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Abstract— In this paper, we address the problem of sta-
bilisation of robots subject to nonholonommic constraints
and external disturbances using port-Hamiltonian theory and
smooth time-invariant control laws. This should be contrasted
with the commonly used switched or time-varying laws. We
propose a control design that provides asymptotic stability
of an manifold (also called relative equilibria)—due to the
Brockett condition this is the only type of stabilisation possible
using smooth time-invariant control laws. The equilibrium
manifold can be shaped to certain extent to satisfy specific
control objectives. The proposed control law also incorporates
integral action, and thus the closed-loop system is robust to
unknown constant disturbances. A key step in the proposed
design is a change of coordinates not only in the momentum,
but also in the position vector, which differs from coordinate
transformations previously proposed in the literature for the
control of nonholonomic systems. The theoretical properties of
the control law are verified via numerical simulation based on
a robotic ground vehicle model with differential traction wheels
and non co-axial centre of mass and point of contact.

I. INTRODUCTION

The study of systems subject to nonholonomic constraints
have been developed within the realm of analytical me-
chanics [14], [5], [4]. The complexity and highly nonlinear
dynamics of nonholonomic-mechanical systems (NHMS)
make the motion control problem challenging [8], [7], [4].
A key feature that distinguishes the control of NHMS from
that of holonomic systems is that in the former, it is not
possible to stabilise an isolated equilibrium with a smooth
state-feedback control law. The best one can achieve with
smooth control laws is to stabilise an equilibrium manifold
also known as relative equilibria. This fact follows from
Brockett’s necessary condition—see for example [4] (p. 303).

Wheeled robots are typical examples nonholonomic me-
chanical systems. The dynamics of these systems can be
described using either Euler-Lagrange or Hamiltonian for-
mulations [12], [21], [4]. Mechanical systems with non-
holonomic constraints may also be represented as driftless
systems, where the input to these systems are usually ve-
locities instead of forces. This leads to kinematic models
for which the control law is designed. Another approach
considers the open-loop system in a canonical chained form
for control design. In this paper, we adopt the Hamiltonian
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representation. For control designs based on driftless and
canonical chained forms see [20], [8], [1], [4]. The survey
in [13] provides a general picture on control of NHMS.

The natural approach to control port-Hamiltonian (pH)
systems is the classical interconnection and damping as-
signment passivity based control (IDA-PBC)—see [15] for
a survey. In the case of mechanical pH systems with non-
holonomic constraints IDA-PBC has been used in [3], [19],
[11]. In this paper, we follow the Hamiltonian formulation
proposed in [21] to describe NHMS with disturbances. Then,
we design a dynamic controller to stabilise the positions
of the nonholonomic system to an equilibrium manifold.
The design is robust to unknown constant disturbances in
the sense that these disturbances do not modify the rel-
ative equilibria. In this way, we extend previous results
on smooth stabilisation of nonholonomic pH mechanical
systems by considering the disturbances rejection problem.
The development here also extends results on the use of
integral action for unconstrained pH proposed in [9], [16]
to pH mechanical systems with nonholonomic constraints.
In particular, we use a change of coordinate to to assign a
full rank dissipation matrix first proposed in [10], and then
generalised for mechanical systems in [17], [18].

The remaining of the paper is organised as follows.
Section 3 presents the port-Hamiltonian models of NHMS.
The control design of the smooth control law is developed
in Section 4. In section 5, we present a case study with
numerical simulations to illustrate the application of the
developed theory. The paper is concluded in Section 6.

II. NOTATION

We denote the function |x|2 := x>x for x ∈ Rn. Given a
function f : Rn → R, we define the differential operators

∇f :=

(
∂f

∂x

)>
, ∇2f :=

(
∂2f

∂x2

)>
, ∇xi

f :=

(
∂f

∂xi

)>
,

where ∇f a column vector, xi ∈ Rp, with p ≤ n, xi is
an subset of components of the vector x. For a mapping
g : Rn → Rm, its Jacobian matrix (m× n) is defined as

∇g :=

 (∇g1)>

...
(∇gm)>

 ,
where gi : Rn → R is the i-th element of g.

III. HAMILTONIAN FORMULATION OF NONHOLONOMIC
MECHANICAL SYSTEMS

This section follows the development in [21]. We pro-
posed, however, a different coordinate transformation to



obtain a Hamiltonian function with an identity inertia matrix.
This novel coordinate transformation is inspired by the
design of observers proposed in [22].

Consider the NHMS described by

q̇ = ∇pH
ṗ = −∇qH +A(q)λ+G(q)(u+ d),

(1)

with Hamiltonian

H(q,p) =
1

2
p>M−1(q)p + V (q), (2)

and Pfaffian nonholonomic constraints

A>(q) q̇ = 0. (3)

where p ∈ Rn and q ∈ Rn are the generalised momentum
and position variables, and A : Rn → Rn×k, with k < n
and rank (A) = k. The constraint forces A(q)λ are computed
such that (3) is satisfied ∀t. The vector u ∈ Rm represents
the control inputs and d ∈ Rm represents disturbances. The
inclusion of disturbances on the model and its rejection is a
novel contribution of this paper.
We next introduce a momentum transformation that in ad-
dition to the elimination of nonholonomic constraints devel-
oped in [21] leads to an identity mass matrix. The resulting
transformed system simplifies the subsequent control design.

Proposition 3.1: Consider the full-rank matrix Φ : Rn →
Rn given by

Φ(q) =

[
T−>(q)S>(q)
A>(q)M−1(q)

]
, (4)

where S : Rn → Rn×(n−k) satisfies that rank (S) = n− k,
and A>(q)S(q) = 0. The matrix T : Rn → Rn×n is such
that

T>(q)T (q) = S>(q)M(q)S(q).

Consider also the momentum transformation

p̃ = Φ(q)p,

and the partition of the new momenta

p̃ =

[
p
po

]
where p ∈ Rn−k and po ∈ Rk.

Then, the dynamics of the nonholonomic system (1) can
be written in pH form

[
q̇
ṗ

]
=

[
0 L(q)

−L>(q) N(q, p)

]
∇W (q, p)

+

[
0

Gc(q)

]
(u+ d), (5)

where

W (q, p) =
1

2
|p|2 + V (q) (6)

is the new Hamiltonian function, and the matrices L(q),
N(q, p) and Gc(q) are as follows

L(q) = S(q)T−1(q), (7)

N(q, p) =

n∑
i=1

∇qi(T−>S>)pe>i ST
−1

−
n∑
i=1

(ST−1)>eip
>∇>qi(T

−>S>)

∣∣∣∣∣
p=Φ−1p

(8)

Gc(q) = T−>(q)S>(q)G(q). (9)
Proof: We first write the Hamiltonian H in (2) as a

function of the new momenta p̃:

H(q,p)

∣∣∣∣∣
p=Φ−1p̃

=
1

2
p̃>Φ−>M−1Φ−1p̃+ V (q)

=
1

2
p̃>
[
In−k 0

0 A>M−1A

]−1

p̃

+ V (q) = H̃(q, p̃). (10)

The constraint (3) in the new momenta leads to

A>M−1p = A>Φ>Φ−>M−1Φ−1p̃ = A>Φ>∇p̃H̃
=

[
0 A>M−1A

]
∇p̃H̃ = 0, (11)

which implies that ∇poH̃ = 0. Then, it follows that the
Hamiltonian (2) in the new coordinates is (6).

We can then write the dynamics of q as follows:

q̇ = M−1p = Φ>Φ−>M−1Φ−1p̃ = Φ>∇p̃H̃
=

[
ST−1 M−1A

]
∇p̃H̃

= ST−1∇pW (q, p) = L∇pW (q, p), (12)

which is the state equation for q in (5).
We now write the constraint forces in (1) as a function of

the states to build the dynamics (5). We compute the time
derivative of A>q̇ = 0, namely,

d

dt
[A>M−1p] = ∇q(A>M−1p)q̇ +∇p(A>M−1p)ṗ

0 = ∇q(A>M−1p)∇pH +A>M−1

[−∇qH +Aλ+G(u+ d)] ,

from which we obtain

λ = −(A>M−1A)−1
[
∇q(A>M−1p)M−1p

−A>M−1∇qH +A>M−1G(u+ d)
]
. (13)



The state equation for the new momentum po is as follows

ṗo =
d

dt
(A>M−1)p +A>M−1ṗ =

d

dt
(A>M−1)p

+ A>M−1 [−∇qH +Aλ+G(u+ d)]

=
d

dt
(A>M−1)p−A>M−1∇qH +ATM−1Aλ

+ A>M−1G(u+ d)

=
d

dt
(A>M−1)p−A>M−1∇qH

+
[
− d

dt
(A>M−1)p +A>M−1∇qH

− A>M−1G(u+ d)
]

+A>M−1G(u+ d) = 0,

which implies that there is no motion along the coordinates
po. The state equation for the new momentum variable p
becomes

ṗ =
d

dt
(T−>S>)p + T−>S>ṗ =

d

dt
(T−>S>)p

− T−>S>∇qH + T−>S>Aλ+ T−>S>G(u+ d)

=
d

dt
(T−>S>)p− T−>S>∇qH + T−>S>G(u+ d)

=

n∑
i=1

∇qi(T−>S>)e>i q̇p−
1

2
T−>S>∇q[p>M−1p]

− T−>S>∇qV (q) + T−>S>G(u+ d)

=

[
n∑
i=1

∇qi(T−>S>)pe>i ST
−1

−
n∑
i=1

(ST−1)>eip
>∇>qi(T

−>S>)

]
p=Φ−1p

∇pW

− T−>S>∇qW (q, p) + T−>S>G(u+ d)

= N(q, p)∇pW (q, p)− L>∇qW (q, p) +Gc(u+ d),

which is the state equation for p in (5). Then, the nonholo-
nomic dynamics (1) can be written in terms of q and p as
the Hamiltonian system (5).
We next use the transformed pH model for control design.

IV. CONTROL DESIGN FOR SMOOTH STABILISATION OF
AN EQUILIBRIUM MANIFOLD.

From Brockett’s necessary condition, it follows that for
NHMS it is impossible to stabilise equilibrium points asymp-
totically with a C1-control law. With such control, however,
it is possible to stabilise the system to an equilibrium
manifold—see for example [8], [4]. In this section, we
propose a control law to stabilise an equilibrium manifold
for NHMS with disturbances. This control law is robust
to unknown constant disturbances in the sense that the
convergence of the system to the target equilibrium manifold
is ensured despite the presence of this kind of disturbances.

We consider the problem of finding a smooth control law
that stabilises the system to an equilibrium manifold Ms =
{(q, p)|p = 0} for the system (1).

A. Assumptions

The following assumptions are made.
A1 The matrix Gc is invertible, which is satisfied if

rank(G) = n− k.

A2 Consider the partition of L = [L>1 , L
>
2 ]> in the system

(5), where the matrix L1 : Rn → R(n−k)×(n−k) and the
matrix L2 : Rn → Rk×(n−k). We further assume that
this partition of L is such that L1 is invertible.

If L1 is non-invertible, we can assume that there exists a
mapping π : Rn → Rn such that the coordinate transforma-
tion w = π(q) satisfies

ẇ = ∇qπ(q)L(q)
∣∣
q=π−1(w)

p = Q(w)p (14)

and the partition of Q = [Q>1 , Q
>
2 ]> is such that Q1

invertible. Then, the dynamics (5) in closed loop with the
control law

u = û+ v = G−1
c

[
L>∇qW − L>∇qπ∇wU

]
+ v, (15)

can be written in coordinates w as follows ẇ1

ẇ2

ṗ

 =

 0n−k 0 Q1

0 0k Q2

−Q>1 −Q>2 J

∇U+

 0
0
Gw

 (v+d),

(16)
where w = (w>1 , w

>
2 )>, with w1 ∈ Rn−k, w2 ∈ Rk,

Q1 : Rn → R(n−k)×(n−k) is a full rank matrix, and
Q2 : Rn → Rk×(n−k). The function U : R2n−k → R is the
new Hamiltonian defined as U(w, p) = W (q, p)|q=π−1(w),
J(w, p) = N(q, p)|q=π−1(w), and Gw = Gc(q)|q=π−1(w).

The assumption A2 is satisfied for mechanical systems that
can be written in canonical form. Indeed, for these systems
the matrix L1 is the identity matrix, therefore non-singular
[8], [11].

B. A Robust Passivity-Based Control

Proposition 4.1: Consider the transformed pH systems
(16) in closed loop with the control law

v = (R2 +R3)−1
{
− 2J>13∇w1

Vd − 2J>23∇w2
Vd

+ (2J −R2 −R3)J−1
13 (Q1p+R1∇w1Vd)

− d

dt
(J−1

13 Q1)p− J−1
13 Q1(−Q>∇wV + Jp)

− d

dt
(J−1

13 )R1∇w1
Vd − J−1

13 R1∇2
w1
VdQ1p

}
− z2,

(17)
ż2 = J>14∇w1

Vd + J>24∇w2
Vd

+ (R3 + J>)J−1
13 (Q1p+R1∇w1

Vd). (18)

The matrices J13, and J14 have dimension (n− k) ×
(n− k); J23 and J24 have dimension k × (n− k); R1 =
R>1 ≥ 0, R2 = R>2 > 0 and R3 = R>3 > 0 are parameters
of the controller, which satisfy

J13 = J14 = Q1Gc(R2 +R3)−1, (19)
J23 = J24 = Q2Gc(R2 +R3)−1. (20)



The matrices R2 and R3 are free design parameters, and the
matrix R1 has to satisfy the constraint

Q2Q
−1
1 (R1∇w1Vd) = 0. (21)

i) The closed-loop dynamics with

z1 := J−1
13 (Q1p+R1∇w1Vd) + z2 − d, (22)

takes the following pH form
ẇ1

ẇ2

ż1

ż2

=


−R1 0 J13 −J14

0 0k J23 −J24

−J>13 −J>23 J −R2 −J −R3

J>14 J>24 R3 + J> −R3 − J>

∇Wz

(23)
with Hamiltonian

Wz(w, z1, z2) =
1

2
|z1|2 +

1

2
|z2 − d|2 + Vd(w), (24)

where Vd(w) is chosen such that it has a minimum at a
desired state.
ii) The system has an (almost-globally) asymptotically stable
equilibrium manifold given by

Ms =

(w, z)

∣∣∣∣∣
∇>w1

VdR1∇w1
Vd = 0,

∇w1
Vd +Q−>1 Q>2 ∇w2

Vd = 0,
z1 = 0, z2 = d.

 .

Proof: The pH closed-loop system (23) results if the
matching conditions detailed in the following are satisfied.
i) The first row of the closed-loop (23) follows from the
equation of ẇ1 in (16) and the change of coordinates (22)
together with the condition J13 = J14.

From the matching the equations of ẇ2 in (16) and (23),
it follows that

J23z1 − J24z̃2 = Q2Q
−1
1

(
−R1∇w1

Vd + J13z1 − J14z̃2

)
,

where z̃2 := z2−d. This matching equation can be separated
into two conditions that must be satisfied jointly:

Q2Q
−1
1 (R1∇w1

Vd) = 0, (25)
J24 = J23 := Q2Q

−1
1 J14. (26)

Since the Hamiltonian function Wz has been adopted, the
matching equation (25) determines the total damping terms
that can be added to the proposed closed loop (23).

The control law is computed by matching the time deriva-
tive of the coordinate transformation (22) and the third row
of (23). Solving this matching equation for u it gives the
control law (17). A requirement for robustness is that the
control law is independent of the disturbance. This condition
is satisfied by choosing

J14 = Q1Gc(R2 +R3)−1. (27)

ii) Taking (24) as a Lyapunov candidate function and making
its time derivative along the solution of the system (23) gives

Ẇz = −∇>w1
VdR1∇w1Vd − z>1 Rzz1 − z̃>2 R3z̃2. (28)

Furthermore, the trajectories will converge to the largest
invariant set included in

S = {(w, z)|Ẇz = 0}

=

{
(w, z)

∣∣∣ ∇>w1
VdR1∇w1

Vd = 0,
z1 = 0, z2 = d,w2 ∈ Rk

}
.

From (23), we can conclude that the largest invariant set
in S is the manifold

Ms =

(w, z)

∣∣∣∣∣
∇>w1

VdR1∇w1Vd = 0,

∇w1
Vd +Q−>1 Q>2 ∇w2

Vd = 0,
z1 = 0, z2 = d.

 . (29)

This proves that the equilibrium manifold Ms of the target
dynamics (23) is asymptotically stable.

Note that the control law is given by (17)-(18), and infor-
mation about the disturbance d is not required to implement
this control law.

The condition (21) constraints the damping injection in
coordinates w. Indeed, if we choose the desired potential
energy Vd, then R1 is selected to satisfy (21). The functions
Vd and R1 characterise the equilibrium manifold.

V. CASE STUDY - WHEELED ROBOT

In this section, we consider an application of the proposed
control design and present simulations to assess the perfor-
mance of the proposed control system. As an example we
consider the configuration of an autonomous wheeled robot
shown in Figure 1. The two front wheels with axis through
the point P are traction wheels with independent torque
control, and the two rear wheels are free castor wheels.
The robot has a mass m and the centre of mass is at the
point C. The mass of the rear wheels and their friction about
the vertical axis of rotation are considered negligible. Under
these assumptions, the motion control of the robot can be
considered analogous to that of the classic Chaplygin sleigh,
proposed by [6]—see also the model in [2].

x

y

✓

l

C

P

Fig. 1. Wheeled robot moving on the horizontal plane. The two front
weeks with axis through the point P are traction wheels with independent
torque control. The two rear wheels are free castor wheels.

The dynamics of the robot can be written in the from
(1) using coordinates q = [x, y, θ]>, where x and y are
the cartesian coordinates of the point P . The Hamiltonian
function is

H(q,p) =
1

2
p>M−1(q)p (30)

and the mass matrix is



M(q) =

 m 0 −ml sin(q3)
0 m ml cos(q3)

−ml sin(q3) ml cos(q3) Ic +ml2

 ,
(31)

where Ic is the moment of inertia about C. The nonholo-
nomic constraint (3) takes the form

[
− sin(q3) cos(q3) 0

]  q̇1

q̇2

q̇3

 = 0. (32)

We simulate the robot in close loop with the control law (17).
The parameters considered for the simulation are m = 1 Kg,
l = 0.2 m, Ic = 0.5 Kg m2. We consider a control force
in the longitudinal direction and a control torque about the
vertical axis through P . Then,

G(q) =

 cos(q3) 0
sin(q3) 0

0 1

 . (33)

The matrices S and T are as follows

S(q) =

 0 cos(q3)
0 sin(q3)
1 0

 , T = diag(
√
Ic +ml2,

√
m).

(34)
With these, we obtain the port-Hamiltonian form (5). As-
sumption A3 is not trivially satisfied since the sub-matrix
L1 of L is not invertible

L(q) =

 0 cos(q3)√
m

0 sin(q3)√
m

1√
Ic+ml2

0

 . (35)

However, the change of coordinates w1

w2

w3

 =

 0 0 1
cos(q3) sin(q3) 0
− sin(q3) cos(q3) 0

 q1

q2

q3

 (36)

readily satisfies A3 with v̂ = 0. Indeed, the dynamics of the
Chaplyging sleigh can be written in the form (16) with

Q(w) =


1√

Ic+ml2
0

w3√
Ic+ml2

1√
m

−w2√
Ic+ml2

0

 , (37)

and since there is no potential energy, the control law û in
(15) is zero.

The objective is to asymptotically stabilise the system to
the target manifold Mt = {(x, y, θ)

∣∣x cos θ∗ + y sin θ∗ = 0
and θ = θ∗} with z1 = 0 and z2 = d, where we choose
the desired heading angle θ∗. In our simulations, we choose
θ∗ = −π/2, and then the manifold Mt is the x-coordinate
axis. The control law is

u =

[
− 2
mρ21

−r1ρ1m

− 2
Ipρ22

2r1
√
m3ρ

Ip
p1 − 2w3

ρ2

] [
kw1

w̃1

kw1
w̃2

]
+ z2

+

[
−a1p1 −

mr1kw1
w3√

Ip
−a2

−
√
Ipρ2 a3p1

] [
p1

p2

]
+

[
0

2w2

Ipρ22

]
kw3

w̃3,

ż2 =

[
1

mρ1
r1r31ρ1m

1
Ipρ2

w3 − r1
√
m3ρ1
Ip

p1

] [
kw1

w̃1

kw1
w̃2

]

+

[ √
m√
Ip
ρ2p1

√
mr31ρ1√

Ipr32ρ2 −m
Ip
ρ1p1

] [
p1

p2

]
+

[
0
−w2

Ipρ2

]
kw3

w̃3,

where w̃i = wi − w∗i for i = 1, 2, 3; R1 = diag(0, r1),
R2 = diag(r21, r22), R3 = diag(r31, r32), Ip = Ic + ml2,
ρ1 = r21 +r31, ρ2 = r22 +r32, ρ = ρ1/ρ2, a1 = 2

√
m

ρ
√
Ip

+ m
Ip

,

a2 =
√
m

(r22+r32)+r1kw2
ρ

ρ , a3 = 2mρ
Ip

+
√
m√
Ip

. The potential

energy is Vd = 1
2 (w − w∗)>Kw(w − w∗), with Kw =

diag(kw1
, kw2

, kw3
). The parameters of the controller are

as follows: Kw = diag(50, 10, 10) and w∗ = (−π/2, 0, 0),
R1 = diag(0, 0.1), R2 = diag(1, 5), R3 = diag(5, 5).

The system is simulated from different initial conditions
(ic), and the state converges to the manifold Mt even under
the action of unknown disturbances as shown in Figure 2
and 3. The control inputs and the states of the controller
are shown in Figure 4, which details how the controller
states produce the input needed to compensate the unknown
disturbances. The trajectories of the system in the xy-plane
are shown in Figure 5. In this figure, the system starts in
different positions x and y and heading angles θ and converge
to axis x with the desired heading (dashed line). Then, the
disturbances shift the target position of the system, and the
controller drives again the system to the target manifoldMt.

The line, which is a projection of the manifold onto the x -
y plane, is motivated by an application in agriculture where a
robot used for weed and crop management is deployed and
must position itself at the end of the paddock in order to
commence the operation.

VI. CONCLUSIONS

We propose a control design based on IDA-PBC for
smooth stabilisation of mechanical systems in pH form
subject to nonholonomic constraints and disturbances. The
continuous control law stabilises the system to an equilibrium
manifold, and the closed loop is robust to unknown constant
disturbances in the sense that the equilibrium manifold does
not change due to the presence of disturbances—integral
action. A wheeled robot is used an example to illustrate the
design and evaluate its performance. By adopting various
functions, one can change the shape of the target namifold. A
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Fig. 2. Time histories of the angle θ and momenta p1 and p2 from different
initial conditions.
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Fig. 4. Time histories of force and torque control inputs and controller
states.
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Fig. 5. Trajectories of the wheeled robot in the x-y plane. A solid robot
with a cross indicates the initial position, and the dashed one indicates the
position at the target manifold before the disturbances.

natural extension of the results in this paper, to be considered
as part of future work is the study of stabilisation of the
formation of multiple vehicles with a particular prescribed
final distribution on the manifold. Such application may
require non-smooth control laws.

REFERENCES

[1] A. Astolfi and W. Schaufelberger, State and output feedback stabiliza-
tion of multiple chained systems with discontinuous control. Systems
& Control Letters, Vol 32, No 1, pp. 49–56, 1997.

[2] A. Astolfi, R. Ortega and A. Venkatraman: A globally exponentially
convergent immersion and invariance speed observer for n–degrees
of freedom mechanical systems with nonholonomic constraints, Auto-
matica, Vol. 46, No 1, pp. 182-189, 2010.

[3] G. Blankenstein, Matching and stabilization of constrained systems. In
Proceedings of the International Symposium on Mathematical Theory
of Networks and Systems, Notre Dame, Indiana, USA, 2002.

[4] A. Bloch. Nonholonomic Mechanics and Control, Springer-Verlag,
2003.

[5] A.V. Borisov and I.S. Mamaev, On the history of the development of
the nonholonomic dynamics. Regular and Chaotic Dynamics, Vol 7,
No 1, pp. 43-47, 2002.

[6] S. A. Chaplygin, On the Theory of Motion of nonholonomic systems.
The reducing-multiplier theorem (original in Russian). Matematich-
eskii Sbornik, Vol 28, No 2, pp. 303–314, 1911.

[7] J. Cortes. Geometric, Control and Numerical Aspects of Nonholonomic
Systems, Springer-Verlag, 2002.

[8] A. De Luca and G. Oriolo, Modeling and control of nonholonomic
mechanical systems. Kinematics and Dynamics of Multi-Body Systems,
J. Angeles and A. Kecskemethy Eds., Springer-Verlag, Ch 7, pp. 277–
342, 1995.

[9] A. Donaire and S. Junco, On the addition of integral action to port-
controlled Hamiltonian systems. Automatica, Vol 45, No 8, 2009, pp.
1910–1916.

[10] A. Donaire and T. Perez, Dynamic positioning of marine craft using
port-Hamiltonian framework. Automatica, Vol 48, No 5, 2012, pp.
851–856.

[11] K. Fujimoto, S. Sakao and T. Sugie, Passivity based control of a class
of Hamiltonian systems with nonholonomic constraints. Automatica,
Vol 48, No 12, pp. 3054–3063, 2012.

[12] D. Greenwood. Advanced Dynamics, Cambridge University Press,
2003.

[13] I. Kolmanovsky and N. H. McClamroch, Developments in nonholo-
nomic control problems. IEEE Control Systems Magazine, Vol. 15, No
6, pp. 20-36, 1995.

[14] C. Lanczos. The Variational Principle of Mechanics, University of
Toronto Press, 1960.

[15] R. Ortega and E. Garcia-Canseco, Interconnection and damping as-
signment passivity-based control: A survey. European Journal of
Control, Vol 10, pp. 432-450, 2004.

[16] R. Ortega and J. G. Romero, Robust integral control of port-
Hamiltonian systems: The case of non-passive outputs with unmatched
disturbances. Systems & Control Letters , Vol 61, No 1, pp. 11–17,
2012.

[17] J. G. Romero, A. Donaire and R. Ortega, Robustifying energy shaping
control of mechanical systems. System & Control Letters, Vol 62, No
9, pp. 770–780, 2013.

[18] J. G. Romero, D. Navarro-Alarcon and E. Panteley, Robust globally ex-
ponentially stable control for mechanical systems in free/constrained-
motion tasks. In Proceedings of the IEEE Conference on Decision and
Control, Firenze, Italy, 2013.

[19] I. Sarras, On the stabilisation of Nonholonomic mechanical systems
via immersion and invariance. In Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011.

[20] R. Murray and S. Sastry, Nonholonomic motion planning: Sterring
using sinusoids. IEEE Transactions on Automatic Control, Vol. 38,
No. 5, pp. 700–716, 1993.

[21] A. van der Schaft and B. Maschke, The Hamiltonian formulation of
nonholonomic mechanical systems. Reports on Mathematical Physics,
Vol. 34, No. 2, pp. 225–232, 1994.

[22] A. Venkatraman, R. Ortega, I. Sarras and A. van der Schaft, Speed
observation and position feedback stabilization of partially linearizable
mechanical systems, IEEE Transactions on Automatic Control, Vol. 55,
No. 5, pp. 1059–1074, 2010.


