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I. WHAT MAKES “ADAPTIVE” AN ADAPTIVE CONTROLLER? wherek > 0 is a design parameter. Combinirfg (5) with a stan-

The basic premise upon which adaptive control is based is tiflard state prediction—based estimator is called ing5}adaptive
existence of a parameterized controller that achieves ¢mra ~ control, which in the sequel we refer to 45-AC.
objective. It is, moreover, assumed that these parametersiat The purpose of this paper is to prove, via a proposition given
known but that they can be estimated on—line from measursnoén Pelow, that adaptation isnnecessaryn £,—AC in the following
the plant signals. Towards this end, an identifier is addeg:terate Precise sense.
the parameter estimates. Then, applying inaak-hocmanner a  F1 For any parameter estimation law, the control sigiaégaktly

certainty equivalence principle, these estimates arettijrapplied coincides with the output of the LTI, full-state feedback,
in the aforementioned control law. perturbed, PI controller
Let us illustrate the discussion above with the simplesthipta . .
of direct, adaptive, state—feedback stabilization of Isimput, v = —Krz+kl x
linear time—invariant (LTI) system of the form u = v— K;x, (6)
&= Az +bu 1) with the gainsKp, K1 € R"™ areindependentf the parame-
where the statee € R" is assumed to beneasurableu € R is tersé. -
the control signalA € R™*" is the system matrix antlc R the ~ F2 The termd = converges to zero. Hence, tita-AC always
input vector. It is assumed that there exists a veétar R™ such converges to a controller that can be obtaiméthout knowl-
that edge of the unknown parameters.
A+b0" =: A,, F3 If the implementable PI controlfer
is a Hurwitz matrix, but this vector isnknown In this case, the v = —-Kjzx
ideal control law takes the form u = v-Kpz, @)
u=0"z, 2 o
does not stabilizahe plant [IB) then the;—AC does not
that, as mentioned above, is made adaptive adding an igerttiit stabilize it either.
generates the estimated parametessR”™. In this way, we obtain
the adaptive control law Il. IS ADAPTATION NECESSARY INL1—ADAPTIVE CONTROL?
w=0"z. 3) We analyze in this paper th&,—AC proposed in [5] to address

the basic problem of stabilization of single—input, LTI ®&ms

discussed in the previous section. ln—AC, besides the (overly
6:=6—0, (4) restrictive) assumption of measurable state, it is assutingidthe
system can be represented in canonical form

Defining the parameter error

the control law may be written as

u=0"z+6 1. 8 (1) (1) 8
If the parameter estimates converge to the desired vélube A= ®)
control signal converges to the ideal control law (2) andgsiptic : : : ) : '
stabilization is achieved—provided remains bounde. 0 0 0 .. 1

A key observation is that the ideal control signa (&nnot be —4r T2 —a43 ... —On

implementedvithout knowledge of the unknown parameters. If thiswhereai €R,ien:={1,...,n} are unknown coefficients, and
were not the case adaptation would be unnecessary and W/ simgat the input vectob is knowr; In the sequel we sét = e,, the
would plug in the controller that results whén= 0! n—-th vector of the Euclidean basis, which is done without loks

~ Ina(long) series of recent papers—se, [S] and the extensive  generality in view of the assumption of knovin The system[{19)
list of references therein—it has been proposed to replBreY  can also be expressed in the form

= —k(u— éT:CL ®) &= Amnx — b(OTx —u) )

1Actually, to achieve stabilization it is enough tréat:onverges to the set
{K € R" | A+bKT is Hurwitz }. This is the fundamental self-tuning  2In the sequel we will say that a controller is “implementabféts gains
property of direct adaptive control. are independent of the unknown plant parameters.
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with
0 1 0 0
0 0 1 0
Am = : : : : : (10)
0 0 0 ... 1
—al" —ay —ag' —ay'

wherea;* > 0, i € i, are designer chosen coefficients #hd R"
is a vector ofunknownparameters, given by

0 =col(ar —al",a2 —a3',...,an —ay'), (11)

where col-) denotes column vector. In th&—AC proposed in [5]

the control law is computed vid](5). The parameters are egdat

using the classical state predictor-based estimator
i = Apni— b(éT:c —u)

0 yx(z —z) ' Pb

(12)

where~ > 0 is the adaptation gain an® > 0 is a Lyapunov
matrix for A,,, that is,

PAp +ALP=-Q,

whereQ € R™*"™ is a positive definite matrix.
The proposition below formally establishes the facts Flstagd
in the previous section.

Proposition 1: Consider the planf{19) witll given by [8) and
b=e,.

P1 Independently of the parameter estimation, the signal
generated by theC;—AC control law [%) exactly coincides

To prove P2 we first write the dynamics of the systém (9) in
closed-loop with theZ;—AC (12), [15),

= Anz—00'z
6 = fym?TPb
T T 0
MR R IS
Whera A )
AOZ{M)T —k]’

andz = & — x is the prediction error. Consider the function

V(z,0) = %”Pfg

whose derivative along the trajectories lof1(16) is

L
—|0
+ 5107,

V= —%iTQi.

Since it has been assumed that all trajectories are boundezhmw
invoke LaSalle’s invariance principle to conclude thatidjectories
converge to the largest invariant set containetir= 0}. The proof
is completed analyzing the first equation of1(16).

The proof of P3 is established proving the converse impboat
i.e, that the trajectories of thé,—AC are bounded implies stability
of the plant in closed—loop with the PI. In point P2 we provedtt
if the trajectories of[(16) are bounded{14) holds true. Ndve
system in the third equation df {{16) is an LTI system whosaitnp
i.e., 6z converges to zero and whose output(eok:) is bounded,
for all initial conditions co{x(0),(0)), consequently the matrix
Ay is stable.

[ |

with the output of the perturbed, full-state feedback, LTI,

implementableP| controller [6) with

Kr
Kp

k col(al", a3, a3, . ..
k e,.

san')

(13)

I1l. SOME FURTHERREMARKS

R1 The property P1 in Proposition] 1 underscores that the sta-
bilization mechanism of£,—-AC is independent of the parameter
adaptation, instead it is an elementary linear systemgipten As

P2 If the £,—AC controller [3), [IR) ensures boundedness ofhown in the proposition, the effect of the adaptation appes

trajectories then the perturbation term verifies

lim |67 (t)z ()] = 0.

t—o0

(14)

Consequently, the (bounded stai&)-AC always converges
to the PI controller.
P3 If the PI[T),[(IBdoes notensure stability of the closed—loop

system then th&,—AC (8), [12) does not ensure boundednes

of trajectories.

Proof: To establish P1 we use the definition of the parametey

error [4) to write the control signa[l(5) as
0=—k(u—0"2)+ k0 . (15)

Now, pre—multiplying the plant dynamics](9)—that is eqleve to
(@) —bye, , and rearranging terms, we get
u—0"z=e) (i— Anz),
that, upon replacement i (115), yields
= —key (& — Amz) + k0 .
The proof is completed defining the signal

T
v=u+ ke,r,

and using the definition ofi,,, given in [10).

a perturbation ternkf ' z to the implementable PI controller that,
if trajectories are bounded, asymptotically convergeseim.zThis
explains why in£,—AC it is suggested to increase the adaptation
gain—hoping that this term will die—out quickly. Moreovet;—
AC includes a parameter projection that, due to the use eflytt
high adaptation gains, induces a bang-bang-like behamithe
estimate that, in average, behaves like a constant valee[2$éor

Some conclusive simulated evidence.

R2 The qualifier “implementable” is essential to appreciate th
ignificance of our results. Of course, all (linearly pargarieed)
adaptive controllers can be implemented as an LTI systemmnbed
by the parameter error but the resulting LTI system depends o
unknown planiparameters. Due to the inclusion of the input filter,
this is not the case inC;—AC—rendering irrelevant the use of
adaptation. In [10] this deleterious effect of the inputfilhas been
shown to be pervasive for all model reference controllarcstires,
not just the state—feedback, canonical system repregentadated

in this paper.

R3 In [11] it has been shown that there exigts > 0 such that
the PI controller [{I7),[[T3) ensures global asymptotic $itsbof
the closed—loop system for all > k., all unknown parameters
ai,i € 71, and all Hurwitz matrices4,,, of the form [10). On the
other hand, to the best of the authors’ knowledge, it is nawm

3This matrix is reported in equation (12) of [3].



whether there exists suitable valuesyoénd k such that the origin
of (18) is (asymptotically) stable for all unknown paranmste,, i €
7, and all Hurwitz matricesd,,, of the form [10).

that puts a question mark on the interest of using it, is prave
[1], see also [9].
R9 The motivation to crank up the adaptation gain An—AC

R4 We have assumed for simplicity the case of regulation to zeris related with some transient performance bounds claimed b

and taken the input filter used i,—AC as D(s) = . The

the authors. Indeed, it is easy to show [5] that, if the ihitia

proposition extendserbatimto the case of nonconstant referenceconditions of the predictacoincide with the initial conditions of the

and general (stable, strictly proper) LTI filtef3(s). See [10] and
[11].
R5 As shown in [11] the characteristic polynomial 4f, satisfied

det(sl, — Ao) = sdet(sl, — A) + kdet(sl, — Ap). (17)

From which it is clear that, if the plant is unstable, it is esgary
to take “large” values ofk to stabilize the£,-AC, see [(Ib).
This is in contradiction with the main promotional argumenfit
L1-AC, namely that “it compensates for the mismatch betwee
the ideal system and the plant within the frequency rangehef t
lowpass filter D(s)”. Moreover, it is recognized in [5] that “the
allowed bandwidth of the filterD(s) is limited by robustness
considerations”—contradicting, again, the need for lakgdt is
interesting to note that in the limit, &s— oo, from (8) we recover
the good old model reference adaptive controller 67 2!

R6 In [5] it is argued that the inclusion of the input LTI filter @the
use of large adaptation gains “decouples the estimatiorcanttol
loops™—a notion that is never explained mathematicalhadiaptive
control “decoupling” between the adaptation and the cordaps

is (partially) achieved using small adaptation gains threstuee the
estimated parameters vary slowly—with respect to the tiaria

of the plant states. Leaving aside the numerical problents an

unpredictable transient behavior generated with largeptatian
gains, Point P2 of Propositida 1 clarifies this decouplinfpaf
namely, making theZ,—AC converge faster to the implementable
PI controller.

R7 In [5] the conditiofi

(pIm — Amrlbelﬁnm <1 (18)

wherep := £ and||- || is the Lo.—induced operator norfhis im-

posed to derive som€.. bounds on some suitably chosen signals—

that, interestingly, do not include the tracking error. &lg this
condition is far more restrictive than the conditibn> k. discussed
in Remark R3 above, which ensures stability of the PI. As aenat
of fact, in [9] it is shown that, for scalar system§,](18) aatnbe
satisfied for all systems and reference models.

R8 The present paper extends the results of [9], where we trdat o
scalar systems. It is similar in spirit to the proof of [6] thautput

feedbackl;—AC is, actually, nonadaptive. It also complements the

recent report [7] where the claims of robustness and petoom

plant, the prediction error is upper-bounded by a constant that is
inversely proportional to the adaptation gain. The infdrigagility

of results relying on particular initial conditions is a kégsue
often overlooked by (mathematically oriented) researchierour
community. See Sidebar 2.

R10 It is not surprising thatC;—AC has been successful in some
applications. As shown above, it (essentially) coincidéth a full
state feedback Pl controller that, as is well-known, is sbtand
can reject constant disturbances and track constant nefese a
8cenario that seems to fit the realm of applications repdaethis
controller.
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SIDEBAR 1: COMMENTS REGARDING [8]

In the abstract of [8] one finds the following unusually can-
did sentence: "the L1 adaptive controllers approximate raplé-
mentable non-adaptive linear controller.” In this sidetvar derive,
in a mathematically rigorous way, the calculations done8ijntfiat
motivated the previous sentence and place it in the conteguio
work.

Towards this end, consider the LTI system

y(s) = G(s)u(s),
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where G(s) € R(s) and is strictly proper. This corresponds to As usual in the manipulation of stable transfer functions th
equatioﬁ {1} in [8], where the symbolA(s) is used instead of calculations of [8] neglect the exponentially decayingrerdue
G(s), and a much more general plant model is treated. We consider initial conditions. This kind of assumption is untenahte
here the simplest scenario needed to convey our messagelartte nonlinear systems, like adaptive controllers, since it &lvknown

model is rewritten in{2} as that even for globally exponentially stable systems thgettaries
can be driven to infinity when perturbed by exponentiallyajécy

y(s) = M(s)lu(s) +o(s)], (19)  disturbances [12].
where In Propositior{ 1L we consider generakth order plants withar-

_ G(s) 20) bitrary initial conditions, and prove that the output of tie-AC—
ols) = M(s)—1 u(s), including the parameter estimator widbitrary adaptation gain—

with M(s) € R(s), stable of relative degree smaller than theE;?E[grfnol:r:)Crlr?iﬁz \fl\rlgrnt&ee(;:jtgs;[a%foi? IItrTi]splaeIz)eQ::lI)elisF;:(au:j?tlweig
relative degree of7(s). The £,—AC {7} is given in this case by

term converges to zero, therefore tig—AC alway converges to
u(s) = C(s)[r(s) — &(s)], (21) the PI. Itis easy to prove that the latter result cannot bevered
with the transfer function manipulations of [8]. Indeedfidi@g in

wherer(t) is some reference signal(s) € R(s), is strictly proper,  the standard way an estimation error
stable and verifie€'(0) = 1, and&(¢) is a signal that represents

an "estimate” ofo(t) generated with the estimat¢#}—{6}. a(t) :=6(t) —o(t),
“In {8} and {9} of [8] the following signals, called reference ang doing the calculations above with the original planolidivs
signals, are introduced that the control signal{21) can be written as
yr(s) = M(s)[ur(s) + or(s)] C(s) Cls) -
u(s) = ———~2——[M(s)r(s) —y(s)]| + ——=—3(s).
ur(s) = C(s)[r(s) — on(s)] (#) [1—0(8)]M(s)[ (e)r(e) = wlo) 1-C(s) (e)
on(s) = G(s) un(s) 22) Unfortunately, from this equation we cannot conclude that4;—
" T M(s)—1 "7 AC converges to the implementable LTI controller. Indeestduse

of the constraintC'(0) = 1, the perturbing ternd (¢) passes through
an integrator. Since we do not know if this signal is inte¢gab
a(t) =o(t), we cannot even claim that its contribution to the controhaigs
bounded—Ilet alone converging to zero.

In the light of this discussion, the interest of the "approation”
and "equivalence” statements of [8] is questionable ang tire
certainly far from substantiating the claim made in the st
of the paper—a fact that Propositibh 1 presents in a crydtdr

It important to note thaf{22) exactly coincides with](12Z)Y when

which corresponds to the casdéthout adaptation and known plant
parameters

It is then claimed, without proof, that th€., norm of the
errorsy(t) — y-(t) andu(t) — u,(¢) can be made arbitrarily small
"reducing the sampling time” of the estimatp4}—{6}. This leads

manner.
the authors to affirm that "thel;—AC systemapproximatesthe
reference systeni (P2)". SIDEBAR 2: COMMENTS REGARDING THE ANALYSIS DONE IN
The authors then proceed with some transfer function méaipu THE £1—AC LITERATURE
tions to establisH{13}, that is, As indicated in Remark R9 trajectory—dependent claims im co
trol theory are intrinsically fragile. Indeed, the whole dyoof
C(s) .
ur(s) = W[M(SV(S) —yr(s)]. (23)  control theory has been developed to design controllersseho

performance is guarante@wtiependently of the initial conditions
This is referred to anltlng controller and it is stated that "it is for instance, ensure Stab|||ty (m the sense of Lyapuno\a oésired
equivalent to the;—AC underfast adaptation Notice that the equilibrium point or finite gain of an operator. When the tessi
controller [23)—for a plant with outpuy.—can be implemented valid for a specific initial condition, this property is vdlpnly for
without knowledge of the original plant parameters. Thisthie  that specific trajectory, and cannot be extrapolated to &#mgrmne.
jUStiﬁCﬁtion given to the sentence in the abstract of [8] tiogred Hence, in the presence of unknown and unpredictab]e destiods,

above. or measurement errors, that will drive away the state froat th
Itis, furthermore, argued that the "architectures of bathtwoller  trajectory, nothing can be said about the new trajectory.

are fundamentally different”. The motivation for this statent is To illustrate this point consider the simple case of the LIEinp
that, in contrast with£;—AC, the implementation of the limiting

controller involves the inversion of M(s) while "the estititan loop T1=—x1, @2=22 21
in £;—AC computes the approximate desired systems inverse”. Clearly, for all initial conditions in the sefz € R? | 21 = 2},
For the case treated in our paper the corresponding trajectory is bounded and convergesrto Bett,
k T . - obviously, all trajectories starting outside this set grawbounded.
Cls) = S+E o(t) =0 z(t), &6(t)=0 (t)x(t). Unfortunately, the analysis of1—AC reported in the literature

is trajectory dependent since it relies on the assumptian ttie

For scalar plants the controlldr_(23), with - . o . A
P ) initial state of the estimatol (12)oincideswith the initial state

1 N _ .
ye(t) = y(t), M(s) = , () =0, of the plant, that isz(0) = x(0). Sl_nce the_plant state cannot
s+ am be exactly measured, or maybe subject to disturbances thatw

exactly coincides with the PI controller reported in our @ap require an unpractical resetting of the estimator, thisdg@n is

always violated in practice.
“Numbers in brackets refer to the equations of [8].
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