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Abstract—MMC Passivity-based PI Controller: A novel non-
linear global tracking controller was proposed by extending
the regulation case. It consists in a linear PI that regulates
two constructed signals with respect to which the incremental
model of the MMC becomes passive. Estimation of x⋆: A closed-
loop estimator was proposed to estimate the MMC variables in
steady state needed as input for the non-linear controller. Such
estimator consists on a virtual MMC energy model and both
of the differential current reference equations that yielded from
mathematical optimization using Lagrange multipliers.

I. INTRODUCTION

Voltage Source Converter (VSC)-based High Voltage Di-
rect Current (HVDC) links [1], are currently the key technolog-
ical solution for bulk power transmission over long distances.
Moreover, multi-terminal HVDC connections have the poten-
tial of shifting Europe’s power generation, from conventional
to renewable energy sources. Such SuperGrid will serve as
a transcontinental highway for renewable energy [2], allowing
the geographical smoothing effects minimize the disadvantages
inherent to the intermittent nature of renewable generation. The
Modular Multilevel Converter introduced in [3] will be the
power electronic converter suited for such task [2], presenting
several advantages with respect to its predecessors such as
its high modularity, scalability and lower losses, although
bringing challenging control and stabilization issues that must
be addressed.

There has been a clear tendency of controlling the
modular multilevel converter (MMC) in its natural “abc”
reference frame, instead of the commonly used “dqo” or
“αβo” frame that results from applying the well known
Park or Clarke transformations. This interest arises in
order to be able to regulate in a simple and direct way
the energy stored in each phase of the MMC, unlike the
three-level VSC that presents only solid state switches
unable to store energy. The control strategy proposed in
[4] has proven to be robust thanks to its closed-loop nature
and its independence to the system parameters, as well as
it has presented a good dynamic performance. Yet, such

strategy is based on linear controllers, and since the system
is highly non-linear, makes it impossible to ensure its stability.

Global asymptotic stability issues have been investigated
by means of Lyapunov’s proof in [5], [6]. Indeed, asymptotic
stability of the MMC under open loop and closed loop control
was proven, yet the validity of such proof only holds for the
system under study. This means that even if global asymptotic
stability was proven for two different MMC converters, the
stability of the interconnection between these two systems
is not ensured, and to prove it using Lyapunov’s stability
criteria one must consider the new and more complex system
as a whole. Clearly, since we are aiming at a multi-terminal
HVDC systems which are supposed to grow “organically” in
Europe, the final state of such SuperGrid is unknown since
it will be continuously expanding. With the complete picture
in mind, it seems almost impossible, or at least of a great
degree of complexity to ensure global asymptotic stability
of the ever growing multi-source SuperGrid using a global
approach. Therefore a modular control approach for ensuring
stability of the global interconnected system is needed. Last but
not least, the required technique must be simple to implement
regardless of the complexity of the proof.

Passivity is a characterization of the system behavior based
on energy, and it can be used to asses the stability of a
single system [7]. Most importantly, the negative feedback
combination of two passive systems results in a passive and
stable interconnection [8], [9]. Therefore, the idea of making
complex multi-terminal MMC-HVDC systems based on local
passivity controllers as a modular approach for ensuring global
asymptotic stability of the global and much larger system as a
whole may be considered as the philosophical contribution of
this article.

Moreover, it is possible to use a PI controller to render the
system globally asymptotically stable via passivity, simplifying
the implementation as was done in [10]–[13]. Such controllers
are known to be simple, robust and widely accepted by
practitioners. However, the aforementioned work requires that
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the desired state variables in steady state that become the
references values (x⋆) of the system should be constant values,
in order to solve this regulation problem. As mentioned earlier,
the aim is to control the MMC in the “abc” frame which
implies that the reference state variables of the system, that
is to say, the differential and grid currents (idi f f⋆k and iv⋆k),

and the upper and lower capacitor arm voltages sum (uΣ
cu⋆k

and uΣ
cl⋆k) are not constants, turning the regulation problem of

[10]–[13] into a tracking problem instead.

Hence the extension of the passivity-based PI controller
of [10]–[13] from the regulation case to the tracking scenario
is applied to the MMC as one of the main contributions of
this work. However, the success of the implementation of this
new control strategy strongly depends on the estimation of
the steady state signals x⋆ that are to be tracked. Such crucial
issue is thoroughly discussed in this article, and a closed loop
estimator using a virtual energy model of the MMC along with
two different differential current control references that yielded
from an analytical optimization problem based on Lagrange
multipliers [4], [14] is proposed, capable of controlling the
MMC in a phase-independent fashion or for preventing power
oscillations caused in the unbalanced AC grid to flow to the
DC side of the MMC.

The remainder of this article is organized as follows. The
passivity-based PI controller is presented in section II. In order
to successfully apply the control strategy, one must be able to
estimate the steady state trajectories of the MMC variables. In
IV is discussed how to calculate these tracking references for
phase independent control and for constant DC power during
unbalanced grid conditions. Simulations results are performed
and their results are given in Section V. Finally, conclusions
in Section VI complete the brief.

II. CONTROL THEORY

A. Global Tracking Problem

Consider the bilinear system

ẋ(t) = Ax(t)+d (t)+
m

∑
i=1

ui(t)Bix(t) (1)

where1 x,d ∈R
n are the state and the (measurable) disturbance

vector, respectively, u ∈ R
m, m ≤ n, is the control vector, and

A,Bi ∈ R
n×n are real constant matrices.

Given an admissible, differentiable trajectory, that is a
function x⋆ : R+ → R

n verifying

ẋ⋆ =Ax⋆+d +
m

∑
i=1

u⋆i Bix⋆ (2)

for some control signal u⋆ : R+ → R
m. Find, if possible, a

dynamic state–feedback controller of the form

ż = F(x,x⋆) (3)

u = H(x,x⋆), (4)

where F : Rn×R
n →R

q, q ∈Z+, and H : Rn×R
n →R

m, such
that all signals remain bounded and

lim
t→∞

[x(t)− x⋆(t)] = 0, (5)

1For brevity, in the sequel the time argument is omitted from all signals.

for all initial conditions (x(0),z(0)) ∈ R
n ×R

q.

In this paper we characterize a set of matrices {A,Bi}
for which it is possible to solve the aforementioned global
tracking problem with a simple linear PI controller. The class
is identified via the following LMI.

Assumption 1: ∃P ∈ R
n×n, P = P⊤ > 0 such that

sym(PA)≤ 0 (6)

sym(PBi) = 0, (7)

where sym : Rn×n →R
n×n computes the symmetric part of the

matrix.

To simplify the notation in the sequel we define the positive
semidefinite matrix

Q :=−sym(PA). (8)

B. Passivity of the Bilinear Incremental Model

Lemma 1: Consider the system (1) verifying the LMI of
Assumption 1 and an admissible trajectory x⋆. Define the
incremental signals

˜(·) := (·)− (·)⋆,

and the output function

y := C (x⋆)x (9)

where the map C : Rn → R
m×n is defined as

C :=







x⊤⋆ B⊤
1

...

x⊤⋆ B⊤
m






P.

The operator ũ 7→ y is passive with storage function

V (x̃) :=
1

2
x̃⊤Px̃. (10)

Thus, the system verifies the dissipation inequality

V̇ ≤ ũ⊤y.

C. A PI Global Tracking Controller

From Lemma 1 the next corollary follows immediately.

Corollary 1: Consider the system (1) verifying the LMI of
Assumption 1 and an admissible trajectory x⋆ in closed loop
with the PI controller

ż =− y

u =−Kpy+Kiz+u⋆ (11)

with output (9) and Kp = K⊤
p > 0, Ki = K⊤

i > 0. For all initial

conditions (x(0),z(0))∈R
n×R

m the trajectories of the closed-
loop system are bounded and

lim
t→∞

ya(t) = 0, (12)

where the augmented output ya : R+ → R
m+n is defined as

ya :=

[

C

Q

]

x̃.
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Figure 1. a) One-leg topology of a modular multilevel converter

Moreover if

rank

[

C

Q

]

≥ n, (13)

then global tracking is achieved, i.e., (5) holds.

Remark 1: Notice that the matrix C depends on the refer-
ence trajectory. Therefore, the rank condition (13) identifies a
class of trajectories for which global tracking is ensured.

Remark 2: Condition (13) is sufficient, but not necessary
for state convergence. Indeed, as shown in [15], global tracking
is guaranteed if ya is a detectable output for the closed–loop
system. That is, if the following implication holds

ya(t)≡ 0 =⇒ lim
t→∞

[x(t)− x⋆(t)] = 0.

III. MMC APPLICATION

The model of the MMC converter (fig. 1) is

i̇di f f =−
R

L
idi f f −

1

4L
uCΣuΣ −

1

4L
uC∆u∆ +

vdc

2L

i̇v =−
R′

L′
iv −

1

4L′
uC∆uΣ −

1

4L′
uCΣu∆ −

Vpcc

L′

u̇CΣ =
1

C′
idi f f uΣ +

1

2C′
ivu∆

u̇C∆ =
1

2C′
ivuΣ +

1

C′
idi f f u∆ (14)

Four state variables are considered: 1) The differential or
circulating current of the MMC idi f f , 2) the grid or load current
iv, 3) the sum between the upper and lower capacitor voltages
uCΣ = uCU + uCL = uΣ

C, and 4) the difference between them

uC∆ = uCU −uCL = u∆
C.

Then, using the notation of (1) we define

A =









−R
L

0 0 0

0 −R′

L′
0 0

0 0 0 0
0 0 0 0









,d =









vdc
2L

−
Vpcc

L′

0
0









BΣ =









0 0 −1
4L

0

0 0 0 −1
4L′

1
C′ 0 0 0

0 1
2C′ 0 0









,B∆ =









0 0 0 −1
4L

0 0 −1
4L′

0

0 1
2C′ 0 0

1
C′ 0 0 0









,

and the matrix P of assumption (1) is

P =









2L 0 0 0
0 L′ 0 0

0 0 C′

2
0

0 0 0 C′

2









.

It follows that, defining x⊤ := [idi f f iv uCΣ uC∆]
⊤

, the
passive output of the system is

yMC =

[

x⊤⋆ B⊤
Σ

x⊤⋆ B⊤
∆

]

Px

=
1

2

[

idi f f⋆uCΣ − idi f f uCΣ⋆+
1
2
iv⋆uC∆ −

1
2
ivuC∆⋆

idi f f⋆uC∆ − idi f f uC∆⋆+
1
2
iv⋆uCΣ −

1
2
ivuCΣ⋆

]

. (15)

Detectability is given by the rank of the matrix

[

C

Q

]

=















−uCΣ⋆ − 1
2
uC∆⋆ idi f f⋆

1
2
uC∆⋆

−uC∆⋆ − 1
2
uCΣ⋆

1
2
iv⋆ idi f f⋆

2R 0 0 0
0 R′ 0 0
0 0 0 0
0 0 0 0















which satisfies condition (13) whenever i2di f f⋆−
1
4
iv⋆uC∆⋆ 6=

0 which is satisfied in practice.

IV. REFERENCES CALCULATION

A. Generation of references in an Open Loop fashion for
Phase-Independent Control

The grid current reference equilibrium point is imposed
based on the desired voltage reference of the load. For the
system under study with no grid connection (i.e, V pcc = 0)
such reference is expressed as follows:

iv⋆ =
|ev⋆|

√

R′2 +(ωL′)
sin

(

ωt − tan−1

(

ωL′

R′

))

(16)

Where ev⋆ is the sinusoidal voltage that one wishes to apply

to the load, with an amplitude that can vary from 0 to
Vdc
2

. In

addition, R′ = R
2
+Rload and L′ = L

2
+Lload . The differential or

circulating current reference idi f f⋆ is estimated by assuming a
small internal resistance R:

idi f f⋆ ≈
|ev⋆iv⋆|

Vdc

(17)

Since idi f f⋆ is constant (for this case), the voltage that drives
it may be expressed simply by udi f f⋆ = Ridi f f⋆.

Also, it is possible to calculate the fluctuations of the sum
wΣ⋆ and difference w∆⋆ of the capacitive energy stored between
the upper and lower arms of the MMC (see [16] for more
details on such equations). Thus,

∆wΣ⋆ =
∫ t

0

(

−ev⋆iv⋆+
(

Vdc −2udi f f⋆

)

idi f f⋆

)

dt

∆w∆⋆ =
∫ t

0

(

iv⋆

2

(

Vdc −2udi f f⋆

)

−2ev⋆idi f f⋆

)

dt (18)

Remark 3: A high-pass filter is needed for the term that is
being integrated in equation (18) to leave out the power error
caused by neglecting R in equation (17).
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Figure 2. Closed loop estimator for phase independent control

The average value of wΣ⋆ and w∆⋆ is given as a reference
from the user; typically, WΣφ⋆ =

C
N

V 2
dc, and W∆φ⋆ = 0. Using

the energy estimation, it is now possible to calculate the upper
and lower arm voltages.

uCU⋆ =

√

N

C

[(

WΣφ⋆+∆wΣ⋆

)

+
(

W∆φ⋆+∆w∆⋆

)]

uCL⋆ =

√

N

C

[(

WΣφ⋆+∆wΣ⋆

)

−
(

W∆φ⋆+∆w∆⋆

)]

(19)

The remaining state variables uΣ⋆ and u∆⋆ may now be
calculated as

uCΣ⋆ =uCU⋆+uCL⋆

uC∆⋆ =uCU⋆−uCL⋆ (20)

In addition, the upper and lower insertion indexes are calcu-
lated by

nu⋆ =
V dc

2
− ev⋆−udi f f⋆

ucu⋆

nl⋆ =
V dc

2
+ ev⋆−udi f f⋆

ucl⋆
(21)

The control at the equilibrium point is therefore defined as

uΣ⋆ =nu⋆+nl⋆

u∆⋆ =nuk⋆−nl⋆ (22)

This estimation technique has been implemented success-
fully along with the so-called open loop control strategy in [5],
[17]. Nonetheless, its effectiveness relies on the approximation
made in (17) where the power dissipated in the internal
resistance of the MMC is neglected. For high values of R, this
assumption does not hold any more [6], and the estimating
technique will no longer be useful. A solution for this case is
proposed in the following sections.

B. Generation of references with a closed loop estimator

If the converter has a non-negligible internal resistance R>
0, a mismatch between the average values of powers evkivk

and vdcidi f f k will take place, making approximation (17) no
longer valid. To overcome this issue, a closed loop estimator
is proposed to calculate x⋆ and u⋆, and is depicted in Fig. 2. The
estimation technique is based on the application of equation
(23):

idi f f⋆ =
P

re f
Σk +(1−α)Pvk

v2
dc

vdc +
αPvk

vdc

+
−P

re f
∆k

2v2
dc

(

erms
vk,p.u.

)2
evk

(23)

Equation (23) calculates the reference of the differential
current of the MMC. Such equation contains two PI controllers

represented by the terms P
re f
Σk and P

re f
∆k that regulate the average

values of the capacitive energy sum and difference stored in
the arm of the converter ( wΣk and w∆k). In the case the
MMC would have a non-negligible internal resistance R, the PI

controller P
re f
Σk will “add” the missing power that was neglected

by the previous estimation technique. The difference between
the proposition of [4], [14] and what is being proposed here,
is that equation (23) will be applied to a virtual MMC instead
of the real converter; that is to say that it will not participate
directly in the control of the converter, yet it will generate the
references needed for the control by means of the MMC state
equations. The procedure is described in the following lines.

For a passive grid (Vpcck = 0) the grid/load current is
defined as in 16. If the system is conected to a three-phased
active grid (V pcck 6= 0) then the grid current reference iv⋆ is
defined by equation (24):

iv⋆ =
P

re f
ac

∥

∥v+pcc

∥

∥

2
+ kp ·

∥

∥v−pcc

∥

∥

2
·
(

v+pcck + kp · v−pcck

)

(24)

Equation (24) calculates the grid current in steady state
(iv⋆), as a function of the power reference established by the

secondary control P
re f
ac , and the positive and negative voltage

measurements of the point of common coupling (v+pcc and v−pcc)
from the real MMC, and a constant kp defined by the user.

In order to calculate the differential current reference in
steady state (idi f f⋆) equation 23 is used along with a virtual
energy model of the MMC. Such model contains the MMC
energy sum and difference dynamics (ẇΣ and ẇ∆)

wΣ⋆k =
∫ t

0

(

−ev⋆kiv⋆k +
(

Vdc −2udi f f⋆k

)

idi f f⋆k

)

dt

w∆⋆k =
∫ t

0

(

iv⋆k

2

(

Vdc −2udi f f⋆k

)

−2ev⋆idi f f⋆k

)

dt (25)

(26)

with ev⋆k and udi f f⋆k calculated as

udi f f⋆k =Ridi f f⋆k +L
d

dt
idi f f⋆k

ev⋆k =R′iv⋆k +L′ d

dt
iv⋆k +Vpcck (27)

The average values of the wΣ⋆ and w∆⋆ are required to

calculate P
re f
Σ⋆ and P

re f
∆⋆ expressed in (28) that are in turn needed

for the calculation of idi f f⋆ by (23).

P
re f
Σ⋆k =

[

kpΣ

(

W
re f
Σk −wΣk

)

+ kiΣ

∫
(

W
re f
Σk −wΣk

)

dt

]

P
re f
∆⋆k =

[

kp∆

(

W
re f
∆k −w∆k

)

+ ki∆

∫
(

W
re f
∆k −w∆k

)

dt

]

(28)

In order to so whilst obtaining good dynamic performance,
the average values of wΣ⋆ and w∆⋆ are calculated using:

ŵΣ⋆ =wΣ⋆−wΣ⋆α

ŵ∆⋆ =w∆⋆−w∆⋆α (29)
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Where wΣ⋆α and w∆⋆α are band-pass-filtered signals pro-
duced by a second order generalized integrator (SOGI) -
quadrature signal generator that is acting as a Notch filter.

Furthermore, ucu⋆ and ucl⋆ are calculated via (30)

uCU⋆ =

√

N

C
[wΣ⋆+w∆⋆]

uCL⋆ =

√

N

C
[wΣ⋆−w∆⋆] (30)

Finally, ucΣ and uc∆ are calculated as in 20. This concludes
the estimation of x⋆. To obtain u⋆; i.e., the control in steady
state, equations 21 and 22 are required once more.

C. Generation of references for constant DC power under
unbalanced grid conditions

Nevertheless, idi f f⋆ determined by equation (23) is not
able to successfully cope with unbalanced grid conditions,
since it is the result of an analytical mathematical optimization
that does not consider the relationship between the phases of
the MMC. To be able to successfully handle unbalances, by
preventing power fluctuations from the unbalanced AC side
of the converter to pass its DC side, idi f f⋆ is calculated using
equation (31):

idi f f⋆k =
P

re f
Σ⋆k +(1−α)Pv⋆k

v2
dc

vdc +
αPv⋆k

vdc

+
−P

re f
∆⋆kev⋆k

2v2
dc

(

erms
v⋆k,p.u.

)2

− ∑
k∈(abc)

(

P
re f
Σ⋆k +(1−α)Pv⋆k

v2
dc

vdc+

αPv⋆k

vdc

+
−P

re f
∆⋆kev⋆k

2v2
dc

(

erms
v⋆k,p.u.

)2






+

1

3

P
re f
dc

vdc
(31)

As was done for the previous case, equation (31) must
be combined with the virtual energy model of the MMC
expressed in (26). This is since (31) requires closing the energy
regulation loop with three the PI controllers represented by

P
re f
Σ⋆k, P

re f
∆⋆ and, for the direct power assignment case, Pdc.

1) The Controller: To summarize, the controller equations
are:

żMC =−yMC

uMC =−KpyMC +KizMC +[uΣ⋆ u∆⋆]
⊤

yMC =
1

2

[

idi f f⋆uCΣ − idi f f uCΣ⋆+
1
2
iv⋆uC∆ −

1
2
ivuC∆⋆

idi f f⋆uC∆ − idi f f uC∆⋆+
1
2
iv⋆uCΣ −

1
2
ivuCΣ⋆

]

With reference variables iv⋆ defined in (24), idi f f⋆ in (23)
for phase independent control and in (31) for constant DC
power control; uCΣ⋆ and uC∆⋆ are defined by replacing (30) in
(20). In addition, uΣ⋆ and u∆⋆ are derived in (21) and (22).

V. RESULTS

To validate the proposed control, simulations have been
carried out.
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Figure 3. MMC 2N Individual Capacitor Voltages, b) MMC output voltage
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Figure 4. Phase-independent control of a single phased MMC: a) Differential
and Grid Current; b) MMC Sum of capacitor voltages by arm.

A. Phase Independent Control

A single-phase MMC simulation scenario has been set
up in Matlab/Simulink using a high efficiency model [18]
to test the validity of the control. The considerations are the
following : the converter has 2N = 10 submodules, N in each
arm (upper and lower). The input DC voltage is Vdc = 140V ,

the reference voltage ev⋆ has an amplitude of
Vdc
2

and a
frequency set to f = 50Hz. The frequency of the balancing
algorithm [16] that balances the N capacitor voltages is set to
f = 20kHz. The internal capacitance, resistance and inductance
are respectively set to C = 3.3mF , R = 12Ω and L = 10mH.
The load resistance and inductance values, respectively, are
R = 12Ω and L = 40mH.

Figure 3-a) shows the 2N voltage trends of the MMC
capacitors, whereas in 3-b) is depicted the AC output voltage
multilevel waveform of the converter. Furthermore, the state
references x⋆ as well as the measured state variable are
depicted in Fig. 4. As can be seen from Fig. 4-a) and Fig.
4-b), the idi f f and iv converge to idi f f⋆ and iv⋆. Nonetheless

in Fig. 4-c) a non-negligible error between uΣ
cu,l⋆

and uΣ
cu,l

of

≈ 1Volt can be observed. Fortunately, uΣ
cu,l

is the sum all the

N capacitors in the upper or lower arm, thus the error of the
individual capacitor voltage uci

≈ 1/5Volts. Such error occurs
since there is still a remaining power mismatch, even after
reducing it using the proposed closed loop estimator along with
the virtual energy model. This occurs since the high frequency
current harmonics caused by the modulation, and eventually by
the saturation of the insertion indexes, are not considered in
such model. These current harmonics produces losses when
passing through the MMC resistances, and cause the error in
the estimation.
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Table I. MMC PARAMETERS

Parameter Value

DC Voltage 150 Volts

Number of SM per arm 5

SM Nominal Voltage 30 Volts

SM Capacitance 3.3 mF

Arm Inductance 20 mH

Arm Resistance 6 Ω
Load Inductance 20 mH

Load Resistance 6 Ω
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Figure 5. Voltage at the point of common coupling

B. Constant DC Power Control

In this section, a three-phased MMC converter connected to
an active grid has been simulated under unbalanced conditions
in order to test the proposed control along with the closed-
loop estimator for constant DC power control. The simulation
scenario was done by establishing the primary power reference

of the system at the point of common coupling via P
re f
ac , as

well as establishing it at the DC terminals of the MMC via

P
re f
dc . The MMC parameters are given in table I. This series of

simulation analyzes the performance of the controller when at
t = 0.1s the voltage at the point of common coupling of phase
“a” is reduced to 5% of its original value and remains at that
value for a total time of 0.3s, before returning to its original
level at t = 0.4. This is depicted in Fig. 5.

In Fig. 6-a) are depicted the power at the point of common
coupling Pac in blue and the power at the DC terminals of
the MMC Pdc in red. It can be seen that during the fault Pac

starts fluctuating at twice the grid frequency. Nonetheless, such
oscillations are blocked by the energy storing elements of the
MMC, and do not appear at the DC side of the converter.
This holds independently of how the primary power reference
of the system is being established. However, for the primary
power reference is established at the DC terminals of the
MMC, it seems that the power oscillations are most effectively
decoupled as even transient perturbations have been removed.
Nonetheless, this case imposes a more elevated energy and
voltage stress to its capacitors as can be seen in Fig. 6-b) and
6-c), and have to be oversized to withstand this scenario.

In Fig. 6-c), 6-d) and 6-e) are shown the waveform trends
of the references and the state of the system (x⋆ and x):
the differential currents, the grid currents, and the capacitor
voltages, respectively. A familiar result comes to mind: the
grid and circulating currents are regulated quite well, whereas
a stationary regulation error is found between reference and
measurements of the capacitor voltages. The error is approx-
imately of the order of 2%. Here again, it is caused by the
power mismatch error in the estimation. Furthermore, the grid
currents stay balanced in both cases since kp = 0 is used in
(24) [19], [20].

VI. CONCLUSIONS

In this brief, a passivity-based PI controller has been
applied to the modular multilevel converter in the ABC
frame. Global asymptotic stability is ensured with a simple
PI regulating the MMC passive outputs to zero. The obtained
stability results are global and hold for all positive definite
gains of the PI. The performance of the controller was tested
by means of some realistic simulations for the MMC. The
converter showed good performance despite the estimation
error caused by neglecting the high order harmonics and
physical limits including control saturation. The proposed
estimation technique is capable of considering the power losses
caused by the fundamental harmonics of each current in the
internal resistance of the MMC, usually neglected in “open
loop” approaches. Furthermore, it can be used to generate
the necessary references x⋆ necessary for preventing power
oscillations caused by an unbalanced grid from appearing at
the DC terminals of the MMC. However, the estimation is
model-based, which is usually a drawback during the practical
implementation due to the parameters uncertainty. Last but not
least, passivity offers a local approach to ensure stability of
complex MMC-based multi-terminal HVDC systems
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