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Robust PI Passivity-based Control of Nonlinear Systems: Application to Port-Hamiltonian Systems and Temperature Regulation*

This paper deals with the problem of control of partially known nonlinear systems, which have an open-loop stable equilibrium, but we would like to add a PI controller to regulate its behavior around another operating point. Our main contribution is the identification of a class of systems for which a globally stable PI can be designed knowing only the systems input matrix and measuring only the actuated coordinates. The construction of the PI is done invoking passivity theory. The difficulties encountered in the design of adaptive PI controllers with the existing theoretical tools are also discussed. As an illustration of the theory, we consider port-Hamiltonian systems and a class of thermal processes.

I. INTRODUCTION

In many practical applications the plant to be controlled has an open-loop stable equilibrium, e.g., at the origin, and we would like to add a controller to regulate its behavior around another operating point. In the case of linear systems the dynamics remains invariant under coordinate shifts, therefore this task can be easily accomplished using the incremental model of the plant. Unfortunately, this is not the case for nonlinear systems, for which there is no obvious advantage of working with the incremental model.

Another common requirement in applications is the use of standard proportional-integral (PI) controllers, which overwhelmingly dominate the industrial market. Although commissioning a PI to operate around a single operating point is relatively easy, the performance will be below par in wide operating regimes, which is the scenario in modern highperformance applications. To overcome this drawback the current practice is to re-tune the gains of the PI controllers based on a linear model of the plant evaluated at various operating points, a procedure known as gain-scheduling. There are several disadvantages of gain-scheduling including the need to switch (or interpolate) the controller gains and the non-trivial definition of the regions in the plants state space where the switching takes place-both problems are exacerbated if the dynamics of the plant is highly nonlinear. Another common commissioning procedure is to use autotuners, that heavily rely on the availability of a "good" linear approximation of the plant dynamics. To avoid the need to

This article is supported by Government of Russian Federation (GOSZADANIE 2014/190 (project 2118), grant 074-U01) and the Ministry of Education and Science of Russian Federation (project 14.Z50.31.0031).

rely on linearization it is necessary to develop a procedure to design robust PI controllers for nonlinear systems with uncertain parameters.

Motivated by the discussion above in this paper we identify a class of (input affine) nonlinear systems for which it is possible to design a PI controller with the following features. F1 Regulation of the closed-loop system around the desired (non-zero) operating point should be guaranteed. F2 The PI controller should be robust, in the sense that reduced knowledge of the system parameters is required. F3 To simplify the controllers commissioning, a well defined admissible range of variation for the PI proportional and integral gains, preserving closed-loop stability, should be provided. We propose the construction of a PI controller with the features F1-F3 for plants with unknown dynamics verifying the following assumptions. A1 The open-loop system is unknown but has a stable equilibrium at the origin. A2 The desired equilibrium belongs to the assignable set and admits a convex Lyapunov function. A3 The Lyapunov function is the sum of two functions, depending on the un-actuated and actuated coordinates, respectively. The first function is unknown while the second one is separable and linearly parameterized in terms of some unknown parameters. A4 The input matrix is constant, known and has n-m zero rows, where n and m are the dimensions of the state and input vectors, respectively. As indicated in the article's title we exploit the fundamental property of passivity to design the proportional-integral passivity based controller, which will be referred in the sequel as PI-PBC. The first step in the design is to, relying on A1 above, invoke the celebrated theorem of Hill and Moylan [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF] to identify a suitable passive output for the system, with storage function the Lyapunov function of the openloop system. Since our interest is the regulation of nonzero equilibria, we then use the results of [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] to create a new passive output for the incremental model with a storage function that has a minimum at the desired equilibrium. As shown in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF], feeding back the passive output through a PI controller ensures stability of the desired equilibrium for all positive definite PI gains. It is important to underscore that, since the passivity property has been established for the incremental model, the equilibrium can also be stabilized setting the control input equal to the (constant) value that assigns the equilibrium, say u * , which is univocally defined.

However, this open-loop control will, obviously, be nonrobust. In the robustness context of the present paper neither the plant dynamics nor the Lyapunov function are known and, consequently, we cannot compute neither the passive output nor u * . It is at this point that we invoke A3 and A4 above to prove that, under these assumptions, it is possible to define ranges for the proportional and integral gains that make the PI-PBC implementable and, consequently, guarantee stability of the equilibrium. Another important feature of the proposed PI-PBC is that it requires only partial measurement of the state, namely, only the m state variables associated to the non-zero rows of the input matrix, referred in the sequel as actuated coordinates.

Several practical applications of PI-PBC have been reported in the literature. This include, RLC circuits [START_REF] Castaños | Proportional plus integral control for set-point regulation of a class of nonlinear RLC circuits[END_REF], power converters [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], fuel cells [START_REF] Talj | A controller tuning methodology for the air supply system of a PEM fuel-cell system with guaranteed stability properties[END_REF], electric drives [START_REF] Marmidis | A passivity-based PI control design for DC-drives[END_REF] and mechanical systems [START_REF] Meza | Analysis via passivity theory of a class of nonlinear PID global regulators for robot manipulators[END_REF]. In [START_REF] Donaire | On the addition of integral action to portcontrolled Hamiltonian systems[END_REF] a procedure to add an integral action to a non-passive output for a class of port-Hamiltonian systems was first proposed, and later extended in [START_REF] Ortega | Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances[END_REF], [START_REF] Romero | Robust energy shaping control of mechanical systems[END_REF]. To the best of our knowledge, the present paper is the first attempt to design PI-PBCs with guaranteed stability properties for systems with partially known dynamics.

A natural question that arises at this point is the incorporation of adaptation in the design of the PI (or PID). In the power converter application of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF] a parameter that enters in the definition of the passive output, i.e., the load resistance, is adaptively identified-however, all other parameters are assumed to be known. In the interesting paper [START_REF] Antonelli | Continuous stirred tank reactors: Easy to stabilise?[END_REF] it is shown that it is possible to adaptively estimate u * for a general nonlinear system with scalar input, keeping the estimate in a known interval, provided the passive output is known. In spite of a large number of publications the problem of designing a provably stable adaptive PID for systems with unknown parameters remains, as far as we know, open. The difficulty of this task was identified already in 1984 in [START_REF] Ortega | PID Self-Tuners: Some theoretical and practical aspects[END_REF]. As is well-known [START_REF] Sastry | Adaptive Control: Stability, Convergence, and Robustness[END_REF], the stability of indirect adaptive methods relies on parameter convergence that, in its turn, requires persistency of excitation-a property that is not satisfied in the regulation tasks where PI control is effective.

The remaining of the paper is organized as follows. Section II presents the problem formulation. Some preliminary lemmata and the main result are given in Section III. Section IV is devoted to application of the proposed PI-PBC for port-Hamiltonian (pH) systems [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF] and a temperature regulation problem. The paper is wrapped-up with concluding remarks in Section V.

Notations I n is the n×n identity matrix and 0 n×s is an n×s matrix of zeros, 0 n is an n-dimensional column vector of zeros. Given a i ∈ R, i ∈ n := {1, . . . , n}, we denote with col(a i ) the n-dimensional column vector and diag{a i } the diagonal n×n matrix with elements a i . For x ∈ R n , |x| is the Euclidean norm. For mappings of scalar argument g : R → R s , g and g denote first and second order differentiation, respectively. For mappings f : R n → R, ∇f := ( ∂f ∂x ) and

∇ 2 f := ∂ 2 f ∂x 2 .
For the distinguished element x * ∈ R n and any mapping F : R n → R s we denote F * := F (x * ) and the error signal F (x) := F (x) -F * .

II. PROBLEM FORMULATION

In this section we formulate the control problem addressed in the paper, enunciate the assumptions made on the plant to solve it and make some remarks on these assumptions.

A. Robust PI control problem

Consider the nonlinear, input affine, system

ẋ = f (x) + Gu, (1) 
where

x ∈ R n , u ∈ R m , n > m, f : R n → R n is an unknown smooth mapping, G ∈ R n×m is constant verifying rank(G) = m.
The following is a key assumption made throughout the paper.

Assumption 1: The matrix G has n -m zero rows. Without lost of generality1 it is assumed of the form

G = 0 (n-m)×m G 2 , (2) 
where G 2 ∈ R m×m is known.

This assumption can be easily obviated introducing state and input changes of coordinates. Indeed, it is well-knownsee, e.g., Theorem 2 of Section 2.7 of [START_REF] Lancaster | The Theory of Matrices[END_REF]-that for any full rank, matrix G ∈ R n×m there exists (elementary) full rank matrices T ∈ R n×n and S ∈ R m×m such that

T GS = 0 (n-m)×m I m .
Consequently, introducing z = T x and v = S -1 u the system (1) takes the desired form

ż = w(z) + 0 (n-m)×m I m v,
where w(z) = T f (T -1 z). We should note, however, that a change of state representation destroys-in general-the original structure of the system, whose knowledge may be critical for the verification of the second assumption below. This fact is clearly illustrated in the examples considered in Section IV. For this reason, we prefer to leave it as an standing assumption.

Motivated by Assumption 1 we find convenient to define a partition of the state vector into its un-actuated and actuated components as

x = x u x a , x u :=      x 1 x 2 . . . x n-m      , x a :=     
x n-m+1

x n-m+2 . . .

x n      .
It is assumed that only x a is available for measurement.

The unforced system, that is, ẋ = f (x), has a stable equilibrium at the origin with a partially known Lyapunov function. We are interested in controlling the system with a PI at a non-zero equilibrium-a situation that arises in most practical applications. Thus, we are given a desired equilibrium point, x ∈ R n , and the control goal is to ensure stability of this equilibrium using a PI control law of the form

ż = -K I ψ(x a , x * ) u = -K P ψ(x a , x * ) + z,
where z ∈ R m is the controller state, K P ∈ R m×m and K I ∈ R m×m are tuning gains and ψ : R m × R n → R m is a mapping designed with the partial knowledge of the aforementioned Lyapunov function.

The following, practically reasonable, assumption is made throughout the paper.

Assumption 2: The desired equilibrium point x belongs to the assignable equilibrium set, that is,

x ∈ E := x ∈ R n | I n-m | 0 (n-m)×n f (x) = 0 . (3) 

B. Assumptions on the open-loop plant

The following assumption identifies the class of vector fields f (x) for which we provide an answer to the problem. Assumption 3: For the system (1) there exists a twicedifferentiable, positive definite function H : R n → R ≥0 , verifying the following.

(i) [∇H(x)] f (x) ≤ 0. (ii) [∇H(x) -∇H(x )] f (x) =: -Q(x) ≤ 0. (iii) The function H(x) is of the form H(x) = H u (x u ) + H a (x a ) with H a (x a ) = n i=n-m+1 d i φ i (x i ), (4) 
where the function H u : R n-m → R and the constants d i > 0 are unknown but the functions φ i : R → R are known.

(iv) The functions H u (x u ) and φ i (x i ) are convex.

C. Discussion

The following remarks regarding the assumptions are in order. R1 Although the set E is not known, it is reasonable to assume that we have enough prior knowledge about the plant to select the desired operating point as a feasible equilibrium. Hence, Assumption 2 is reasonable. R2 A corollary of Assumption 2 is that the constant input u , that assigns the equilibrium, is uniquely defined as

u := G 2 G 2 -1 0 m×(n-m) G 2 f . (5) 
Notice that, without knowledge of f (x), this constant cannot be computed.

R3 Since the open-loop system (1) has a stable equilibrium at the origin Assumption 3 (i) follows as a corollary of Lyapunov's converse theorems [START_REF] Khalil | Nonlinear Systems[END_REF]. As will become clear below Assumption 3 (ii) and (iv) are required to prove passivity of the incremental model as done in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF]. R4 We underscore that no assumption, beyond twice differentiability and convexity, is imposed on the unknown component H u (x u ) of the Lyapunov function of the open-loop system H(x). On the other hand, stricter conditions are imposed on the second component H a (x a ), with uncertainty captured by the unknown constants d i . R5 Assumptions 3 (iii) and Assumption 1 are the key requirements imposed on the plant to design the robust PI-PBC. This assumption is satisfied by a large class of physical systems, including a class of port-Hamiltonian [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF] and thermal systems studied in Section IV. R6 Regarding Assumptions 1, in the more general case when G is not of the form (2) an additional shuffling of the rows of G is needed in the design. This procedure is explained in Subsection III-C. R7 For quadratic Lyapunov functions of the form H(x) =

x P x, with P > 0, Assumption 3 (ii) is satisfied if the open-loop system is convergent in the sense of Demidovich [START_REF] Pavlov | Convergent dynamics, a tribute to Boris Pavlovich Demidovich[END_REF]. That is, if it satisfies

P ∇f (x) + [∇f (x)] P ≤ 0.

III. THE ROBUST PI-PBC

A. Preliminary Lemmata

Unless otherwise indicated, throughout the rest of the paper Assumption 1 holds. Define for the system (1) the output

y = G ∇H(x) = G 2 DΦ(x a ), (6) 
where

D :=      d n-m+1 0 . . . 0 0 d n-m+2 . . . 0 . . . . . . . . . . . . 0 0 . . . d n      > 0 Φ(x a ) :=    φ n-m+1 (x n-m+1 ) . . . φ (x n )    .
A corollary of the theorem of Hill and Moylan [START_REF] Van Der Schaft | L2-Gain and Passivity Techniques in Nonlinear Control[END_REF] is that, if Assumption 3 (i) holds, the system (1), ( 6) defines a passive mapping u → y with storage function H(x). To operate the system at a non-zero equilibrium it is necessary to shift the minimum of the storage function and define the passivity property between the incremental input and the output error. Towards this end, we recall Proposition 1 of [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] and state it as a lemma below.

Lemma 1: Consider the incremental model of the system (1), ( 6)

ẋ = f (x) + Gu + Gũ, e = G 2 D Φ(x a ), (7) 
where ũ = u -u is the incremental input. Under Assumptions 1-3 the mapping ũ → e is passive with storage function U : R n → R ≥0 given by

U (x) = H(x) -x u ∇H * u -x a DΦ + k, (8) 
where k is a constant that ensures U * = 0. More precisely,

U = -Q(x) + e ũ, (9) 
where Q(x) is defined in Assumption 3 (ii). One of the main interests of passive systems is that they can be globally stabilized with PI controls (with arbitrary positive definite gains). This well-known fact is stated in the lemma below.

Lemma 2: Consider the system (1) verifying Assumptions 1-3 in closed-loop with the PI-PBC

e = G 2 D Φ(x a ) ż = -K I e u = -K P e + z. (10) 
For all positive definite gain matrices K P ∈ R m×m and K I ∈ R m×m all trajectories are bounded, the equilibrium point (x, z) = (x * , u * ) is globally stable (in the sense of Lyapunov) and the augmented error signal

e a := Q(x) e , (11) 
where Q(x) is defined in Assumption 3 (ii), verifies

lim t→∞ e a (t) = 0. (12) 
Moreover, if e a is a detectable output for the closed-loop system then the equilibrium point is asymptotically stable.

B. The Robust PI-PBC

As indicated in R4 of Subsection II-C the matrix D is unknown. Hence, the error signal e cannot be constructed and the PI-PBC ( 10) is not implementable. This motivates our main result given below.

Proposition 1: Consider system (1) verifying Assumptions 1-3 in closed-loop with the robust PI-PBC

u = -K P Φ(x a ) + z ż = -K I Φ(x a ), (13) 
with the controller gains

K P = G -1 2 Γ P K I = G -1 2 Γ I . ( 14 
)
For all diagonal, positive definite matrices Γ P ∈ R m×m and Γ I ∈ R m×m we have the following. (i) All trajectories are bounded and the equilibrium point (x, z) = (x * , u * ) is globally stable (in the sense of Lyapunov). (ii) The augmented error signal e a defined in [START_REF] Romero | Robust energy shaping control of mechanical systems[END_REF] verifies [START_REF] Antonelli | Continuous stirred tank reactors: Easy to stabilise?[END_REF]. (iii) If e a is a detectable output for the closed-loop system then the equilibrium point is globally asymptotically stable.

An important observation is that, even though the controller only requires measurement of the actuated terms of the state x a , it achieves regulation of the full state vector.

C. General G (with n -m zero rows)

Instrumental to design the robust PI-PBC was the particular form of H(x) defined in Assumption 3 (iii). In view of the construction of the robust PI-PBC, it is clear that if G is not of the form (2) the assumption must be modified redefining the actuated and un-actuated coordinates.

To avoid cluttering the notation we will explain the procedure only for the case when n = 3 and m = 2-the general case follows verbatim. Assume, furthermore, that G is of the form

G =   g 1 0 1×2 g 3   .
The form of H(x) given in Assumption 3 (iii) must be, accordingly, modified to

H(x) = H u (x 2 ) + d 1 φ(x 1 ) + d 3 φ(x 3 ).
In this case the passive output e for the incremental model becomes

G [∇H(x) -∇H(x * )] = G s d 1 0 0 d 3 Φ 1 (x 1 ) Φ 3 (x 3 ) .
where

G s := g 1 | g 3 .
The robust PI-PBC is given by

u = -G -1 s Γ P Φ 1 (x 1 ) Φ 3 (x 3 ) + z ż = -G -1 s Γ I Φ 1 (x 1 ) Φ 3 (x 3 ) ,
where Γ P and Γ I are arbitrary, diagonal, positive definite matrices.

Before closing this subsection we remark that our construction critically relies on the assumption of existence of n -m zero rows in G. Indeed, it is possible to show that if this is not the case, even assuming H(x) of the form

H(x) = n i=1 d i φ i (x i )
and defining D n = diag{d i }, it is not possible to find an m × m positive definite matrix Λ, which will depend on D n , such that the matrix ΛG D n is independent of D n . The fact that this is not possible for all matrices G is obvious considering the counterexample G = col(1, 1). Hence, the assumption of existence of n-m zero rows in G is necessary to solve the problem.

IV. EXAMPLES

Two examples of physical systems which are amenable for robust PI-PBC are given below. Attention is concentrated on the verification of Assumption 3. Hence, unless otherwise indicated, Assumption 1 is not imposed.

A. A class of port-Hamiltonian system Proposition 2: The pH system ẋ = (J -R)∇H(x) + Gu [START_REF] Lancaster | The Theory of Matrices[END_REF] with constant interconnection J = -J and damping R = R ≥ 0 matrices satisfies Assumption 3 (i) and (ii).

B. Application to temperature regulation

In this subsection we design a robust PI-PBC for the temperature regulation of a class of thermal systems-the so-called, rapid thermal processes.

1) System Description: Similarly to [START_REF] Ebert | Model-based control of rapid thermal processing for semiconductor wafers[END_REF], [START_REF] Schaper | Low-order modeling and dynamic characterization of rapid thermal processing[END_REF] we consider the following model of rapid thermal processes

Ṫ = A 1 [Ψ(T ) -Ψ(T rad )] + A 2 (T -T conv ) + Gu, (16) 
where T ∈ R n ≥0 represents the vector of temperatures, Ψ(T ) := col(T 4 i ) and T rad , T conv ∈ R n ≥0 are, respectively, the vectors of temperatures related to the radiation heat emission from environment and the convection air flows. The constant matrices A 1 , A 2 ∈ R n×n are Hurwitz and contain the radiation and the convection heat transfer coefficients. Also, the entries of G ∈ R n×m correspond to the heat transfer coefficients of the heating elements. Finally, u ∈ R m is the controlled power applied to the heating elements.

In the model above, as in [START_REF] Schaper | Low-order modeling and dynamic characterization of rapid thermal processing[END_REF], it is considered that ( 16) is heated almost uniformly so that the contribution of energy from conduction is too small with respect to the radiation transfer. Hence, the conduction heat transfer is neglected.

To simplify the notation we re-write the system (16) in the form

Ṫ = A 1 Ψ(T ) + A 2 T + E + Gu, where E := -A 1 Ψ(T rad ) -A 2 T conv .
Unlike A 1 , A 2 and E that are highly uncertain, the input matrix G-that is defined by the induced heat flow-can be precisely identified. The control objective is then to design a robust PI, i.e., that does not require the knowledge of the uncertain parameters, to regulate the process around some desired temperature, which is not equal to the open-loop equilibrium, but belongs to the assignable equilibrium set, that is,

T ∈ T ∈ R n ≥0 | G ⊥ [A 1 Ψ(T ) + A 2 T + E] = 0 , (17) 
where G ⊥ ∈ R (n-m)×n is a full-rank left-annihilator of G.

To place the problem in the context of Proposition 1 we first shift the equilibrium of the open-loop system to the origin and then proceed to verify Assumption 3. For, we introduce the standard change of coordinates

x = T -T ,
where T is the open-loop equilibrium that satisfies

A 1 Ψ( T ) + A 2 T + E = 0. (18) 
Thus, the system [START_REF] Khalil | Nonlinear Systems[END_REF] in the new coordinates takes the form (1) with

f (x) := A 1 Ψ(x + T ) + A 2 (x + T ) + E, (19) 
Associated to the desired temperature T we define the equilibrium to be stabilised

x := T -T . (20) 
2) Passivity of the thermal system: The lemma below identifies conditions under which the system (16) satisfies Assumption 3 without imposing Assumption 1, that is, avoiding the partition of the coordinates into actuated and un-actuated. Towards this end, the following assumption is needed.

Assumption 4: The matrix A 1 is diagonally stable [START_REF] Kaszkurewicz | Matrix Diagonal Stability in Systems and Computation[END_REF]. That is, there exists P ∈ R n×n , P = diag{p i } > 0 such that

P A 1 + A 1 P =: -2S < 0. (21) 
Moreover, the matrix A 2 verifies

A 2 P diag{T 3 i } + diag{T 3 i }P A 2 ≤ 0. (22) 
Conditions for diagonal stability of a matrix have been studied intensively, see [START_REF] Kaszkurewicz | Matrix Diagonal Stability in Systems and Computation[END_REF] for a survey. Necessary and sufficient conditions were first reported in [START_REF] Barker | Positive diagonal solutions to the Lyapunov equations[END_REF]-see also [START_REF] Shorten | An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions[END_REF] for a simple proof. A sufficient condition, given in [START_REF] Farina | Positive Linear Systems: Theory and Applications[END_REF], is that it is a Metzler matrix (namely, its non diagonal elements are nonnegative).

Since A 2 is Hurwitz, condition ( 22) is trivially satisfied if A 2 is diagonal, which is the case in some physical examples.

Lemma 3: If Assumption 4 holds the vector field (19) satisfies Assumption 3 with

H(x) = n i=1 p i φ i (x i ) + k, (23) 
where

φ i (x i ) = 1 5 (x i + Ti ) 5 -Ψ i ( Ti )x i (24) 
and

k = - 1 5 n i=1 p i T 5 i .
Direct application of Lemma 1 leads to the following. Corollary 1: If Assumption 4 holds, the thermal system (16) defines a passive map ũ → e with storage function U (x), where e = G P Φ(x)

U (x) = H(x) -x P Φ(x * ) -H(x * ) + (x * ) P Φ(x * ).
3) Robust PI-PBC of the thermal system: To present the robust PI-PBC for systems verifying Assumption 1 we partition the vector of temperatures into its un-actuated and actuated components

T = T u T a , T u :=      T 1 T 2 . . . T n-m      , T a :=      T n-m+1 T n-m+2 . . . T n     
, partition P as

P = P 1 0 (n-m)×m 0 m×(n-m) D ,
and do the same with the vector function Ψ(T ).

The following proposition is a consequence of Lemma 3 and Proposition 1.

Proposition 3: Consider the system (16) verifying Assumptions 1 and 4. Fix any desired temperature T * verifying [START_REF] Pavlov | Convergent dynamics, a tribute to Boris Pavlovich Demidovich[END_REF] and define the PI-PBC u = -K P Ψa (T a ) + z ż = -K I Ψa (T a ), and the controller gains K P and K I are given by [START_REF] Sastry | Adaptive Control: Stability, Convergence, and Robustness[END_REF]. For all diagonal, positive definite matrices Γ P ∈ R m×m and Γ I ∈ R m×m all trajectories are bounded and the equilibrium point (T, z) = (T * , u * ) is globally asymptotically stable.

Physically, considering matrix G as (2) means that for m heating elements there are n -m measured points that are not directly heated by these elements.

V. CONCLUDING REMARKS

In this work we identify a class of nonlinear systems for which it is possible to design robust PI controllers with guaranteed stability properties. The class consists of input affine systems with known, constant input matrix G and n -m zero rows. We assume that only the states associated to the non-zero rows of G are measurable.The systems have an open-loop stable equilibrium, but is different from the desired operating point. To handle this situation, we follow [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] and generate new passive outputs for the incremental model, hence the name PI-PBC. Associated to the openloop stable equilibrium a Lyapunov function of the form (4) is assumed to exist. We underscore that, besides convexity, there is no assumption on the function H u (x u ), which is unknown. Moreover, the controller does not require the measurement of x u . The functions φ i (x i ) are assumed convex and known, but the coefficient d i are unknown. Under these conditions, we show that, for a well identified class of PI tuning gains, see [START_REF] Sastry | Adaptive Control: Stability, Convergence, and Robustness[END_REF], global stability of the proposed PI-PBC is guaranteed. Conditions that ensure global asymptotic stability, are also derived.

See R6 in the next subsection and Subsection III-C for more general forms of G.