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I. WHAT MAKES “ADAPTIVE ” AN ADAPTIVE CONTROLLER?

The basic premise upon which adaptive control is based is the
existence of a parameterized controller that achieves the control
objective. It is, moreover, assumed that these parameters are not
known but that they can be estimated on–line from measurements of
the plant signals. Towards this end, an identifier is added togenerate
the parameter estimates. Then, applying in anad–hoc manner a
certainty equivalence principle, these estimates are directly applied
in the aforementioned control law.

Let us illustrate the discussion above with the simplest example
of direct, adaptive, state–feedback stabilization of single–input,
linear time–invariant (LTI) system of the form

ẋ = Ax+ bu (1)

where the statex ∈ R
n is assumed to bemeasurable, u ∈ R is

the control signal,A ∈ R
n×n is the system matrix andb ∈ R

n the
input vector. It is assumed that there exists a vectorθ ∈ R

n such
that

A+ bθ
⊤ =: Am

is a Hurwitz matrix, but this vector isunknown. In this case, the
ideal control law takes the form

u = θ
⊤
x, (2)

that, as mentioned above, is made adaptive adding an identifier that
generates the estimated parametersθ̂ ∈ R

n. In this way, we obtain
the adaptive control law

u = θ̂
⊤
x. (3)

Defining the parameter error

θ̃ := θ̂ − θ, (4)

the control law may be written as

u = θ
⊤
x+ θ̃

⊤
x.

If the parameter estimates converge to the desired valueθ the
control signal converges to the ideal control law (2) and asymptotic
stabilization is achieved—providedx remains bounded.1

A key observation is that the ideal control signal (2)cannot be
implementedwithout knowledge of the unknown parameters. If this
were not the case adaptation would be unnecessary and we simply
would plug in the controller that results wheñθ = 0!

In a (long) series of recent papers—see,e.g., [5] and the extensive
list of references therein—it has been proposed to replace (3) by

u̇ = −k(u− θ̂
⊤
x), (5)

1Actually, to achieve stabilization it is enough thatθ̂ converges to the set
{K ∈ R

n | A+ bK⊤ is Hurwitz }. This is the fundamental self–tuning
property of direct adaptive control.

wherek > 0 is a design parameter. Combining (5) with a stan-
dard state prediction–based estimator is called in [5]L1–adaptive
control, which in the sequel we refer to asL1–AC.

The purpose of this paper is to prove, via a proposition given
below, that adaptation isunnecessaryin L1–AC in the following
precise sense.

F1 For any parameter estimation law, the control signal (5)exactly
coincides with the output of the LTI, full–state feedback,
perturbed, PI controller

v̇ = −K
⊤

I x+ kθ̃
⊤
x

u = v −K
⊤

P x, (6)

with the gainsKP ,KI ∈ R
n are independentof the parame-

tersθ.
F2 The termθ̃⊤x converges to zero. Hence, theL1–AC always

converges to a controller that can be obtainedwithout knowl-
edge of the unknown parameters.

F3 If the implementable PI controller2

v̇ = −K
⊤

I x

u = v −K
⊤

P x, (7)

does not stabilizethe plant (19) then theL1–AC does not
stabilize it either.

II. I S ADAPTATION NECESSARY INL1–ADAPTIVE CONTROL?

We analyze in this paper theL1–AC proposed in [5] to address
the basic problem of stabilization of single–input, LTI systems
discussed in the previous section. InL1–AC, besides the (overly
restrictive) assumption of measurable state, it is assumedthat the
system can be represented in canonical form

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a1 −a2 −a3 . . . −an















, (8)

whereai ∈ R, i ∈ n̄ := {1, . . . , n} are unknown coefficients, and
that the input vectorb is known. In the sequel we setb = en, the
n–th vector of the Euclidean basis, which is done without lossof
generality in view of the assumption of knownb. The system (19)
can also be expressed in the form

ẋ = Amx− b(θ⊤x− u) (9)

2In the sequel we will say that a controller is “implementable” if its gains
are independent of the unknown plant parameters.
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with

Am =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−am

1 −am

2 −am

3 . . . −am

n















(10)

wheream

i > 0, i ∈ n̄, are designer chosen coefficients andθ ∈ R
n

is a vector ofunknownparameters, given by

θ = col(a1 − a
m

1 , a2 − a
m

2 , . . . , an − a
m

n ), (11)

where col(·) denotes column vector. In theL1–AC proposed in [5]
the control law is computed via (5). The parameters are updated
using the classical state predictor–based estimator

˙̂x = Amx̂− b(θ̂⊤x− u)
˙̂
θ = γx(x̂− x)⊤Pb (12)

where γ > 0 is the adaptation gain andP > 0 is a Lyapunov
matrix for Am, that is,

PAm + A
⊤

mP = −Q,

whereQ ∈ R
n×n is a positive definite matrix.

The proposition below formally establishes the facts F1–F3stated
in the previous section.

Proposition 1: Consider the plant (19) withA given by (8) and
b = en.

P1 Independently of the parameter estimation, the signalu

generated by theL1–AC control law (5) exactly coincides
with the output of the perturbed, full-state feedback, LTI,
implementablePI controller (6) with

KI = k col(am

1 , a
m

2 , a
m

3 , . . . , a
m

n )

KP = k en. (13)

P2 If the L1–AC controller (5), (12) ensures boundedness of
trajectories then the perturbation term verifies

lim
t→∞

|θ̃⊤(t)x(t)| = 0. (14)

Consequently, the (bounded state)L1–AC alwaysconverges
to the PI controller.

P3 If the PI (7), (13)does notensure stability of the closed–loop
system then theL1–AC (5), (12) does not ensure boundedness
of trajectories.

Proof: To establish P1 we use the definition of the parameter
error (4) to write the control signal (5) as

u̇ = −k(u− θ
⊤
x) + kθ̃

⊤
x. (15)

Now, pre–multiplying the plant dynamics (9)—that is equivalent to
(19)—by e⊤n , and rearranging terms, we get

u− θ
⊤
x = e

⊤

n (ẋ− Amx),

that, upon replacement in (15), yields

u̇ = −ke
⊤

n (ẋ−Amx) + kθ̃
⊤
x.

The proof is completed defining the signal

v = u+ ke
⊤

n x,

and using the definition ofAm given in (10).

To prove P2 we first write the dynamics of the system (9) in
closed–loop with theL1–AC (12), (15),

˙̃x = Amx̃− bθ̃
⊤
x

˙̃
θ = γxx̃

⊤
Pb

[

ẋ

u̇

]

= A0

[

x

u

]

+

[

0

kθ̃⊤x

]

, (16)

where3

A0 =

[

A b

kθ⊤ −k

]

,

and x̃ = x̂− x is the prediction error. Consider the function

V (x̃, θ̃) =
1

2
x̃
⊤
P x̃+

1

2γ
|θ̃|2,

whose derivative along the trajectories of (16) is

V̇ = −
1

2
x̃
⊤
Qx̃.

Since it has been assumed that all trajectories are bounded we can
invoke LaSalle’s invariance principle to conclude that alltrajectories
converge to the largest invariant set contained in{x̃ = 0}. The proof
is completed analyzing the first equation of (16).

The proof of P3 is established proving the converse implication,
i.e., that the trajectories of theL1–AC are bounded implies stability
of the plant in closed–loop with the PI. In point P2 we proved that
if the trajectories of (16) are bounded (14) holds true. Now,the
system in the third equation of (16) is an LTI system whose input,
i.e., θ̃⊤x converges to zero and whose output col(x, u) is bounded,
for all initial conditions col(x(0), u(0)), consequently the matrix
A0 is stable.

III. SOME FURTHERREMARKS

R1 The property P1 in Proposition 1 underscores that the sta-
bilization mechanism ofL1–AC is independent of the parameter
adaptation, instead it is an elementary linear systems principle. As
shown in the proposition, the effect of the adaptation appears as
a perturbation termkθ̃⊤x to the implementable PI controller that,
if trajectories are bounded, asymptotically converges to zero. This
explains why inL1–AC it is suggested to increase the adaptation
gain—hoping that this term will die–out quickly. Moreover,L1–
AC includes a parameter projection that, due to the use of utterly
high adaptation gains, induces a bang–bang–like behavior in the
estimate that, in average, behaves like a constant value. See [2] for
some conclusive simulated evidence.
R2 The qualifier “implementable” is essential to appreciate the
significance of our results. Of course, all (linearly parameterized)
adaptive controllers can be implemented as an LTI system perturbed
by the parameter error but the resulting LTI system depends on
unknown plantparameters. Due to the inclusion of the input filter,
this is not the case inL1–AC—rendering irrelevant the use of
adaptation. In [10] this deleterious effect of the input filter has been
shown to be pervasive for all model reference controller structures,
not just the state–feedback, canonical system representation treated
in this paper.
R3 In [11] it has been shown that there existskc > 0 such that
the PI controller (7), (13) ensures global asymptotic stability of
the closed–loop system for allk > kc, all unknown parameters
ai, i ∈ n̄, and all Hurwitz matricesAm of the form (10). On the
other hand, to the best of the authors’ knowledge, it is not known

3This matrix is reported in equation (12) of [3].



whether there exists suitable values ofγ andk such that the origin
of (16) is (asymptotically) stable for all unknown parametersai, i ∈
n̄, and all Hurwitz matricesAm of the form (10).
R4 We have assumed for simplicity the case of regulation to zero
and taken the input filter used inL1–AC asD(s) = k

s+k
. The

proposition extendsverbatim to the case of nonconstant reference
and general (stable, strictly proper) LTI filtersD(s). See [10] and
[11].
R5 As shown in [11] the characteristic polynomial ofA0 satisfies4

det(sIn −A0) = s det(sIn − A) + k det(sIn −Am). (17)

From which it is clear that, if the plant is unstable, it is necessary
to take “large” values ofk to stabilize theL1–AC, see (16).
This is in contradiction with the main promotional argumentof
L1–AC, namely that “it compensates for the mismatch between
the ideal system and the plant within the frequency range of the
lowpass filterD(s)”. Moreover, it is recognized in [5] that “the
allowed bandwidth of the filterD(s) is limited by robustness
considerations”—contradicting, again, the need for largek. It is
interesting to note that in the limit, ask → ∞, from (5) we recover
the good old model reference adaptive controlleru = θ̂⊤x!
R6 In [5] it is argued that the inclusion of the input LTI filter and the
use of large adaptation gains “decouples the estimation andcontrol
loops”—a notion that is never explained mathematically. Inadaptive
control “decoupling” between the adaptation and the control loops
is (partially) achieved using small adaptation gains that ensure the
estimated parameters vary slowly—with respect to the variation
of the plant states. Leaving aside the numerical problems and
unpredictable transient behavior generated with large adaptation
gains, Point P2 of Proposition 1 clarifies this decoupling effect,
namely, making theL1–AC converge faster to the implementable
PI controller.
R7 In [5] the condition5

‖(pIm − Am)−1
bθ

⊤ p

p+ k
‖∞ < 1 (18)

wherep := d

dt
and‖·‖∞ is theL∞–induced operator norm,6 is im-

posed to derive someL∞ bounds on some suitably chosen signals—
that, interestingly, do not include the tracking error. Clearly, this
condition is far more restrictive than the conditionk > kc discussed
in Remark R3 above, which ensures stability of the PI. As a matter
of fact, in [9] it is shown that, for scalar systems, (18) cannot be
satisfied for all systems and reference models.
R8 The present paper extends the results of [9], where we treat only
scalar systems. It is similar in spirit to the proof of [6] that output
feedbackL1–AC is, actually, nonadaptive. It also complements the
recent report [7] where the claims of robustness and performance
improvement ofL1–AC are scrutinized via theoretical analysis and
a series of numerical examples. The interested reader is also referred
to [2], [7] where the issues of numerical instability due to high–gain
adaptation and bang–bang behavior of the control due to parameter
projectionL1–AC, are discussed. The inability ofL1–AC to track
non–constant references is widely acknowledged, see [9] for a
particular example. A freezing property of high–gain estimators,

4From (17) it follows thatA0 may not have an eigenvalue at zero, but it
may have eigenvalues in thejω axis. Hence, the stability statement in P3
of Proposition 1 cannot be strengthened to asymptotic stability. The authors
thank Denis Efimov for this insightful remark.

5Actually, the condition (85) given in [5] is far more restrictive than (18).
6For convolution operators‖H‖∞ = ‖h(t)‖1 =

∫
∞

0
|h(t)|dt, where

h(t) is the impulse response [4].

that puts a question mark on the interest of using it, is proven in
[1], see also [9].
R9 The motivation to crank up the adaptation gain inL1–AC
is related with some transient performance bounds claimed by
the authors. Indeed, it is easy to show [5] that, if the initial
conditions of the predictorcoincide with the initial conditions of the
plant, the prediction error is upper–bounded by a constant that is
inversely proportional to the adaptation gain. The intrinsic fragility
of results relying on particular initial conditions is a keyissue
often overlooked by (mathematically oriented) researchers in our
community. See Sidebar 2.
R10 It is not surprising thatL1–AC has been successful in some
applications. As shown above, it (essentially) coincides with a full
state feedback PI controller that, as is well–known, is robust and
can reject constant disturbances and track constant references, a
scenario that seems to fit the realm of applications reportedfor this
controller.
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SIDEBAR 1: COMMENTS REGARDING [8]

In the abstract of [8] one finds the following unusually can-
did sentence: ”the L1 adaptive controllers approximate an imple-
mentable non-adaptive linear controller.” In this sidebarwe derive,
in a mathematically rigorous way, the calculations done in [8] that
motivated the previous sentence and place it in the context of our
work.

Towards this end, consider the LTI system

y(s) = G(s)u(s),

http://arxiv.org/abs/1405.7921


where G(s) ∈ R(s) and is strictly proper. This corresponds to
equation7 {1} in [8], where the symbolA(s) is used instead of
G(s), and a much more general plant model is treated. We consider
here the simplest scenario needed to convey our message. Theplant
model is rewritten in{2} as

y(s) = M(s)[u(s) + σ(s)], (19)

where

σ(s) =

[

G(s)

M(s)− 1

]

u(s), (20)

with M(s) ∈ R(s), stable of relative degree smaller than the
relative degree ofG(s). TheL1–AC {7} is given in this case by

u(s) = C(s)[r(s)− σ̂(s)], (21)

wherer(t) is some reference signal,C(s) ∈ R(s), is strictly proper,
stable and verifiesC(0) = 1, and σ̂(t) is a signal that represents
an ”estimate” ofσ(t) generated with the estimator{4}–{6}.

In {8} and {9} of [8] the following signals, called reference
signals, are introduced

yr(s) = M(s)[ur(s) + σr(s)]

ur(s) = C(s)[r(s)− σr(s)]

σr(s) =
G(s)

M(s)− 1
ur(s). (22)

It important to note that (22) exactly coincides with (19)–(21) when

σ̂(t) ≡ σ(t),

which corresponds to the casewithout adaptation and known plant
parameters.

It is then claimed, without proof, that theL∞ norm of the
errorsy(t)− yr(t) andu(t)− ur(t) can be made arbitrarily small
”reducing the sampling time” of the estimator{4}–{6}. This leads
the authors to affirm that ”theL1–AC systemapproximatesthe
reference system (22)”.

The authors then proceed with some transfer function manipula-
tions to establish{13}, that is,

ur(s) =
C(s)

[1− C(s)]M(s)
[M(s)r(s)− yr(s)]. (23)

This is referred to aslimiting controller and it is stated that ”it is
equivalent to theL1–AC under fast adaptation”. Notice that the
controller (23)—for a plant with outputyr—can be implemented
without knowledge of the original plant parameters. This isthe
justification given to the sentence in the abstract of [8] mentioned
above.

It is, furthermore, argued that the ”architectures of both controller
are fundamentally different”. The motivation for this statement is
that, in contrast withL1–AC, the implementation of the limiting
controller involves the inversion of M(s) while ”the estimation loop
in L1–AC computes the approximate desired systems inverse”.

For the case treated in our paper

C(s) =
k

s+ k
, σ(t) = θ

⊤
x(t), σ̂(t) = θ̂

⊤(t)x(t).

For scalar plants the controller (23), with

yr(t) ≡ y(t), M(s) =
1

s+ am

, r(t) ≡ 0,

exactly coincides with the PI controller reported in our paper.

7Numbers in brackets refer to the equations of [8].

As usual in the manipulation of stable transfer functions the
calculations of [8] neglect the exponentially decaying terms due
to initial conditions. This kind of assumption is untenablein
nonlinear systems, like adaptive controllers, since it is well–known
that even for globally exponentially stable systems the trajectories
can be driven to infinity when perturbed by exponentially decaying
disturbances [12].

In Proposition 1 we consider generaln–th order plants withar-
bitrary initial conditions, and prove that the output of theL1–AC—
including the parameter estimator witharbitrary adaptation gain—
exactly coincides with the output of an implementable PI perturbed
by a term coming from the adaptation. It is also established that this
term converges to zero, therefore theL1–AC alway converges to
the PI. It is easy to prove that the latter result cannot be recovered
with the transfer function manipulations of [8]. Indeed, defining in
the standard way an estimation error

σ̃(t) := σ̂(t)− σ(t),

and doing the calculations above with the original plant it follows
that the control signal (21) can be written as

u(s) =
C(s)

[1− C(s)]M(s)
[M(s)r(s)− y(s)] +

C(s)

1−C(s)
σ̃(s).

Unfortunately, from this equation we cannot conclude that theL1–
AC converges to the implementable LTI controller. Indeed, because
of the constraintC(0) = 1, the perturbing term̃σ(t) passes through
an integrator. Since we do not know if this signal is integrable
we cannot even claim that its contribution to the control signal is
bounded—let alone converging to zero.

In the light of this discussion, the interest of the ”approximation”
and ”equivalence” statements of [8] is questionable and they are
certainly far from substantiating the claim made in the abstract
of the paper—a fact that Proposition 1 presents in a crystal–clear
manner.

SIDEBAR 2: COMMENTS REGARDING THE ANALYSIS DONE IN

THE L1–AC LITERATURE

As indicated in Remark R9 trajectory–dependent claims in con-
trol theory are intrinsically fragile. Indeed, the whole body of
control theory has been developed to design controllers whose
performance is guaranteedindependently of the initial conditions—
for instance, ensure stability (in the sense of Lyapunov) ofa desired
equilibrium point or finite gain of an operator. When the result is
valid for a specific initial condition, this property is valid only for
that specific trajectory, and cannot be extrapolated to any other one.
Hence, in the presence of unknown and unpredictable disturbances,
or measurement errors, that will drive away the state from that
trajectory, nothing can be said about the new trajectory.

To illustrate this point consider the simple case of the LTI plant

ẋ1 = −x1, ẋ2 = x2 − x1.

Clearly, for all initial conditions in the set{x ∈ R
2 | x1 = x2},

the corresponding trajectory is bounded and converges to zero. But,
obviously, all trajectories starting outside this set growunbounded.

Unfortunately, the analysis ofL1–AC reported in the literature
is trajectory dependent since it relies on the assumption that the
initial state of the estimator (12)coincideswith the initial state
of the plant, that isx̂(0) = x(0). Since the plant state cannot
be exactly measured, or maybe subject to disturbances that would
require an unpractical resetting of the estimator, this condition is
always violated in practice.
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