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Robust PI Passivity–based Control of Nonlinear Systems: Application to
Port–Hamiltonian Systems and Temperature Regulation*

S. Aranovskiy1 R. Ortega2 and R. Cisneros2

Abstract— This paper deals with the problem of control of
partially known nonlinear systems, which have an open–loop
stable equilibrium, but we would like to add a PI controller to
regulate its behavior around another operating point. Our main
contribution is the identification of a class of systems for which
a globally stable PI can be designed knowing only the systems
input matrix and measuring only the actuated coordinates. The
construction of the PI is done invoking passivity theory. The
difficulties encountered in the design of adaptive PI controllers
with the existing theoretical tools are also discussed. As an
illustration of the theory, we consider port–Hamiltonian systems
and a class of thermal processes.

I. INTRODUCTION
In many practical applications the plant to be controlled

has an open–loop stable equilibrium, e.g., at the origin, and
we would like to add a controller to regulate its behavior
around another operating point. In the case of linear sys-
tems the dynamics remains invariant under coordinate shifts,
therefore this task can be easily accomplished using the
incremental model of the plant. Unfortunately, this is not the
case for nonlinear systems, for which there is no obvious
advantage of working with the incremental model.

Another common requirement in applications is the use of
standard proportional-integral (PI) controllers, which over-
whelmingly dominate the industrial market. Although com-
missioning a PI to operate around a single operating point is
relatively easy, the performance will be below par in wide
operating regimes, which is the scenario in modern high–
performance applications. To overcome this drawback the
current practice is to re–tune the gains of the PI controllers
based on a linear model of the plant evaluated at various
operating points, a procedure known as gain–scheduling.
There are several disadvantages of gain–scheduling including
the need to switch (or interpolate) the controller gains and
the non–trivial definition of the regions in the plants state
space where the switching takes place—both problems are
exacerbated if the dynamics of the plant is highly nonlinear.
Another common commissioning procedure is to use auto–
tuners, that heavily rely on the availability of a “good” linear
approximation of the plant dynamics. To avoid the need to
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rely on linearization it is necessary to develop a procedure
to design robust PI controllers for nonlinear systems with
uncertain parameters.

Motivated by the discussion above in this paper we iden-
tify a class of (input affine) nonlinear systems for which it is
possible to design a PI controller with the following features.
F1 Regulation of the closed–loop system around the desired

(non–zero) operating point should be guaranteed.
F2 The PI controller should be robust, in the sense that re-

duced knowledge of the system parameters is required.
F3 To simplify the controllers commissioning, a well de-

fined admissible range of variation for the PI pro-
portional and integral gains, preserving closed–loop
stability, should be provided.

We propose the construction of a PI controller with the
features F1–F3 for plants with unknown dynamics verifying
the following assumptions.
A1 The open–loop system is unknown but has a stable

equilibrium at the origin.
A2 The desired equilibrium belongs to the assignable set

and admits a convex Lyapunov function.
A3 The Lyapunov function is the sum of two functions,

depending on the un–actuated and actuated coordinates,
respectively. The first function is unknown while the
second one is separable and linearly parameterized in
terms of some unknown parameters.

A4 The input matrix is constant, known and has n−m zero
rows, where n and m are the dimensions of the state
and input vectors, respectively.

As indicated in the article’s title we exploit the fundamental
property of passivity to design the proportional-integral pas-
sivity based controller, which will be referred in the sequel
as PI–PBC. The first step in the design is to, relying on A1
above, invoke the celebrated theorem of Hill and Moylan
[2] to identify a suitable passive output for the system,
with storage function the Lyapunov function of the open–
loop system. Since our interest is the regulation of non–
zero equilibria, we then use the results of [3] to create a
new passive output for the incremental model with a storage
function that has a minimum at the desired equilibrium. As
shown in [3], feeding back the passive output through a
PI controller ensures stability of the desired equilibrium for
all positive definite PI gains. It is important to underscore
that, since the passivity property has been established for the
incremental model, the equilibrium can also be stabilized
setting the control input equal to the (constant) value that
assigns the equilibrium, say u∗, which is univocally defined.



However, this open–loop control will, obviously, be non–
robust. In the robustness context of the present paper neither
the plant dynamics nor the Lyapunov function are known
and, consequently, we cannot compute neither the passive
output nor u∗. It is at this point that we invoke A3 and A4
above to prove that, under these assumptions, it is possible
to define ranges for the proportional and integral gains
that make the PI–PBC implementable and, consequently,
guarantee stability of the equilibrium. Another important
feature of the proposed PI–PBC is that it requires only partial
measurement of the state, namely, only the m state variables
associated to the non–zero rows of the input matrix, referred
in the sequel as actuated coordinates.

Several practical applications of PI–PBC have been re-
ported in the literature. This include, RLC circuits [4], power
converters [5], fuel cells [6], electric drives [7] and mechani-
cal systems [8]. In [9] a procedure to add an integral action to
a non–passive output for a class of port–Hamiltonian systems
was first proposed, and later extended in [10], [11]. To the
best of our knowledge, the present paper is the first attempt
to design PI–PBCs with guaranteed stability properties for
systems with partially known dynamics.

A natural question that arises at this point is the incorpo-
ration of adaptation in the design of the PI (or PID). In the
power converter application of [5] a parameter that enters in
the definition of the passive output, i.e., the load resistance,
is adaptively identified—however, all other parameters are
assumed to be known. In the interesting paper [12] it is
shown that it is possible to adaptively estimate u∗ for a
general nonlinear system with scalar input, keeping the
estimate in a known interval, provided the passive output
is known. In spite of a large number of publications the
problem of designing a provably stable adaptive PID for
systems with unknown parameters remains, as far as we
know, open. The difficulty of this task was identified already
in 1984 in [13]. As is well–known [14], the stability of
indirect adaptive methods relies on parameter convergence
that, in its turn, requires persistency of excitation—a property
that is not satisfied in the regulation tasks where PI control
is effective.

The remaining of the paper is organized as follows. Sec-
tion II presents the problem formulation. Some preliminary
lemmata and the main result are given in Section III. Section
IV is devoted to application of the proposed PI–PBC for
port–Hamiltonian (pH) systems [2] and a temperature reg-
ulation problem. The paper is wrapped–up with concluding
remarks in Section V.

Notations In is the n×n identity matrix and 0n×s is an n×s
matrix of zeros, 0n is an n–dimensional column vector of
zeros. Given ai ∈ R, i ∈ n̄ := {1, . . . , n}, we denote with
col(ai) the n–dimensional column vector and diag{ai} the
diagonal n×n matrix with elements ai. For x ∈ Rn, |x| is the
Euclidean norm. For mappings of scalar argument g : R →
Rs, g′ and g′′ denote first and second order differentiation,
respectively. For mappings f : Rn → R, ∇f := (∂f

∂x )> and
∇2f := ∂2f

∂x2 . For the distinguished element x∗ ∈ Rn and

any mapping F : Rn → Rs we denote F ∗ := F (x∗) and the
error signal F̃ (x) := F (x)− F ∗.

II. PROBLEM FORMULATION

In this section we formulate the control problem addressed
in the paper, enunciate the assumptions made on the plant to
solve it and make some remarks on these assumptions.

A. Robust PI control problem

Consider the nonlinear, input affine, system

ẋ = f(x) +Gu, (1)

where x ∈ Rn, u ∈ Rm, n > m, f : Rn → Rn is an
unknown smooth mapping, G ∈ Rn×m is constant verifying
rank(G) = m.

The following is a key assumption made throughout the
paper.

Assumption 1: The matrix G has n−m zero rows. With-
out lost of generality1 it is assumed of the form

G =

[
0(n−m)×m

G2

]
, (2)

where G2 ∈ Rm×m is known.
This assumption can be easily obviated introducing state

and input changes of coordinates. Indeed, it is well–known—
see, e.g., Theorem 2 of Section 2.7 of [15]—that for any full
rank, matrix G ∈ Rn×m there exists (elementary) full rank
matrices T ∈ Rn×n and S ∈ Rm×m such that

TGS =

[
0(n−m)×m

Im

]
.

Consequently, introducing z = Tx and v = S−1u the system
(1) takes the desired form

ż = w(z) +

[
0(n−m)×m

Im

]
v,

where w(z) = Tf(T−1z). We should note, however, that
a change of state representation destroys—in general—the
original structure of the system, whose knowledge may be
critical for the verification of the second assumption below.
This fact is clearly illustrated in the examples considered
in Section IV. For this reason, we prefer to leave it as an
standing assumption.

Motivated by Assumption 1 we find convenient to define a
partition of the state vector into its un–actuated and actuated
components as

x =

[
xu
xa

]
, xu :=


x1
x2
...

xn−m

 , xa :=


xn−m+1

xn−m+2

...
xn

 .
It is assumed that only xa is available for measurement.

The unforced system, that is, ẋ = f(x), has a stable
equilibrium at the origin with a partially known Lyapunov
function. We are interested in controlling the system with

1See R6 in the next subsection and Subsection III-C for more general
forms of G.



a PI at a non–zero equilibrium—a situation that arises in
most practical applications. Thus, we are given a desired
equilibrium point, x? ∈ Rn, and the control goal is to ensure
stability of this equilibrium using a PI control law of the form

ż = −KIψ(xa, x
∗)

u = −KPψ(xa, x
∗) + z,

where z ∈ Rm is the controller state, KP ∈ Rm×m and
KI ∈ Rm×m are tuning gains and ψ : Rm × Rn → Rm

is a mapping designed with the partial knowledge of the
aforementioned Lyapunov function.

The following, practically reasonable, assumption is made
throughout the paper.

Assumption 2: The desired equilibrium point x? belongs
to the assignable equilibrium set, that is,

x? ∈ E :=
{
x ∈ Rn |

[
In−m | 0(n−m)×n

]
f(x) = 0

}
.

(3)

B. Assumptions on the open–loop plant

The following assumption identifies the class of vector
fields f(x) for which we provide an answer to the problem.

Assumption 3: For the system (1) there exists a twice–
differentiable, positive definite function H : Rn → R≥0,
verifying the following.

(i) [∇H(x)]>f(x) ≤ 0.

(ii) [∇H(x)−∇H(x?)]>f̃(x) =: −Q(x) ≤ 0.

(iii) The function H(x) is of the form

H(x) = Hu(xu) +Ha(xa)

with

Ha(xa) =

n∑
i=n−m+1

diφi(xi), (4)

where the function Hu : Rn−m → R and the constants
di > 0 are unknown but the functions φi : R→ R are
known.

(iv) The functions Hu(xu) and φi(xi) are convex.

C. Discussion

The following remarks regarding the assumptions are in
order.
R1 Although the set E is not known, it is reasonable to

assume that we have enough prior knowledge about the
plant to select the desired operating point as a feasible
equilibrium. Hence, Assumption 2 is reasonable.

R2 A corollary of Assumption 2 is that the constant input
u?, that assigns the equilibrium, is uniquely defined as

u? :=
(
G>2 G2

)−1 [
0m×(n−m) G>2

]
f?. (5)

Notice that, without knowledge of f(x), this constant
cannot be computed.

R3 Since the open–loop system (1) has a stable equilibrium
at the origin Assumption 3 (i) follows as a corollary
of Lyapunov’s converse theorems [16]. As will become
clear below Assumption 3 (ii) and (iv) are required to
prove passivity of the incremental model as done in [3].

R4 We underscore that no assumption, beyond twice dif-
ferentiability and convexity, is imposed on the un-
known component Hu(xu) of the Lyapunov function
of the open–loop system H(x). On the other hand,
stricter conditions are imposed on the second compo-
nent Ha(xa), with uncertainty captured by the unknown
constants di.

R5 Assumptions 3 (iii) and Assumption 1 are the key
requirements imposed on the plant to design the robust
PI–PBC. This assumption is satisfied by a large class of
physical systems, including a class of port–Hamiltonian
[2] and thermal systems studied in Section IV.

R6 Regarding Assumptions 1, in the more general case
when G is not of the form (2) an additional shuffling of
the rows of G is needed in the design. This procedure
is explained in Subsection III-C.

R7 For quadratic Lyapunov functions of the form H(x) =
x>Px, with P > 0, Assumption 3 (ii) is satisfied if
the open–loop system is convergent in the sense of
Demidovich [17]. That is, if it satisfies

P∇f(x) + [∇f(x)]>P ≤ 0.

III. THE ROBUST PI-PBC

A. Preliminary Lemmata

Unless otherwise indicated, throughout the rest of the
paper Assumption 1 holds. Define for the system (1) the
output

y = G>∇H(x) = G>2 DΦ(xa), (6)

where

D :=


dn−m+1 0 . . . 0

0 dn−m+2 . . . 0
...

...
...

...
0 0 . . . dn

 > 0

Φ(xa) :=

 φ′n−m+1(xn−m+1)
...

φ′(xn)

 .
A corollary of the theorem of Hill and Moylan [2] is that, if
Assumption 3 (i) holds, the system (1), (6) defines a passive
mapping u 7→ y with storage function H(x).

To operate the system at a non–zero equilibrium it is
necessary to shift the minimum of the storage function and
define the passivity property between the incremental input
and the output error. Towards this end, we recall Proposition
1 of [3] and state it as a lemma below.

Lemma 1: Consider the incremental model of the system
(1), (6)

ẋ = f(x) +Gu? +Gũ,

e = G>2 DΦ̃(xa),
(7)



where ũ = u− u? is the incremental input. Under Assump-
tions 1–3 the mapping ũ 7→ e is passive with storage function
U : Rn → R≥0 given by

U(x) = H(x)− x>u∇H∗u − x>aDΦ? + k, (8)

where k is a constant that ensures U∗ = 0. More precisely,

U̇ = −Q(x) + e>ũ, (9)

where Q(x) is defined in Assumption 3 (ii).
One of the main interests of passive systems is that they

can be globally stabilized with PI controls (with arbitrary
positive definite gains). This well–known fact is stated in
the lemma below.

Lemma 2: Consider the system (1) verifying Assumptions
1–3 in closed–loop with the PI–PBC

e = G>2 DΦ̃(xa)

ż = −KIe

u = −KP e+ z.

(10)

For all positive definite gain matrices KP ∈ Rm×m and
KI ∈ Rm×m all trajectories are bounded, the equilibrium
point (x, z) = (x∗, u∗) is globally stable (in the sense of
Lyapunov) and the augmented error signal

ea :=

[
Q(x)
e

]
, (11)

where Q(x) is defined in Assumption 3 (ii), verifies

lim
t→∞

ea(t) = 0. (12)

Moreover, if ea is a detectable output for the closed–loop
system then the equilibrium point is asymptotically stable.

B. The Robust PI–PBC

As indicated in R4 of Subsection II-C the matrix D is
unknown. Hence, the error signal e cannot be constructed
and the PI–PBC (10) is not implementable. This motivates
our main result given below.

Proposition 1: Consider system (1) verifying Assump-
tions 1–3 in closed–loop with the robust PI–PBC

u = −KP Φ̃(xa) + z

ż = −KIΦ̃(xa),
(13)

with the controller gains

KP = G−12 ΓP

KI = G−12 ΓI . (14)

For all diagonal, positive definite matrices ΓP ∈ Rm×m and
ΓI ∈ Rm×m we have the following.
(i) All trajectories are bounded and the equilibrium point

(x, z) = (x∗, u∗) is globally stable (in the sense of
Lyapunov).

(ii) The augmented error signal ea defined in (11) verifies
(12).

(iii) If ea is a detectable output for the closed–loop system
then the equilibrium point is globally asymptotically
stable.

An important observation is that, even though the con-
troller only requires measurement of the actuated terms of
the state xa, it achieves regulation of the full state vector.

C. General G (with n−m zero rows)
Instrumental to design the robust PI–PBC was the partic-

ular form of H(x) defined in Assumption 3 (iii). In view
of the construction of the robust PI–PBC, it is clear that if
G is not of the form (2) the assumption must be modified
redefining the actuated and un–actuated coordinates.

To avoid cluttering the notation we will explain the proce-
dure only for the case when n = 3 and m = 2—the general
case follows verbatim. Assume, furthermore, that G is of the
form

G =

 g>1
01×2
g>3

 .
The form of H(x) given in Assumption 3 (iii) must be,
accordingly, modified to

H(x) = Hu(x2) + d1φ(x1) + d3φ(x3).

In this case the passive output e for the incremental model
becomes

G>[∇H(x)−∇H(x∗)] = Gs

[
d1 0
0 d3

] [
Φ̃1(x1)

Φ̃3(x3)

]
.

where
Gs :=

[
g1 | g3

]
.

The robust PI–PBC is given by

u = −G−1s ΓP

[
Φ̃1(x1)

Φ̃3(x3)

]
+ z

ż = −G−1s ΓI

[
Φ̃1(x1)

Φ̃3(x3)

]
,

where ΓP and ΓI are arbitrary, diagonal, positive definite
matrices.

Before closing this subsection we remark that our con-
struction critically relies on the assumption of existence of
n−m zero rows in G. Indeed, it is possible to show that if
this is not the case, even assuming H(x) of the form

H(x) =

n∑
i=1

diφi(xi)

and defining Dn = diag{di}, it is not possible to find an
m×m positive definite matrix Λ, which will depend on Dn,
such that the matrix ΛG>Dn is independent of Dn. The
fact that this is not possible for all matrices G is obvious
considering the counterexample G = col(1, 1). Hence, the
assumption of existence of n−m zero rows in G is necessary
to solve the problem.

IV. EXAMPLES
Two examples of physical systems which are amenable for

robust PI–PBC are given below. Attention is concentrated on
the verification of Assumption 3. Hence, unless otherwise
indicated, Assumption 1 is not imposed.



A. A class of port–Hamiltonian system

Proposition 2: The pH system

ẋ = (J −R)∇H(x) +Gu (15)

with constant interconnection J = −J> and damping R =
R> ≥ 0 matrices satisfies Assumption 3 (i) and (ii).

B. Application to temperature regulation

In this subsection we design a robust PI–PBC for the
temperature regulation of a class of thermal systems—the
so–called, rapid thermal processes.

1) System Description: Similarly to [18], [19] we con-
sider the following model of rapid thermal processes

Ṫ = A1 [Ψ(T )−Ψ(Trad)] +A2 (T − Tconv) +Gu, (16)

where T ∈ Rn
≥0 represents the vector of temperatures,

Ψ(T ) := col(T 4
i ) and Trad, Tconv ∈ Rn

≥0 are, respectively,
the vectors of temperatures related to the radiation heat
emission from environment and the convection air flows. The
constant matrices A1, A2 ∈ Rn×n are Hurwitz and contain
the radiation and the convection heat transfer coefficients.
Also, the entries of G ∈ Rn×m correspond to the heat
transfer coefficients of the heating elements. Finally, u ∈ Rm

is the controlled power applied to the heating elements.
In the model above, as in [19], it is considered that (16)

is heated almost uniformly so that the contribution of energy
from conduction is too small with respect to the radiation
transfer. Hence, the conduction heat transfer is neglected.

To simplify the notation we re–write the system (16) in
the form

Ṫ = A1Ψ(T ) +A2T + E +Gu,

where
E := −A1Ψ(Trad)−A2Tconv.

Unlike A1, A2 and E that are highly uncertain, the input
matrix G—that is defined by the induced heat flow—can be
precisely identified. The control objective is then to design
a robust PI, i.e., that does not require the knowledge of the
uncertain parameters, to regulate the process around some
desired temperature, which is not equal to the open–loop
equilibrium, but belongs to the assignable equilibrium set,
that is,

T ? ∈
{
T ∈ Rn

≥0 | G⊥[A1Ψ(T ) +A2T + E] = 0
}
, (17)

where G⊥ ∈ R(n−m)×n is a full-rank left-annihilator of G.
To place the problem in the context of Proposition 1 we

first shift the equilibrium of the open–loop system to the
origin and then proceed to verify Assumption 3. For, we
introduce the standard change of coordinates

x = T − T̄ ,

where T̄ is the open–loop equilibrium that satisfies

A1Ψ(T̄ ) +A2T̄ + E = 0. (18)

Thus, the system (16) in the new coordinates takes the form
(1) with

f(x) := A1Ψ(x+ T̄ ) +A2(x+ T̄ ) + E, (19)

Associated to the desired temperature T ? we define the
equilibrium to be stabilised

x? := T ? − T̄ . (20)

2) Passivity of the thermal system: The lemma below
identifies conditions under which the system (16) satisfies
Assumption 3 without imposing Assumption 1, that is,
avoiding the partition of the coordinates into actuated and
un–actuated. Towards this end, the following assumption is
needed.

Assumption 4: The matrix A1 is diagonally stable [20].
That is, there exists P ∈ Rn×n, P = diag{pi} > 0 such that

PA1 +A>1 P =: −2S < 0. (21)

Moreover, the matrix A2 verifies

A>2 Pdiag{T 3
i }+ diag{T 3

i }PA2 ≤ 0. (22)

Conditions for diagonal stability of a matrix have been
studied intensively, see [20] for a survey. Necessary and
sufficient conditions were first reported in [21]—see also [22]
for a simple proof. A sufficient condition, given in [23], is
that it is a Metzler matrix (namely, its non diagonal elements
are nonnegative).

Since A2 is Hurwitz, condition (22) is trivially satisfied if
A2 is diagonal, which is the case in some physical examples.

Lemma 3: If Assumption 4 holds the vector field (19)
satisfies Assumption 3 with

H(x) =

n∑
i=1

piφi(xi) + k, (23)

where
φi(xi) =

1

5
(xi + T̄i)

5 −Ψi(T̄i)xi (24)

and

k = −1

5

n∑
i=1

piT̄
5
i .

Direct application of Lemma 1 leads to the following.
Corollary 1: If Assumption 4 holds, the thermal system

(16) defines a passive map ũ 7→ e with storage function
U(x), where

e = G>P Φ̃(x)

U(x) = H(x)− x>PΦ(x∗)−H(x∗) + (x∗)>PΦ(x∗).
3) Robust PI–PBC of the thermal system: To present

the robust PI–PBC for systems verifying Assumption 1 we
partition the vector of temperatures into its un–actuated and
actuated components

T =

[
Tu
Ta

]
, Tu :=


T1
T2
...

Tn−m

 , Ta :=


Tn−m+1

Tn−m+2

...
Tn

 ,



partition P as

P =

[
P1 0(n−m)×m

0m×(n−m) D

]
,

and do the same with the vector function Ψ(T ).
The following proposition is a consequence of Lemma 3

and Proposition 1.
Proposition 3: Consider the system (16) verifying As-

sumptions 1 and 4. Fix any desired temperature T ∗ verifying
(17) and define the PI–PBC

u = −KP Ψ̃a(Ta) + z

ż = −KIΨ̃a(Ta),

and the controller gains KP and KI are given by (14). For
all diagonal, positive definite matrices ΓP ∈ Rm×m and
ΓI ∈ Rm×m all trajectories are bounded and the equilibrium
point (T, z) = (T ∗, u∗) is globally asymptotically stable.

Physically, considering matrix G as (2) means that for m
heating elements there are n −m measured points that are
not directly heated by these elements.

V. CONCLUDING REMARKS

In this work we identify a class of nonlinear systems for
which it is possible to design robust PI controllers with
guaranteed stability properties. The class consists of input
affine systems with known, constant input matrix G and
n−m zero rows. We assume that only the states associated
to the non–zero rows of G are measurable.The systems have
an open–loop stable equilibrium, but is different from the
desired operating point. To handle this situation, we follow
[3] and generate new passive outputs for the incremental
model, hence the name PI–PBC. Associated to the open–
loop stable equilibrium a Lyapunov function of the form (4)
is assumed to exist. We underscore that, besides convexity,
there is no assumption on the function Hu(xu), which is
unknown. Moreover, the controller does not require the mea-
surement of xu. The functions φi(xi) are assumed convex
and known, but the coefficient di are unknown. Under these
conditions, we show that, for a well identified class of PI
tuning gains, see (14), global stability of the proposed PI–
PBC is guaranteed. Conditions that ensure global asymptotic
stability, are also derived.
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