self-tuning property of direct adaptive control.

In the sequel we will say that a controller is "implementable" if its gains are independent of the unknown plant parameters.

This matrix is reported in equation (12) of[START_REF] Cao | Guaranteed transient performance with L1-Adaptive controller for systems with unknown time-varying parameters: Part I[END_REF].

From (17) it follows that A 0 may not have an eigenvalue at zero, but it may have eigenvalues in the jω axis. Hence, the stability statement in P3 of Proposition 1 cannot be strengthened to asymptotic stability. The authors thank Denis Efimov for this insightful remark.

Actually, the condition (85) given in[START_REF] Hovakimyan | L 1adaptive control for safety-critical systems[END_REF] is far more restrictive than (18).

For convolution operators H∞ = h(t) 1 = ∞ 0 |h(t)|dt, where h(t) is the impulse response[START_REF] Desoer | Feedback Systems: Input Output Properties[END_REF].

SIDEBAR 1: COMMENTS REGARDING [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] In the abstract of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] one finds the following unusually candid sentence: "the L1 adaptive controllers approximate an implementable non-adaptive linear controller." In this sidebar we derive, in a mathematically rigorous way, the calculations done in [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] that motivated the previous sentence and place it in the context of our work.

Towards this end, consider the LTI system

where G(s) ∈ R(s) and is strictly proper. This corresponds to equation 7 {1} in [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF], where the symbol A(s) is used instead of G(s), and a much more general plant model is treated. We consider here the simplest scenario needed to convey our message. The plant model is rewritten in {2} as

where

with M (s) ∈ R(s), stable of relative degree smaller than the relative degree of G(s). The L1-AC {7} is given in this case by

where r(t) is some reference signal, C(s) ∈ R(s), is strictly proper, stable and verifies C(0) = 1, and σ(t) is a signal that represents an "estimate" of σ(t) generated with the estimator {4}-{6}.

In {8} and {9} of [START_REF] Kharisov | Limiting behavior of L1-Adaptive controllers[END_REF] the following signals, called reference signals, are introduced

It important to note that (22) exactly coincides with ( 19)-(21) when

which corresponds to the case without adaptation and known plant parameters.

It is then claimed, without proof, that the L∞ norm of the errors y(t)yr(t) and u(t)ur(t) can be made arbitrarily small "reducing the sampling time" of the estimator {4}-{6}. This leads the authors to affirm that "the L1-AC system approximates the reference system (22)".

The authors then proceed with some transfer function manipulations to establish {13}, that is,