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I. INTRODUCTION

Time delays are a non-negligible phenomenon in many engineering applications, such as networked control systems, biological systems or chemical processes [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF]. In particular, the presence of time delays does often have a significant impact on stability properties of equilibria of a system. Hence, guaranteeing robustness with respect to time delays is of paramount importance in a large variety of applications.

The main motivation for the present work is the analysis of the effect of time delays on the operation of microgrids (µGs). The µG is an emerging concept in the context of electrical networks with large shares of renewable distributed generation (DG) units [START_REF] Hatziargyriou | Microgrids[END_REF]. µGs have been identified as a key component in future power systems [START_REF] Hatziargyriou | Microgrids[END_REF]. In short, a µG is a locally controllable subset of a larger electrical grid and is composed of several DG units, storage devices and loads [START_REF] Hatziargyriou | Microgrids[END_REF].

A key feature of such grids is that they can be operated either in grid-connected or in islanded mode. The latter operation mode increases the reliability of power supply, as it permits to run the µG completely isolated from the main power system.

In conventional power systems, most generation units are interfaced to the grid via synchronous generators (SGs). In contrast, most renewable DG units are connected to the network via AC inverters. The latter are power electronic devices, which possess significantly different physical properties from SGs [START_REF] Green | Control of inverter-based micro-grids[END_REF]. Hence, new control schemes for networks with large shares of inverter-interfaced units are required [START_REF] Green | Control of inverter-based micro-grids[END_REF].

A widely-promoted control scheme to operate inverterinterfaced DG units in µGs is droop control [START_REF] Guerrero | Advanced control architectures for intelligent microgrids -part I: Decentralized and hierarchical control[END_REF]. This is a decentralized proportional control, the main objectives of which are stability and power sharing. For stability analysis of droop-controlled µGs, it is customary to model inverterinterfaced DG units as ideal controllable voltage sources. With this model conditions for stability of droop-controlled µGs have been derived, e.g., in [START_REF] Simpson-Porco | Synchronization and power sharing for droop-controlled inverters in islanded microgrids[END_REF]- [START_REF] Münz | Voltage and angle stability reserve of power systems with renewable generation[END_REF].
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In a practical setup, the droop control scheme is applied to an inverter by means of digital discrete time control. Digital control usually introduces additional effects such as clock drifts [START_REF] Schiffer | Droop-controlled inverter-based microgrids are robust to clock drifts[END_REF] and time delays [START_REF] Maksimovic | Small-signal discrete-time modeling of digitally controlled PWM converters[END_REF], [START_REF] Nussbaumer | Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[END_REF], which may have a deteriorating impact on the system performance. According to [START_REF] Nussbaumer | Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[END_REF], the main reasons for the appearance of time delays are 1) sampling of control variables, 2) calculation time of the digital controller and 3) generation of the pulse-widthmodulation (PWM) to determine the switching signals for the inverter. This fact has not been considered in the previous work [START_REF] Simpson-Porco | Synchronization and power sharing for droop-controlled inverters in islanded microgrids[END_REF]- [START_REF] Münz | Voltage and angle stability reserve of power systems with renewable generation[END_REF] and in [START_REF] Efimov | ISS of multistable systems with delays: application to droop-controlled inverter-based microgrids[END_REF] only for the special case of a µG composed of two inverters. We refer the reader to, e.g., [START_REF] Nussbaumer | Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[END_REF] for further details.

With regards to clock drifts, it is shown in [START_REF] Schiffer | Droop-controlled inverter-based microgrids are robust to clock drifts[END_REF] that stability of droop-controlled µGs is robust with respect to constant unknown clock drifts. Therefore, this phenomenon is neglected in the present paper. Instead, we focus on the impact of time delays on stability of droop-controlled µGs. To this end, and following our previous work [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF], we represent the µG as a port-Hamiltonian (pH) system with delays. The main advantage of a pH representation is that the Hamiltonian usually is a natural candidate Lyapunov function.

Stability analysis of pH systems with delays has been subject of previous research [START_REF] Pasumarthy | On stability of time delay Hamiltonian systems[END_REF]- [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF]. The main motivation of the aforementioned work is a scenario in which several pH systems are interconnected via feedback paths which exhibit a delay. This setup yields a closed-loop system with skew-symmetric interconnections, which can be split into non-delayed skew-symmetric and delayed skew-symmetric interconnections. However, the model of a droop-controlled µG with delays derived in this work is not comprised in the class of pH systems studied in [START_REF] Pasumarthy | On stability of time delay Hamiltonian systems[END_REF]- [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF], since the delays do not appear skew-symmetrically. In that regard, the class of systems considered in the present work generalizes the class studied in [START_REF] Pasumarthy | On stability of time delay Hamiltonian systems[END_REF]- [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF], see Section III for further details. Moreover, compared to [START_REF] Pasumarthy | On stability of time delay Hamiltonian systems[END_REF], [START_REF] Kao | Stability analysis of interconnected Hamiltonian systems under time delays[END_REF], [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF], we focus on stability in the presence of fast-varying delays, typically arising in the context of digital control [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF], [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF].

In summary, the main contributions of the present paper are (i) to introduce a model of a droop-controlled µG, in which the inverters exhibit an input delay, (ii) to represent this µG model as a pH system with delays, (iii) to provide stability conditions for a class of pH systems with fast-varying delays via the Lyapunov-Krasovskii (LK) method, (iv) to illustrate the utility of the derived conditions on an exemplary µG.

In addition, we provide an estimate of the region of attraction of a non-delayed µG as an independent result. To the best of our knowledge, there are no available analytic conditions for estimating the region of attraction of µGs and only very few for power systems [START_REF] Münz | Region of attraction of power systems[END_REF].

Notation. We define the sets n := {1, 2, . . . , n}, R ≥0 := {x ∈ R|x ≥ 0}, R >0 := {x ∈ R|x > 0}, R <0 := {x ∈ R|x < 0}, Z ≥0 := {0, 1, 2, . . .} and S := [0, 2π). For a set V, let |V| denote its cardinality. For a set of, possibly unordered, positive natural numbers V = {l, k, . . . , n}, the short-hand i ∼ V denotes i = l, k, . . . , n. Let x := col(x i ) ∈ R n denote a vector with entries x i for i ∼ n, 0 n the zero vector, 1 n the vector with all entries equal to one, I n the n × n identity matrix, 0 n×n the n × n matrix with all entries equal to zero and diag(a i ), i ∼ n, an n × n diagonal matrix with diagonal entries a i ∈ R. Likewise, A = blkdiag(A i ) denotes a block-diagonal matrix with matrix entries A i . We employ the notation I n×mn = I n , . . . , I n ∈ R n×mn . Let x ∈ R n , then x denotes an arbitrary vector norm. For A ∈ R n×n , A > 0 means that A is symmetric positive definite. The lower-diagonal elements of a symmetric matrix are denoted by * . We denote by C[-h, 0] the space of continuous functions φ : [-h, 0] → R n . For x : R ≥0 → R n , we denote x t (σ i ) = x(t+σ i ), σ i ∈ [-h, 0]. Also, ∇f denotes the transpose of the gradient of a function f R n → R, ∇2 H its Hessian matrix, we employ the notation ∇ ḟ = d (∇f ) /dt and if f takes the form f = f (x(t -h)), x ∈ R n , we use the short-hand ∇f h = ∇f (x(t -h)).

II. MOTIVATING APPLICATION: DROOP-CONTROLLED µGS WITH HETEROGENEOUS DELAYS

A. Network model

We consider a Kron-reduced [START_REF] Kundur | Power system stability and control[END_REF] generic inverter-based µG in which loads are modeled by constant impedances. The network is composed of n ≥ 1 inverters and the set of network nodes is denoted by n. As done in [START_REF] Simpson-Porco | Synchronization and power sharing for droop-controlled inverters in islanded microgrids[END_REF], [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF], we assume that the line admittances are purely inductive. Then, two nodes i and k in the network are connected by a nonzero susceptance B ik ∈ R <0 . The set of neighbors of the i-th node is denoted by ni = {k ∈ n | B ik = 0}. We associate a timedependent phase angle δ i : R ≥0 → S to each node i ∈ n and use the common short-hand

δ ik := δ i -δ k , i ∈ n, k ∈ n.
Also, we make the frequent assumption, see, e.g., [START_REF] Simpson-Porco | Synchronization and power sharing for droop-controlled inverters in islanded microgrids[END_REF], that the voltage amplitudes V i ∈ R >0 at all nodes i ∈ n are constant. Then, the active power injection P i : S n → R of the i-th inverter is given by [START_REF] Kundur | Power system stability and control[END_REF] 1 

P i (δ 1 , . . . , δ n ) = G ii V 2 i + i∼ni a ik sin(δ ik ), (II.1)
where

a ik = |B ik |V i V k > 0 and G ii ∈ R ≥0 denotes the shunt conductance at the i-th node.
Finally, we assume that the µG is connected, i.e., that for all pairs (i, k) ∈ n × n, i = k, there exists an ordered sequence of nodes from i to k such that any pair of consecutive nodes in the sequence is connected by a power line represented by an admittance. This assumption is reasonable for a µG, unless severe line outages separating the system into several disconnected parts occur.

B. Inverter model with input delay

As outlined in Section I, inverter-based DG units usually exhibit an input delay originating from the fact that they are controlled via digital discrete time control [START_REF] Nussbaumer | Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[END_REF]. In general, not all inverters in a µG are identical with respect to their hardware and the implementation of the digital controls. Consequently, the delays are, in general, heterogeneous.

The delay induced by the digital control is typically composed of two main parts: a constant delay η ∈ R >0 originating from the calculation time of the control signal 2 and the PWM and an additional delay caused by the sampleand-hold function of control variables [START_REF] Nussbaumer | Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[END_REF]. Following [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF], we assume that the sampling intervals are bounded, i.e., t κ+1 -

t κ ≤ h s , κ ∈ Z ≥0 . Then, t κ+1 -t κ + η ≤ h s + η := h, (II.
2) where h denotes the maximum time interval between the time t κ -η, where the measurement is sampled and the time t κ+1 , where the next control input update arrives.

With these considerations, by following [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF] and the usual modeling of inverters, see [START_REF] Schiffer | Droop-controlled inverter-based microgrids are robust to clock drifts[END_REF], the inverter at the i-th node with input delay and zero-order-hold update characteristic with sampling instants t i,κ , can be represented by 3δi (t

) = u δ i (t i,κ -η i ), τ Pi Ṗ m i (t) = -P m i (t) + P i (t), t i,κ ≤ t < t i,κ+1 , κ ∈ Z ≥0 , (II.3)
where u δ i : R ≥0 → R is the control input, η i ∈ R >0 is a constant delay, P i is given by (II.1), P m i : R ≥0 → R is the measured active power and τ Pi ∈ R >0 is the time constant of the measurement filter. We assume that the inverters are controlled via the usual frequency droop control given by [START_REF] Guerrero | Advanced control architectures for intelligent microgrids -part I: Decentralized and hierarchical control[END_REF] u δ i (t) = ω d -k Pi (P m (t) -P d i ).

(II.4)

C. Closed-loop droop-controlled µG

As shown in [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF], the type of delay appearing in the open-loop system (II.3) results in a fast-varying delay, once the loop is closed. To see this, define h i (t) := t -t i,κ + η i , t i,κ ≤ t < t i,κ+1 . Then, combining (II.3) with (II.4), yields the closed-loop system

δi (t) = ω d -k Pi (P m (t -h i (t)) -P d i ), τ Pi Ṗ m i (t) = -P m i (t) + P i (t). (II.5) Note that (II.2) implies that η i ≤ h i (t) ≤ t i,κ+1 -t i,κ + η i ≤ hi and ḣi (t) = 1.
Via the affine state transformation [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF] 

δ i ω i = 1 0 0 -k Pi δ i P m i + 0 0 0 1 0 ω d + k Pi P d i ,
the system (II.5), (II.4) can be written as

δi (t) = ω i (t -h i (t)), τ Pi ωi (t) = -ω i (t) + ω d -k Pi P i (t)) -P d i .
(II.6)

It is convenient to introduce the notion of a desired synchronized motion. Definition 2.1: A solution col(δ s , ω s 1 n ) ∈ S n ×R n of the system (II.1), (II.6), i ∼ n, is a desired synchronized motion if ω s ∈ R >0 is constant and δ s ∈ Θ, where

Θ := δ ∈ S n |δ ik | < π 2 , i ∼ n, k ∼ ni , such that δ s ik = δ s i -δ s k are constant, i ∼ n, k ∼ ni , ∀t ≥ 0.
Note that along any synchronized motion,

i∼n ωi = 0 ⇒ ω s = ω d + i∼n P d i -G ii V 2 i i∼n 1 k P i ,
i.e., for each choice of parameters k Pi and P d i , the system (II.1), (II.6), i ∼ n, possesses a unique synchronization frequency, see [START_REF] Simpson-Porco | Synchronization and power sharing for droop-controlled inverters in islanded microgrids[END_REF], [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF]. We make the following natural powerbalance feasibility assumption, see [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF].

Assumption 2.2: The system (II.1), (II.6), i ∼ n, possesses a desired synchronized motion.

We denote the vector of phase angles by δ = col(δ i ) ∈ S n and the vector of frequencies ω i = δi by ω = col(ω i ) ∈ R n . Under Assumption 2.2, we introduce the error states

ω(t) := ω(t)-ω s 1 n ∈ R n , δ(t) := δ(0)-δ s (0)+ t 0 ω(τ )dτ ∈ R n .
Furthermore, by noting that the power flows (II.1) only depend upon angle differences, we express all angles relative to an arbitrarily chosen reference node, say node n, i.e., θ := C δ, C := I (n-1) -1 (n-1) .

For ease of notation, we define the constant θ n := 0, which is not part of the vector θ. In the reduced angle coordinates, the power flows (II.1) become P i ( δ(θ)) = k∼ni a ik sin(θ ik + δ s ik ).

(II.7)

By introducing c 1 := col(c 1i ) ∈ R n , c 1i := ω d -ω s +k Pi P d i , as well as the matrices K P = diag(k Pi ) ∈ R n×n , T P = diag(τ Pi ) ∈ R n×n , the error dynamics of (II.6), (II.7), i ∼ n, are given in the coordinates x := col(θ, ω) ∈ R (n-1) ×R n by θ(t) = C ωh ,

T P ω(t) = -ω(t) -K P P ( δ(θ)) + c 1 , (II.8) 
where ωh := col(ω i (t -h i )) ∈ C[-h, 0] n , h = max i∼n hi and P ( δ(θ)) = col(P i ( δ(θ))) ∈ R n with P i ( δ(θ)) given in (II.1). Note that the system (II.8) possesses an equilibrium point x s = 0 2n-1 , the asymptotic stability of which implies asymptotic convergence of all trajectories of the system (II.6), (II.7), i ∼ n, to the synchronized motion (up to a uniform shift of all angles). We are interested in the following problem. Problem 2.3: Consider the system (II.6), (II.7), i ∼ n with Assumption 2.2. Given hi , i ∼ n, derive conditions, such that the corresponding equilibrium point of (II.8) is (locally) asymptotically stable.

Note that it follows from Proposition 5.9 in [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF] that with Assumption 2.2 and for h i = 0, i ∼ n, i.e., the non-delayed version of (II.8), the equilibrium point x s = 0 2n-1 is locally asymptotically stable for any choice of T P , K P and P d .

III. A CLASS OF PH SYSTEMS WITH DELAYS

To address Problem 2.3 and by following the analysis in [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF], we note that with x = col(θ, ω) ∈ R n-1 ×R n the system (II.8) can be written as a perturbed pH system with delays ẋ = (J -R)∇H

+ i∼n T i (∇H hi -∇H), (III.1)
with Hamiltonian H : 1) , the (n-1+i, n-1+i)th entry of M i is one and all its other entries are zero.

R (n-1) × R n → R H(x) = n i=1 τ Pi 2k Pi ω2 i - 1 2 k∼ni a ik cos(θ ik + δ s ik ) - n-1 i=1 c 1i k Pi θ i , (III.2) interconnection matrix J = 0 (n-1)×(n-1) CK P T -1 P -CK P T -1 P ⊤ 0 n×n , damping matrix R = diag(0 (n-1) , K P (T -2 P )1 n ) and T i = J M i , where M i ∈ R (2n-1)×(2n-
Given this fact, it seems natural to analyze (II.8) by exploiting its pH structure (III.1). Hence, for our analysis, we consider a generic nonlinear time-delay system in perturbed Hamiltonian form

ẋ = (J (x) -R(x)) ∇H + m i=1 (T i (∇H hi -∇H)) , (III.3) with state vector x : R ≥0 → R n , m > 0 delays h i : R ≥0 → R >0 , h i (t) ∈ [0, hi ], hi ∈ R ≥0 , ḣi (t) = 1, Hamiltonian H : R n → R, matrices J (x) = -J (x) ⊤ ∈ R n×n , R(x) ≥ 0 ∈ R n×n ,
the entries of which depend smoothly on x, and

T i ∈ R n×n , i = 1, . . . m.
In [START_REF] Pasumarthy | On stability of time delay Hamiltonian systems[END_REF]- [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF], stability conditions have been derived for pH systems with time delays of the form

ẋ = (J (x) -R(x))∇H + m i=1 T i ∇H hi , (III.4)
where T i are arbitrary interconnection matrices and h i are time-varying delays. It is easily verified that the system (II.8) cannot be written in the form (III.4). Furthermore, the class of systems (III.4) is a special case of the class (III.3) considered in this paper. To see this, consider two pH systems

ẋ1 = (J 1 (x 1 ) -R 1 )∇H 1 + ζ 1 u 1 , y 1 = ζ ⊤ 1 ∇H 1 , ẋ2 = (J 2 (x 2 ) -R 2 )∇H 2 + ζ 2 u 2 , y 2 = ζ ⊤ 2 ∇H 2 (III.5)
and feedback interconnections u 2 = y 1 (t -h(t)), u 1 = y 2 (t -h(t)), (III.6) where h(t) is a transmission delay (uniform, for ease of presentation). Then, the resulting closed-loop system is of the form (III.3), i.e., ẋ = (J (x) -R)∇H + T 1 (∇H h -∇H) . In addition, consider a scenario in which the delay appears only in one of the feedback interconnections of (III.6), then the system (III.5), (III.6) also takes the form (III.3).

IV. DELAY-DEPENDENT STABILITY CONDITIONS FOR FAST-VARYING DELAYS

This section is dedicated to the stability analysis of pH systems with bounded fast-varying delays represented by (III.3). The employed approach is based on a strict LK functional. To streamline our main result, we note that

∇ Ḣ = ∇ 2 H (J -R - m i=1 T i )∇H + m i=1 T i ∇H hi (IV.1)
and make the assumptions below.

Assumption 4.1: The system (III.3) possesses an equilibrium point x s = 0 n ∈ R n . Assumption 4.2: Consider the system (III.3) with Assumption 4.1 and set h i = 0, i ∼ n. Then, the equilibrium point x s of the system (III.3) is (locally) asymptotically stable with Lyapunov function V 1 = H.

Our main result is as follows. Proposition 4.3: Consider the system (III.3) with Assumptions 4.1 and 4.2. Given hi ≥ 0, i = 1, . . . , m, if there exist n × n matrices Y > 0, R i > 0, S i > 0 and S 12,i , i = 1, . . . , m, such that  

Φ 11 Φ 12 Φ 13 * -S -R R -S ⊤ 12 * * Φ 33   < 0, (IV.2)
where R = blkdiag(R i ), S = blkdiag(S i ), S 12 = blkdiag(S 12,i ),

W = ∇ 2 H(J -R - m i=1 T i ), M = ∇ 2 HI n×nm , B = T ⊤ 1 (R 1 -S 12,1 ) . . . T ⊤ m (R m -S 12,m ) , Φ 11 = -R -0.5 m i=1 T i + m i=1 T ⊤ i + W ⊤ Y + Y W + m i=1 h2 i (T i W) ⊤ R i (T i W) + T ⊤ i (S i -R i )T i , Φ 12 = T ⊤ 1 S 12,1 . . . T ⊤ m S 12,m , Φ 13 = 0.5I n×nm + Y + m i=1 h2 i (T i W) ⊤ R i T i M + B, Φ 33 = blkdiag -2R i + S 12,i + S ⊤ 12,i + m i=1 h2 i (T i M) ⊤ R i (T i M) , (IV.3) and R S 12 * R ≥ 0 (IV.4)
are feasible in a neighborhood of x s , then the equilibrium x s is (locally) uniformly asymptotically stable for all fastvarying delays h i (t) ∈ [0, hi ], i = 1, . . . , m. Proof: Inspired by [START_REF] Kao | Stability analysis of interconnected Hamiltonian systems under time delays[END_REF], [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF], [START_REF] Fridman | On input-to-state stability of systems with time-delay: A matrix inequalities approach[END_REF], let h = max i∼n hi and consider the LK functional

V : C[-h, 0] n → R, V = V 1 + V 2 + m i=1 (V 3i + V 4i ) , V 1 = H, V 2 = ∇H ⊤ Y ∇H, V 3i = hi 0 -hi t t+φ σ i (s)dsdφ, V 4i = t t-hi (T i ∇H(s)) ⊤ S i (T i ∇H(s)) ds, (IV.5)
where

σ i (s) = (T i ∇ Ḣ(s)) ⊤ R i (T i ∇ Ḣ(s)), i = 1, . . . , m.
Under the made assumptions H is (locally) positive definite around x s and ∇H| x s = 0 n , which implies that V is an admissible LK functional for the system (III.3) with equilibrium point

x s . Let ζ ∈ R (2m+1)n , ζ = col(∇H, T 1 ∇Hh 1 , ...,T m ∇Hh m , T 1 ∇H h1 , ...,T m ∇H hm ).
The time-derivative of V 1 is given by

V1 = ζ ⊤   -R -0.5(T ⊤ + T ) 0 n×mn 0.5I n×mn * 0 mn×mn 0 mn×mn * * 0 mn×mn   ζ,
where T = m i=1 T i . With ∇ Ḣ given by (IV.1) and W given in (IV.3), we have that

V2 = ζ ⊤   W ⊤ Y + Y W 0 n×mn Y M * 0 mn×mn 0 mn×mn * * 0 mn×mn   ζ,
with M given in (IV.3). Furthermore,

V3i = h2 i σ i (s) -hi t t-hi σ i (s)ds,
where

σ i (s) = ζ ⊤   (T i W) ⊤ R i (T i W) 0 n×nm (T i W) ⊤ R i T i M * 0 nm×nm 0 nm×nm * * (T i M) ⊤ R i T i M   ζ,
with M given in (IV.3). By following [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF],

- t t-hi σ i (s)ds = - t-hi(t) t-hi σ i (s)ds - t t-hi(t) σ i (s)ds. (IV.6)
Suppose that the LMI (IV.4) is feasible. Applying Jensen´s inequality together with Lemma 1 in [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF], see also [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], to both right hand side terms in (IV.6) yields 4hi

t t-hi σ i (s)ds ≤ - e i1 e i2 ⊤ R i S 12,i * R i e i1 e i2 , i = 1, . . . , m, with e i1 = T i (∇H -∇H hi ) and e i2 = T i (∇H hi -∇Hh i ). Hence, m i=1 -hi t t- h σ i (s)ds ≤ ζ ⊤   - m i=1 (T ⊤ i R i T i ) Φ 12 B * -R R -S ⊤ 12 * * -2R + S 12 + S ⊤ 12   ζ,
where R, S, S 12 , B and Φ 12 are defined in (IV.3). In addition, V4i = (T i ∇H)

⊤ S i (T i ∇H) -T i ∇Hh i ⊤ S i T i ∇Hh i . Consequently, if V ≤ ζ ⊤   Φ 11 Φ 12 Φ 13 * -S -R R -S ⊤ 12 * * Φ 33   ζ,
where Φ 11 , Φ 12 , Φ 13 and Φ 22 are defined in (IV.3). Clearly, if (IV.2) is feasible, then V ≤ -ε x(t) 2 for some ε > 0.

The proof is completed by invoking the LK theorem, see, e.g., Theorem 1 in [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF] and arguments from [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF] for systems with piecewice-continuous delays. Remark 4.4: The conditions given in Proposition 4.3 are state-dependent. We note that, in many cases, the conditions can be conveniently implemented numerically via a polytopic approach [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF], [START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF]. This is also the procedure taken in Section V of the present paper to investigate stability of an equilibrium of the system (II.8).

(T i ∇ Ḣ(s)) ⊤ R i (T i ∇ Ḣ(s))ds, i = 1, . . . , m.
In particular, this could prove useful when considering a more complicated augmented LK functional, see [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF]. 

∼ = PV ∼ = PV ∼ = Wind ∼ = PV ∼ = PV ∼ = Bat ∼ = FC ∼ = PV ∼ = FC CHP ∼ = FC CHP 9a 9b 9c 10a 10b 10c
Fig. 1. Benchmark model adapted from [START_REF] Rudion | Design of benchmark of medium voltage distribution network for investigation of DG integration[END_REF] with 6 main buses and inverterinterfaced units of type: PV-Photovoltaic, FC-fuel cell, Bat-battery, FC CHP. PCC denotes the point of common coupling to the main grid. The sign ↓ denotes loads.

V. NUMERICAL EXAMPLE Proposition 4.3 is illustrated via a numerical example based on the inner ring of the islanded Subnetwork 1 of the CIGRE benchmark MV distribution network [START_REF] Rudion | Design of benchmark of medium voltage distribution network for investigation of DG integration[END_REF]. The network consists of eight main buses and is shown in Fig. 1. We assume that the generation sources at buses 9b, 9c, 10b and 10c are operated with droop control, while the remaining sources are operated in PQ-mode [START_REF] Schiffer | Modeling of microgrids-from fundamental physics to phasors and voltage sources[END_REF]. See [START_REF] Rudion | Design of benchmark of medium voltage distribution network for investigation of DG integration[END_REF] or [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF] for a detailed discussion of the employed benchmark model. Furthermore, we associate to each inverter a power rating S N = [0.517, 0.353, 0.333, 0.023] pu, where pu denotes per unit values with respect to the base power S base = 3 MVA. Following Lemma 6.2 in [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF], we select P d i = 0.6S N i pu and k Pi = 0.2/S N i Hz/pu, i ∼ n. The low pass filter time constants are set to τ P = [0.1, 0.6, 0.8, 0.2] s.

A. Estimate of region of attraction of non-delayed system

As the conditions given in Proposition 4.3 are statedependent, to perform a numerical analysis, it is useful to obtain an estimate of a meaningful region of the state-space in which the conditions of Proposition 4.3 shall be satisfied. Here, we address this issue by deriving an estimate of the region of attraction of the non-delayed version of system (III.1). An extension to the delayed case may be of potential interest and we plan to address this aspect in the future.

Besides, estimating the region of attraction in µGs and power systems is an interesting and challenging problem on its own [START_REF] Münz | Region of attraction of power systems[END_REF]. In that regard, we remark that the result below is an independent result for the non-delayed model of (III.1).

Lemma 5.1: Consider the system (III.1) with Assumption 2.2 and hi = 0, i ∼ n. Fix a small positive number ϑ, such that |θ ik + δ s ik | < π 2 -ϑ, i ∼ n, k ∼ ni and an arbitrarily large positive number β ≫ ϑ. Estimates of the domain of attraction of the asymptotically stable equilibrium point x s = 0 2n-1 are the sublevel sets

Ω c = {x = col(θ, ω) ∈ R (2n-1) | H(x) ≤ c}, that are contained in D = {x ∈ R (2n-1) | x ≤ β, |θ ik + δ s ik | ≤ π 2 -ϑ, i ∼ n, k ∼ ni }.
Proof: Following [START_REF] Galaz | An energy-shaping approach to the design of excitation control of synchronous generators[END_REF], the claim is established by exploiting properties of sublevel sets of strongly convex closed functions together with the fact that from (III.1) it follows that Ḣ = -∇H ⊤ R∇H ≤ 0 ∀x ∈ R (2n-1) . (V.1) We start by noting that the continuity of H defined in (III.2) together with the fact that D is a closed set implies that H is a closed function on D, cf. A 3.3 of [START_REF] Boyd | Convex optimization[END_REF]. Hence, the sublevel sets of H on D are closed, cf. A 3.3 of [START_REF] Boyd | Convex optimization[END_REF].

Next, we establish boundedness of the sublevel sets of H contained in D. To this end, we recall the fact that if H in (III.2) is a strongly convex closed function on some set S ǫ ⊂ R (2n-1) , then the sublevel sets of H contained in S ǫ are bounded, cf. Chapter 9 of [START_REF] Boyd | Convex optimization[END_REF] 5 . Strong convexity of H on some set S ǫ ⊂ R (2n-1) is equivalent to ∇ 2 H ≥ ǫI (2n-1) for some positive real ǫ and all x ∈ S ǫ , cf. Chapter 9, [START_REF] Boyd | Convex optimization[END_REF]. For H given in (III.2), we have that

∇ 2 H = L(θ) 0 (n-1)×n * diag(τ Pi /k Pi ) ,
where L : R (n-1) → R (n-1)×(n-1) with l ii = k∼n a ik cos(θ ik + δ s ik ), l ip = -a ip cos(θ ip + δ s ip ), i ∼ n\{n}, p ∼ n\{n}. The image of L on the compact domain

D θ := {θ ∈ R n-1 | |θ ik + δ s ik | ≤ π 2 -ϑ, i ∼ n, k ∼ ni } (recall from Section II-C that θ n = 0 is a constant) is given by the matrix polytope L P = {L = q i=1 α i L i | α i ≥ 0, q i=1 α i = 1}
, where m ≤ n(n -1)/2 is the number of angle differences and q = 2 m the number of vertices L i of the polytope. Denote the n -1 eigenvalues of a matrix L ∈ L P by λ k , k = 1, . . . , n -1. It follows from Lemma 5.8 in [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF] that λ k > 0, k = 1, . . . , n -1, for any L ∈ L P . Following [START_REF] Wang | Necessary and sufficient conditions for stability of a matrix polytope with normal vertex matrices[END_REF], define the eigenvalue set of the matrix polytope L P by Λ(L P ) := {λ k (L), k = 1, . . . , n -1, L ∈ L P }. Denote the convex hull of all eigenvalues of all vertex matrices L i , i = 1, . . . , q, by conv{λ k (L i ), k = 1, . . . , n -1, i = 1, . . . , q}. Note that any L i , i = 1, . . . , q, is symmetric and, hence, normal. Then, by Theorem 1 in [START_REF] Wang | Necessary and sufficient conditions for stability of a matrix polytope with normal vertex matrices[END_REF], Λ(L P ) ⊂ conv{λ k (L i ), k = 1, . . . , n -1, i = 1, . . . , q}. Let γ := min λ k conv{λ k (L i ), k = 1, . . . , n -1, i = 1, . . . , q} > 0. Clearly, there also exists a constant 0 < ǫ < min γ, min i∼n τ P i k P i , such that ∇ 2 H ≥ ǫI (2n-1) , ∀col(θ, w) ∈ D. This proves that H is strongly convex on D, which implies that the sublevel sets

Ω c = {x ∈ R (2n-1) | H(x) ≤ c} contained in D are bounded.
Summarizing, we have shown that the sublevel sets of H contained in D are closed and bounded, hence compact. The proof is completed by noting that (V.1) implies that all sublevel sets of H contained in D are positively invariant.

B. Stability analysis

We set m = 4 and hi = h ∈ R >0 , i ∼ n, in the numerical analysis, i.e., we assume that all droop-controlled units exhibit a delay with the same upper bound. Furthermore, we recall the set D defined in Lemma 5.1 and note that for the considered scenario a feasible choice is ϑ = 10 -8 . The numerical implementation of the conditions (IV.2), (IV.4) is done using Yalmip [START_REF] Löfberg | YALMIP : a toolbox for modeling and optimization in MATLAB[END_REF]. To this end, we note that in the present case the variables θ i only appear as arguments of the cos-function in condition (IV.2). Therefore, it is fairly Fig. 2. Simulation example of a droop-controlled µG with fast-varying delays with hi = 0.04, i ∼ n. Trajectories of the power outputs relative to source rating P i /S N i , and the inverter frequencies f i = 2πω i in Hz of the controllable sources in the µG. The lines correspond to the following sources: FC CHP 9b, i = 1 '-', FC CHP 9c, i = 2 '--', battery 10b, i = 3 '+-' and FC 10c, i = 4 '* -'. straight-forward to adopt a polytopic approach, i.e., to represent the set {∇ 2 H(x) | x ∈ D} as ∇H 2 = q i=1 α i ∇ 2 H i , 0 ≤ α i ≤ 1, q i=1 α i = 1, where ∇ 2 H i denote the vertices of the polytope containing all instances that ∇ 2 H can take on the set D, see also the proof of Lemma 5.1. We remark that the region of attraction of the delayed system may, in general, not be identical to D, yet the feasibility of the conditions of Proposition 4.3 for all vertices ∇ 2 H i together with the positive definiteness of the LK functional (IV.5) ensures the existence of a compact positively invariant set for initial conditions x 0 close enough to x s and, thus, local asymptotic stability of x s . For the considered network, the number of nodes in the Kron-reduced network is 4. Hence, we have n(n -1)/2 = 6 angle differences and can describe the set {∇ 2 H(x) | x ∈ D} with q = 2 6 vertices. For the chosen set of parameters, the maximal admissible delay is h = 0.04.

C. Simulation example

Proposition 4.3 is illustrated via a simulation example. We note that the largest R/X ratio in the Kron-reduced network corresponding to that in Fig. 1 is 0.30. For HV transmission lines it is typically 0.31, see [START_REF] Schiffer | Conditions for stability of droop-controlled inverter-based microgrids[END_REF]. Thus, the assumption of dominantly inductive admittances is satisfied and the resistive part of the line admittances is neglected in the simulations. The results displayed in Fig. 2 show that the trajectories of the system (II.8) with hi = 0.04, i ∼ n, converge to a synchronized motion if the sufficient conditions (IV.2), (IV.4) are satisfied. Here, we have assumed constant sampling intervals h i,s = 2 • 10 -4 , see (II.2). With hi = 0.04, the maximum admissible delay in simulation is 1.4 hi . This indicates that the derived sufficient conditions are very effective for the system under investigation. We note that the conditions could be further improved by employing more complex LK functionals, e.g., by using ideas from [START_REF] Liu | Wirtinger's inequality and Lyapunov-based sampled-data stabilization[END_REF], [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF].

VI. CONCLUSIONS

Motivated by the problem of stability in droop-controlled inverter-based µGs with delays, we have provided sufficient delay-dependent conditions for stability of a class of pH systems. The conditions are derived via an LK functional and have proven to be effective in a practical example of a µG. Future work will extend the analysis to µGs with inverter-and SG-interfaced DG units, as well as to more detailed inverter and network models. Also, we seek to provide an estimate of the region of attraction of µGs with delays.

To simplify notation the time argument of all signals is omitted, whenever clear from the context.

Note that the delay η may also represent the dynamics of the internal control system of the inverter, which is not considered explicitly in the model (II.5). See[START_REF] Schiffer | Modeling of microgrids-from fundamental physics to phasors and voltage sources[END_REF] for a detailed model derivation of the non-delayed version of (II.5).

An underlying assumption to this model is that whenever the inverter connects an intermittent renewable generation source, e.g., a photovoltaic plant, to the network, it is equipped with some sort of storage (e.g. a battery). Thus, it can increase and decrease its power output within a certain range.

Note that instead of Jensen´s inequality, also Wirtinger´s inequality[START_REF] Aoues | Robust stability for delayed port-hamiltonian systems using improved wirtinger-based inequality[END_REF] could be employed to upper bound the terms hi t t-hi

Note that strong convexity is a sufficient, not a necessary condition for boundedness of sublevel sets[START_REF] Galaz | An energy-shaping approach to the design of excitation control of synchronous generators[END_REF],[START_REF] Boyd | Convex optimization[END_REF].