
 

 

1 INTRODUCTION  

The objective of condition monitoring is to assess 
the health state of industrial components and to 
identify possible incipient faults (Venkatasubrama-
nian et al. 2003a, 2003b, 2003c, Hines et al. 2007). 
To this aim, a model is usually built to reconstruct 
the values of the monitored signals expected in 
normal conditions (Hameed et al. 2009). During op-
eration, observed signal measurements are com-
pared with the reconstructions provided by the 
model: abnormal conditions are detected when the 
reconstructions are remarkably different from the 
measurements. 

Several empirical reconstruction modeling tech-
nique have been applied for condition monitoring of 
industrial components (Guglielmi et al. 1995, Na-
beshima et al. 1998, Jack et al. 2002, Harkat et al. 
2007, Chevalier et al. 2009, Baraldi et al. 2013a). 
These methods provide accurate reconstructions of 
the measured signals under normal operations, but 
they often tend to be not robust, i.e. in case of ab-
normal conditions the reconstructions of the signals 
are not properly estimating the values of the signals 
expected in normal conditions (Baraldi et al. 2012). 
In particular, it has been shown that the reconstruc-
tion provided by the AutoAssociative Kernel Re-
gression (AAKR) method (Baraldi et al. 2011a, Di 
Maio et al. 2013) of an anomalous transient charac-
terized by a drift of one signal can be not satisfacto-

ry for two reasons: 1) the reconstruction of the sig-
nal affected by the drift tends to assume values in 
the middle between the drifted values and the ex-
pected values of the signal in normal conditions; 2) 
the reconstructions of other signals not affected by 
the drift tend, erroneously, to be different from the 
signal measurements. The consequence of 1) is a 
delay in the detection of abnormal conditions, 
whereas the consequence of 2) is that the condition 
monitoring system, although it correctly triggers an 
abnormal condition alarm, is not able to correctly 
identify the signal that triggers the alarm. 

The objective of the present work is to propose a 
robust signal reconstruction method capable of ear-
ly detecting abnormal conditions and providing ac-
curate reconstructions of the values of the signals 
subject to the abnormal conditions. 

The proposed method is based on the modifica-
tion of the measure of similarity used by the AAKR 
method: instead of using the Euclidean distance, the 
proposed method introduces a penalty vector which 
reduces the contribution provided by those signals 
which are expected to be subject to the abnormal 
conditions. The rationale behind this modification is 
the attempt to privilege those abnormal conditions 
caused by the most frequently expected malfunc-
tions and failures. The performance of the proposed 
method has been tested on simulated data describ-
ing the behaviors of a pressurizer of a Pressurized 
Water Reactor (PWR) Nuclear Power Plant (NPP) 
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(Baraldi et al. 2010, Baraldi et al. 2013b). The re-
mainder of the paper is organized as follows. In 
Section 2, the fault detection problem is introduced. 
In Section 3, the AAKR method is briefly recalled. 
Section 4 shows the limitation of the traditional 
AAKR approach to condition monitoring and states 
the objectives of the present work. In Section 5, the 
proposed modification of the traditional AAKR is 
described and discussed. In Section 6, the applica-
tion of the proposed method to a case study con-
cerning the monitoring of 6 signals in the pressuriz-
er of a Nuclear Power Plant is presented. Finally, in 
Section 7 some conclusions are drawn. 

2 FAULT DETECTION 

The condition monitoring adopted in this work is 
based on an empirical model reproducing the plant 
behavior in normal conditions. The model receives 
in input the vector, �������, containing the actual 
observations of the � signals monitored at the pre-
sent time, t, and produces in output the reconstruc-
tions, �	
����, i.e. the values that the signals are ex-
pected to have in normal conditions (Baraldi et al., 
2012) (Fig. 1). If the actual conditions at time t are 
abnormal instead, the residuals ∆� 
 	������� �	�	
����	, i.e. the variations between the observations 
and the reconstructions, are large and can be detect-
ed by observing the exceedance of a prefixed 
thresholds by at least one signal. 

3 AUTOASSOCIATIVE KERNEL 
REGRESSION (AAKR) 

The basic idea behind AAKR is to reconstruct at 
time t the values of the signals expected in normal 
conditions, �	
����, on the basis of a comparison of 
the currently observed signals measurements (also 
referred to as test pattern), ������� 
 	 �������, 1�, … , ������, ��	�, and of a set 
of historical signals measurements collected during 
normal condition of operation. In practice, AAKR 
performs a mapping from the space of the meas-
urements of the signals ������� to the space of the 
values of the signals expected in normal conditions, �	
����: 

�	
���� 
 ���������|������
�� ∶ 	�� → �� �1� 
where ������
� indicates a ! " � matrix containing 
N historical observations of the � signals performed 
in normal conditions. Since the mapping is inde-
pendent from the present time, t, at which the sig-
nals observations are performed, the present time t 
will be omitted from the notations. Thus, �����#�, # 
 1,… , �, indicates the value of signal # at the pre-
sent time. The reconstruction of the expected values 
of the signals in normal conditions, �	
� 
��$
��1�, … , �$
����	�, is performed as a weighted 
sum of the available historical observations; for the 
generic #-th element of �	
�,: 
�$
��#� 
 ∑ &�'�	 ∙)*+, �����
��', #�∑ &�'�)*+,  �2� 
The weights, &�'�, measure the similarity between 
the test pattern, ����, and the '-th historical obser-
vation vector, �����
��'�. They are evaluated 
through a kernel, ./0, i. e. a scalar function which 
can be written as a dot product (Burges, 1998, 
Müller et al. 2001, Widodo et al. 2007).  
Traditional AAKR adopts as ./0 function the 
Gaussian Radial Basis Function (RBF) with band-
width parameter 1, i.e.: 

&�'� 
 1√2314 /�
5�678	�	�6789:;�*�5<4=<  �3� 

In fault detection applications, Euclidean and Ma-
halanobis distances are typically used to compute 
the distance in the Gaussian RBF (Baraldi et al. 
2011b). In this work, in order to account for differ-
ences in the scale and variability of the different 
signals, a Mahalanobis distance is used, defined by 
the covariance matrix, S, such that: 5���� � �����
��'�5?@=@A4 
 B���� � �����
��'�C D�, B���� � �����
��'�C �4� 
Assuming independence between the signals, D is 
given by: 

D 
 	 FG,4 … 0⋮ ⋱ ⋮0 … G�4K �5� 
where GM4 indicates the estimated variance of signal # in the historical observations. 

Figure 1 Scheme of condition monitoring for fault detection. 

(t) 



 

 

4 LIMITATIONS IN THE USE OF AAKR FOR 
SIGNAL RECONSTRUCTION 

The low robustness of the traditional AAKR meth-
od is well illustrated by the following case study 
concerning the monitoring of the pressurizer of a 
Pressurized Water Reactor (PWR) Nuclear Power 
Plant (NPP) (Baraldi et al. 2010, Baraldi et al. 
2013b). The dataset is composed of 37 simulated 
transients in normal conditions. Each transient is 
monitored for 100 time steps by 6 sensors measur-
ing pressure, liquid temperature, steam temperature, 
spray flow, heaters power and liquid level. Table 1 
reports the high degree of correlation between the 
signals. 
 

Table 1. Degree of correlation between monitored signals. S1: 

pressure, S2: liquid temperature, S3: steam temperature, S4: 

spray flows, S5: heaters power, S6: liquid level. 

 
S1 S2 S3 S4 S5 S6 

S1 1.00 -0.07 0.98 -0.46 -0.23 0.98 

S2 -0.07 1.00 -0.08 0.01 0.18 -0.22 

S3 0.98 -0.08 1.00 -0.46 -0.23 0.97 

S4 -0.46 0.01 -0.46 1.00 -0.14 -0.45 

S5 -0.23 0.18 -0.23 -0.14 1.00 -0.26 

S6 0.98 -0.22 0.97 -0.45 -0.26 1.00 

A traditional AAKR reconstruction model has been 
developed using the 37 transients. Then, an abnor-
mal condition transient has been simulated by as-
suming sensor failures leading to a jump of the liq-
uid temperature from time 10 to 20, a linear drift on 
the steam temperature signal from time 30 followed 
by a step at time 80 and an additive noise impacting 
the spray flow sensor from time 70 till the end of 
the observation period. Figure 2 shows the meas-
ured (dashed-light) and the real value (dotted-dark) 
of the 6 signals in the test transient, whereas Figure 
3 shows the reconstructions of the signals provided 
by the AAKR method (dashed-light) and the signals 
expected in normal condition (dotted-dark). Notice 
that the reconstructions are not robust: 1) pressure, 
steam temperature and level reconstruction do not 
reflect the expected normal conditions after time 
step 30; 2) sprayers flow and heaters power recon-
struction are far from the correct reconstruction dur-
ing the time window 10-20.  
A low robustness in the reconstruction leads to two 
practical problems: 1) delay in the detection of ab-
normal conditions; 2) identification of abnormal 
conditions on signals different from those which are 
actually affected by the abnormal behaviors. 
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Figure 2 Measured abnormal value (light-dashed line) and corresponding normal condition value (dark-dotted line) of a test transi-

ent. 

Figure 3 Reconstruction (light-dashed line) of the expected normal values (dark-dotted line) of a transient affected by 

abnormal conditions. 



 

 

5 MODIFIED AAKR 

In order to enhance the AAKR robustness, we pro-
pose to modify the computation of the weights & 
performed by the traditional AAKR (Eq. 2). The 
basic ideas underling the proposed modification are 
(a) to identify the signals affected by abnormal be-
haviors and (b) to reduce their importance in the 
computation of the similarity between the test pat-
tern and the historical observations. 

With respect to (a), we assume that the probabil-
ity of occurrence of a fault causing variations on a 
large number of signals is lower than that of a fault 
causing variations on a small number of signals: N�DO@PAQ	,� ≤ N�DO@PAQ	4�	 if SDO@PAQ	4S ≤ SDO@PAQ	,S �6� 

where Sfault 1 and Sfault 2 indicate the sets of sig-
nals affected by variations due to the abnormal 
(faulty) conditions, and |Sfault1| and |Sfault 2| their car-
dinality. If we consider, for example, the problem of 
sensor failures, it is reasonable to assume that the 
probability of having N1 faulty sensors at the same 
time is lower than that of having a lower number of 
faulty sensors, N2 ≤ N1, at the same time. 

The proposed procedure computes the similarity 
measure between the observation, ����, and the ge-
neric k-th historical observation, �����
��'�, in two 
steps: (a) a pre-processing step consisting in the 
projection of ���� and �����
��'� in a new space 
defined by a penalty vector, U 
 �V�1),… , V(�)�, 
with increasing entries, i.e. p(1) ≤ ⋯	≤ p(J) and (b) 
the application of the Gaussian RBF kernel in the 
new space. 
Step (a) is based on: 

• computing the vector of the absolute values 
of the normalized differences between ���� 
and �����
�('): S���� − �����
�(')SX = 

YZ����(1) − �����
�(', 1)G, Z …	Z����(�) − �����
�(', �)G� Z[ 
(7) 

• defining a permutation matrix, Pperm, i.e. a 
matrix which, when multiplied to a vector, 
only modifies the order of the vector com-
ponents; in our procedure, we define a ma-
trix, Pperm, such that when it is applied to the 
vector |���� − �����
�(')|X, the compo-
nents of the obtained vector are the same of 
that of |���� − �����
�(')|X, but they ap-
pear in a decreasing order, i.e. the first com-
ponent is the one with the largest difference 
in |���� − �����
�(')|X; 

• defining a diagonal matrix with decreasing 
entries on its diagonal: 

]U = F^V(1) 0 00 ⋱ 00 0 ^V(�)K (8) 
where the vector U = �V(1), … , V(�)� =�0�]U� will be referred to as penalty vector; 

• projecting ���� and �����
�(') in a new 
space defined by the transformation: 

` ∶ 	ℝ� →	ℝ� `������ = ]U	Nabc?	���� `������
�� = ]U	Nabc?	�����
� (9) 
In step (b), we apply to `(����) and `(�����
�) 
the Gaussian kernel with Euclidean distance: 

&(') = 1^23ℎ2 /−
5`��efg�	−	`��efg−hi�522ℎ2  (10)

6 APPLICATION OF THE METHOD TO THE 
CASE STUDY 

The data previously introduced in Section 4 are 
used to develop the modified AAKR reconstruction 
method. In particular, the 37 transients have been 
divided into 3 subsets: 

• Training set ��Qc@j
����
� 	 ∈ ℝ4lmm	×n, which is 

used as historical dataset to train the model; 

• Validation set ��o@A����
� 	 ∈ ℝ,mmm	×n, which 

is used to set the optimal parameter values; 

• Test set, ��Qb�Q����
� 	 ∈ ℝpmm	×n, which is used 

to test the performance of the method. 

For both the traditional and modified AAKR meth-

ods, the optimal bandwidth parameter, h, has been 

identified by minimizing the Mean Square Error 

(MSE) of the reconstructions on the validation set, ��o@A����
�: 
qDr= = ∑ ∑ B�	o@A(', g) − �o@A����
�(', g)C4��+,)stu*+, !o@A  (11) 
The transients in the test set are used to set the 
alarm thresholds (see Table 2), which have been 
taken equal to 3 times the standard deviation of the 
obtained residuals. Notice that for signals 2 and 3 
the traditional AAKR provides lower thresholds; on 
the contrary, the modified AAKR provides lower 
thresholds for signals 4 and 5. This is due to the fact 
that the traditional AAKR provides more accurate 
reconstructions of signals 2 and 3, whereas the 
modified AAKR of signals 4 and 5. 
 
 
 



 

 

Table 2. Alarm thresholds for traditional and modified AAKR. 

AAKR S1 S2 S3 S4 S5 S6 

TRADITIONAL 0.37 0.10 0.32 0.23 5.74E+04 0.02 

MODIFIED  0.40 0.53 0.68  0.15 3.96E+04 0.02 

 

We have then tested the performance of the modi-

fied AAKR on the same abnormal condition transi-

ent introduced in Section 4. Figure 4 shows that the 

modified AAKR provides residuals that tend to re-

flect the simulated abnormal condition.   For exam-

ple, considering the time window 10-20, the modi-

fied AAKR identifies the wrong calibration of the 

liquid temperature sensor, whereas the traditional 

AAKR identifies, erroneously, an abnormal condi-

tion also on sprayer flow and heaters power sensors. 

Furthermore, the modified AAKR provides a more 

robust reconstruction of the steam temperature 

when the corresponding sensor is subject to a linear 

drift followed by a step change. 

7 CONCLUSIONS 

In this work, we have considered condition moni-
toring via Auto Associative Kernel Regression 
(AAKR) for fault detection in a pressurizer of a  
Pressurized Water Reactor (PWR) Nuclear Power 
Plant (NPP). A modification of the traditional 
AAKR has been proposed to achieved a more ro-
bust reconstruction of the signal expected in normal 
condition. By projecting the data in a new signal 

space according to a penalty vector, the modifica-
tion aims at reducing the contribution of the signals 
affected by malfunctioning to the evaluation of the 
similarity. 

The application of the modified AAKR to the 
monitoring of 6 signals in a pressurizer of a Nuclear 
Power Plant has shown that it provides a more ro-
bust reconstructions of the signals than the tradi-
tional AAKR method. 
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