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Stability of a class of delayed port-Hamiltonian systems with application to

droop-controlled microgrids

Johannes Schiffer, Emilia Fridman, Romeo Ortega

Abstract— A class of port-Hamiltonian systems with delayed
interconnection matrices is considered. This class of systems
is motivated by the problem of stability in droop-controlled
microgrids with delays. Delay-dependent stability conditions
are derived via the Lyapunov-Krasovskii method. The stability
conditions are applied to an exemplary microgrid. The efficiency
of the results is illustrated via a simulation example.

I. INTRODUCTION

Time delays are a non-negligible phenomenon in many

engineering applications, such as networked control systems,

biological systems or chemical processes [1]. In particular,

the presence of time delays does often have a significant

impact on stability properties of equilibria of a system.

Hence, guaranteeing robustness with respect to time delays

is of paramount importance in a large variety of applications.

The main motivation for the present work is the analysis

of the effect of time delays on the operation of microgrids

(µGs). The µG is an emerging concept in the context of

electrical networks with large shares of renewable distributed

generation (DG) units [2]. µGs have been identified as a key

component in future power systems [2]. In short, a µG is a

locally controllable subset of a larger electrical grid and is

composed of several DG units, storage devices and loads [2].

A key feature of such grids is that they can be operated either

in grid-connected or in islanded mode. The latter operation

mode increases the reliability of power supply, as it permits to

run the µG completely isolated from the main power system.

In conventional power systems, most generation units are

interfaced to the grid via synchronous generators (SGs). In

contrast, most renewable DG units are connected to the

network via AC inverters. The latter are power electronic

devices, which possess significantly different physical proper-

ties from SGs [3]. Hence, new control schemes for networks

with large shares of inverter-interfaced units are required [3].

A widely-promoted control scheme to operate inverter-

interfaced DG units in µGs is droop control [4]. This is

a decentralized proportional control, the main objectives of

which are stability and power sharing. For stability analysis

of droop-controlled µGs, it is customary to model inverter-

interfaced DG units as ideal controllable voltage sources.

With this model conditions for stability of droop-controlled

µGs have been derived, e.g., in [5]–[7].
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In a practical setup, the droop control scheme is applied

to an inverter by means of digital discrete time control.

Digital control usually introduces additional effects such as

clock drifts [8] and time delays [9], [10], which may have a

deteriorating impact on the system performance. According

to [10], the main reasons for the appearance of time delays

are 1) sampling of control variables, 2) calculation time of

the digital controller and 3) generation of the pulse-width-

modulation (PWM) to determine the switching signals for

the inverter. This fact has not been considered in the previous

work [5]–[7] and in [11] only for the special case of a µG

composed of two inverters. We refer the reader to, e.g., [10]

for further details.

With regards to clock drifts, it is shown in [8] that stability

of droop-controlled µGs is robust with respect to constant un-

known clock drifts. Therefore, this phenomenon is neglected

in the present paper. Instead, we focus on the impact of

time delays on stability of droop-controlled µGs. To this end,

and following our previous work [6], we represent the µG

as a port-Hamiltonian (pH) system with delays. The main

advantage of a pH representation is that the Hamiltonian

usually is a natural candidate Lyapunov function.

Stability analysis of pH systems with delays has been

subject of previous research [12]–[15]. The main motivation

of the aforementioned work is a scenario in which several

pH systems are interconnected via feedback paths which

exhibit a delay. This setup yields a closed-loop system with

skew-symmetric interconnections, which can be split into

non-delayed skew-symmetric and delayed skew-symmetric

interconnections. However, the model of a droop-controlled

µG with delays derived in this work is not comprised in the

class of pH systems studied in [12]–[15], since the delays

do not appear skew-symmetrically. In that regard, the class

of systems considered in the present work generalizes the

class studied in [12]–[15], see Section III for further details.

Moreover, compared to [12], [14], [15], we focus on stability

in the presence of fast-varying delays, typically arising in the

context of digital control [16], [17].

In summary, the main contributions of the present paper are

(i) to introduce a model of a droop-controlled µG, in which

the inverters exhibit an input delay, (ii) to represent this µG

model as a pH system with delays, (iii) to provide stability

conditions for a class of pH systems with fast-varying delays

via the Lyapunov-Krasovskii (LK) method, (iv) to illustrate

the utility of the derived conditions on an exemplary µG.

In addition, we provide an estimate of the region of

attraction of a non-delayed µG as an independent result. To

the best of our knowledge, there are no available analytic

conditions for estimating the region of attraction of µGs and

only very few for power systems [18].



Notation. We define the sets n̄ := {1, 2, . . . , n}, R≥0 :=
{x ∈ R|x ≥ 0}, R>0 := {x ∈ R|x > 0}, R<0 := {x ∈
R|x < 0}, Z≥0 := {0, 1, 2, . . .} and S := [0, 2π). For a set V,
let |V| denote its cardinality. For a set of, possibly unordered,

positive natural numbers V = {l, k, . . . , n}, the short-hand

i ∼ V denotes i = l, k, . . . , n. Let x := col(xi) ∈ R
n

denote a vector with entries xi for i ∼ n̄, 0n the zero

vector, 1n the vector with all entries equal to one, In the

n×n identity matrix, 0n×n the n×n matrix with all entries

equal to zero and diag(ai), i ∼ n̄, an n× n diagonal matrix

with diagonal entries ai ∈ R. Likewise, A = blkdiag(Ai)
denotes a block-diagonal matrix with matrix entries Ai. We

employ the notation In×mn =
[

In, . . . , In
]

∈ R
n×mn. Let

x ∈ R
n, then ‖x‖ denotes an arbitrary vector norm. For

A ∈ R
n×n, A > 0 means that A is symmetric positive

definite. The lower-diagonal elements of a symmetric matrix

are denoted by ∗. We denote by C[−h, 0] the space of

continuous functions φ : [−h, 0] → R
n. For x : R≥0 → R

n,
we denote xt(σi) = x(t+σi), σi ∈ [−h, 0]. Also, ∇f denotes

the transpose of the gradient of a function f : Rn → R, ∇2H
its Hessian matrix, we employ the notation ∇ḟ = d (∇f) /dt
and if f takes the form f = f(x(t − h)), x ∈ R

n, we use

the short-hand ∇fh = ∇f(x(t− h)).

II. MOTIVATING APPLICATION: DROOP-CONTROLLED

µGS WITH HETEROGENEOUS DELAYS

A. Network model

We consider a Kron-reduced [19] generic inverter-based

µG in which loads are modeled by constant impedances.

The network is composed of n ≥ 1 inverters and the set

of network nodes is denoted by n̄. As done in [5], [6], we

assume that the line admittances are purely inductive. Then,

two nodes i and k in the network are connected by a nonzero

susceptance Bik ∈ R<0. The set of neighbors of the i-th node

is denoted by n̄i = {k ∈ n̄ |Bik 6= 0}. We associate a time-

dependent phase angle δi : R≥0 → S to each node i ∈ n̄ and

use the common short-hand δik := δi − δk, i ∈ n̄, k ∈ n̄.
Also, we make the frequent assumption, see, e.g., [5], that

the voltage amplitudes Vi ∈ R>0 at all nodes i ∈ n̄ are

constant. Then, the active power injection Pi : Sn → R of

the i-th inverter is given by [19]1

Pi(δ1, . . . , δn) = GiiV
2
i +

∑

i∼n̄i

aik sin(δik), (II.1)

where aik = |Bik|ViVk > 0 and Gii ∈ R≥0 denotes the

shunt conductance at the i-th node.

Finally, we assume that the µG is connected, i.e., that

for all pairs (i, k) ∈ n̄ × n̄, i 6= k, there exists an

ordered sequence of nodes from i to k such that any pair

of consecutive nodes in the sequence is connected by a

power line represented by an admittance. This assumption

is reasonable for a µG, unless severe line outages separating

the system into several disconnected parts occur.

B. Inverter model with input delay

As outlined in Section I, inverter-based DG units usually

exhibit an input delay originating from the fact that they are

1To simplify notation the time argument of all signals is omitted, whenever
clear from the context.

controlled via digital discrete time control [10]. In general,

not all inverters in a µG are identical with respect to their

hardware and the implementation of the digital controls.

Consequently, the delays are, in general, heterogeneous.

The delay induced by the digital control is typically

composed of two main parts: a constant delay η ∈ R>0

originating from the calculation time of the control signal2

and the PWM and an additional delay caused by the sample-

and-hold function of control variables [10]. Following [1],

[16], we assume that the sampling intervals are bounded,

i.e., tκ+1 − tκ ≤ hs, κ ∈ Z≥0. Then,

tκ+1 − tκ + η ≤ hs + η := h̄, (II.2)

where h̄ denotes the maximum time interval between the time

tκ−η, where the measurement is sampled and the time tκ+1,
where the next control input update arrives.

With these considerations, by following [1], [16] and

the usual modeling of inverters, see [8], the inverter at

the i-th node with input delay and zero-order-hold update

characteristic with sampling instants ti,κ, can be represented

by3

δ̇i(t) = uδ
i (ti,κ − ηi),

τPi
Ṗm
i (t) = −Pm

i (t) + Pi(t),

ti,κ ≤ t < ti,κ+1, κ ∈ Z≥0,

(II.3)

where uδ
i : R≥0 → R is the control input, ηi ∈ R>0 is a

constant delay, Pi is given by (II.1), Pm
i : R≥0 → R is the

measured active power and τPi
∈ R>0 is the time constant

of the measurement filter. We assume that the inverters are

controlled via the usual frequency droop control given by [4]

uδ
i (t) = ωd − kPi

(Pm(t)− P d
i ). (II.4)

C. Closed-loop droop-controlled µG

As shown in [1], [16], the type of delay appearing in the

open-loop system (II.3) results in a fast-varying delay, once

the loop is closed. To see this, define hi(t) := t− ti,κ + ηi,
ti,κ ≤ t < ti,κ+1. Then, combining (II.3) with (II.4), yields

the closed-loop system

δ̇i(t) = ωd − kPi
(Pm(t− hi(t))− P d

i ),

τPi
Ṗm
i (t) = −Pm

i (t) + Pi(t).
(II.5)

Note that (II.2) implies that ηi ≤ hi(t) ≤ ti,κ+1− ti,κ+ηi ≤
h̄i and ḣi(t) = 1. Via the affine state transformation [6]

[

δi
ωi

]

=

[

1 0
0 −kPi

] [

δi
Pm
i

]

+

[

0 0
0 1

] [

0
ωd + kPi

P d
i

]

,

the system (II.5), (II.4) can be written as

δ̇i(t) = ωi(t− hi(t)),

τPi
ω̇i(t) = −ωi(t) + ωd − kPi

(

Pi(t))− P d
i

)

.
(II.6)

It is convenient to introduce the notion of a desired

synchronized motion.

2Note that the delay η may also represent the dynamics of the internal
control system of the inverter, which is not considered explicitly in the model
(II.5). See [20] for a detailed model derivation of the non-delayed version
of (II.5).

3An underlying assumption to this model is that whenever the inverter
connects an intermittent renewable generation source, e.g., a photovoltaic
plant, to the network, it is equipped with some sort of storage (e.g. a battery).
Thus, it can increase and decrease its power output within a certain range.



Definition 2.1: A solution col(δs, ωs
1n) ∈ S

n×R
n of the

system (II.1), (II.6), i ∼ n̄, is a desired synchronized motion

if ωs ∈ R>0 is constant and δs ∈ Θ, where

Θ :=
{

δ ∈ S
n
∣

∣ |δik| <
π

2
, i ∼ n̄, k ∼ n̄i

}

,

such that δsik = δsi − δsk are constant, i ∼ n̄, k ∼ n̄i, ∀t ≥ 0.

Note that along any synchronized motion,

∑

i∼n̄

ω̇i = 0 ⇒ ωs = ωd +

∑

i∼n̄

(

P d
i −GiiV

2
i

)

∑

i∼n̄
1

kPi

,

i.e., for each choice of parameters kPi
and P d

i , the system

(II.1), (II.6), i ∼ n̄, possesses a unique synchronization

frequency, see [5], [6]. We make the following natural power-

balance feasibility assumption, see [6].

Assumption 2.2: The system (II.1), (II.6), i ∼ n̄, possesses

a desired synchronized motion.

We denote the vector of phase angles by δ = col(δi) ∈ S
n

and the vector of frequencies ωi = δ̇i by ω = col(ωi) ∈ R
n.

Under Assumption 2.2, we introduce the error states

ω̃(t) :=ω(t)−ωs
1n∈R

n, δ̃(t) :=δ(0)−δs(0)+

∫ t

0

ω̃(τ)dτ ∈R
n.

Furthermore, by noting that the power flows (II.1) only

depend upon angle differences, we express all angles relative

to an arbitrarily chosen reference node, say node n, i.e.,

θ := Cδ̃, C :=
[

I(n−1) −1(n−1)

]

.

For ease of notation, we define the constant θn := 0, which

is not part of the vector θ. In the reduced angle coordinates,

the power flows (II.1) become

Pi(δ̃(θ)) =
∑

k∼n̂i

aik sin(θik + δsik). (II.7)

By introducing c1 := col(c1i) ∈ R
n, c1i := ωd−ωs+kPi

P d
i ,

as well as the matrices KP = diag(kPi
) ∈ R

n×n, TP =
diag(τPi

) ∈ R
n×n, the error dynamics of (II.6), (II.7), i ∼ n̄,

are given in the coordinates x :=col(θ, ω̃)∈R
(n−1)×R

n by

θ̇(t) = Cω̃h,

TP
˙̃ω(t) = −ω̃(t)−KPP (δ̃(θ)) + c1,

(II.8)

where ω̃h := col(ω̃i(t − hi)) ∈ C[−h, 0]n, h = maxi∼n̄ h̄i

and P (δ̃(θ)) = col(Pi(δ̃(θ))) ∈ R
n with Pi(δ̃(θ)) given in

(II.1). Note that the system (II.8) possesses an equilibrium

point xs = 02n−1, the asymptotic stability of which implies

asymptotic convergence of all trajectories of the system (II.6),

(II.7), i ∼ n̄, to the synchronized motion (up to a uniform

shift of all angles).

We are interested in the following problem.

Problem 2.3: Consider the system (II.6), (II.7), i ∼ n̄ with

Assumption 2.2. Given h̄i, i ∼ n̄, derive conditions, such

that the corresponding equilibrium point of (II.8) is (locally)

asymptotically stable.

Note that it follows from Proposition 5.9 in [6] that with

Assumption 2.2 and for hi = 0, i ∼ n̄, i.e., the non-delayed

version of (II.8), the equilibrium point xs = 02n−1 is locally

asymptotically stable for any choice of TP , KP and P d.

III. A CLASS OF PH SYSTEMS WITH DELAYS

To address Problem 2.3 and by following the analysis in

[6], we note that with x = col(θ, ω̃) ∈ R
n−1×R

n the system

(II.8) can be written as a perturbed pH system with delays

ẋ = (J −R)∇H +
∑

i∼n̄

Ti(∇Hhi
−∇H), (III.1)

with Hamiltonian H : R(n−1) × R
n → R

H(x)=

n
∑

i=1

( τPi

2kPi

ω̃2
i −

1

2

∑

k∼n̄i

aik cos(θik + δsik)
)

−

n−1
∑

i=1

c1i
kPi

θi,

(III.2)

interconnection matrix

J =

[

0(n−1)×(n−1) CKPT
−1
P

−
(

CKPT
−1
P

)⊤
0n×n

]

,

damping matrix R = diag(0(n−1),KP (T
−2
P )1n) and Ti =

JMi, where Mi ∈ R
(2n−1)×(2n−1), the (n−1+i, n−1+i)-

th entry of Mi is one and all its other entries are zero.

Given this fact, it seems natural to analyze (II.8) by

exploiting its pH structure (III.1). Hence, for our analysis, we

consider a generic nonlinear time-delay system in perturbed

Hamiltonian form

ẋ = (J (x)−R(x))∇H +

m
∑

i=1

(Ti(∇Hhi
−∇H)) , (III.3)

with state vector x : R≥0 → R
n, m > 0 delays hi : R≥0 →

R>0, hi(t) ∈ [0, h̄i], h̄i ∈ R≥0, ḣi(t) = 1, Hamiltonian

H : Rn → R, matrices J (x) = −J (x)⊤ ∈ R
n×n, R(x) ≥

0 ∈ R
n×n, the entries of which depend smoothly on x, and

Ti ∈ R
n×n, i = 1, . . .m.

In [12]–[15], stability conditions have been derived for pH

systems with time delays of the form

ẋ = (J (x)−R(x))∇H +

m
∑

i=1

Ti∇Hhi
, (III.4)

where Ti are arbitrary interconnection matrices and hi are

time-varying delays. It is easily verified that the system (II.8)

cannot be written in the form (III.4). Furthermore, the class of

systems (III.4) is a special case of the class (III.3) considered

in this paper. To see this, consider two pH systems

ẋ1 = (J1(x1)−R1)∇H1 + ζ1u1, y1 = ζ⊤1 ∇H1,

ẋ2 = (J2(x2)−R2)∇H2 + ζ2u2, y2 = ζ⊤2 ∇H2

(III.5)

and feedback interconnections

u2 = y1(t− h(t)), u1 = y2(t− h(t)), (III.6)

where h(t) is a transmission delay (uniform, for ease of

presentation). Then, the resulting closed-loop system is of the

form (III.3), i.e., ẋ = (J (x)−R)∇H + T1 (∇Hh −∇H) .
In addition, consider a scenario in which the delay appears

only in one of the feedback interconnections of (III.6), then

the system (III.5), (III.6) also takes the form (III.3).

IV. DELAY-DEPENDENT STABILITY CONDITIONS FOR

FAST-VARYING DELAYS

This section is dedicated to the stability analysis of pH

systems with bounded fast-varying delays represented by

(III.3). The employed approach is based on a strict LK

functional. To streamline our main result, we note that

∇Ḣ = ∇2H
(

(J −R−
m
∑

i=1

Ti)∇H +
m
∑

i=1

Ti∇Hhi

)

(IV.1)

and make the assumptions below.



Assumption 4.1: The system (III.3) possesses an equilib-

rium point xs = 0n ∈ R
n.

Assumption 4.2: Consider the system (III.3) with Assump-

tion 4.1 and set hi = 0, i ∼ n̄. Then, the equilibrium point

xs of the system (III.3) is (locally) asymptotically stable with

Lyapunov function V1 = H.

Our main result is as follows.

Proposition 4.3: Consider the system (III.3) with Assump-

tions 4.1 and 4.2. Given h̄i ≥ 0, i = 1, . . . ,m, if there

exist n × n matrices Y > 0, Ri > 0, Si > 0 and S12,i,
i = 1, . . . ,m, such that





Φ11 Φ12 Φ13

∗ −S −R R− S⊤
12

∗ ∗ Φ33



 < 0, (IV.2)

where

R = blkdiag(Ri), S = blkdiag(Si), S12 = blkdiag(S12,i),

W = ∇2H(J −R−

m
∑

i=1

Ti), M = ∇2HIn×nm,

B =
[

T ⊤
1 (R1 − S12,1) . . . T ⊤

m (Rm − S12,m)
]

,

Φ11 = −R− 0.5

(

m
∑

i=1

Ti +

m
∑

i=1

T ⊤
i

)

+W⊤Y + YW

+

m
∑

i=1

(

h̄2
i (TiW)

⊤
Ri (TiW) + T ⊤

i (Si −Ri)Ti

)

,

Φ12 =
[

T ⊤
1 S12,1 . . . T ⊤

m S12,m

]

,

Φ13 = 0.5In×nm +

(

Y +

m
∑

i=1

h̄2
i

(

(TiW)⊤RiTi
)

)

M+ B,

Φ33 = blkdiag
(

− 2Ri + S12,i + S⊤
12,i

)

+

m
∑

i=1

h̄2
i (TiM)

⊤
Ri (TiM) , (IV.3)

and
[

R S12

∗ R

]

≥ 0 (IV.4)

are feasible in a neighborhood of xs, then the equilibrium

xs is (locally) uniformly asymptotically stable for all fast-

varying delays hi(t) ∈ [0, h̄i], i = 1, . . . ,m.

Proof: Inspired by [14], [17], [21], let h = maxi∼n̄ h̄i

and consider the LK functional V : C[−h, 0]n → R,

V = V1 + V2 +

m
∑

i=1

(V3i + V4i) , V1 = H,

V2 = ∇H⊤Y∇H, V3i = h̄i

∫ 0

−h̄i

∫ t

t+φ

σi(s)dsdφ,

V4i =

∫ t

t−h̄i

(Ti∇H(s))
⊤
Si (Ti∇H(s)) ds,

(IV.5)

where σi(s) = (Ti∇Ḣ(s))⊤Ri(Ti∇Ḣ(s)), i = 1, . . . ,m.
Under the made assumptions H is (locally) positive definite

around xs and ∇H|xs = 0n, which implies that V is

an admissible LK functional for the system (III.3) with

equilibrium point xs. Let ζ ∈ R
(2m+1)n,

ζ=col(∇H, T1∇Hh̄1
, ...,Tm∇Hh̄m

, T1∇Hh1
, ...,Tm∇Hhm

).

The time-derivative of V1 is given by

V̇1 = ζ⊤





−R− 0.5(T ⊤ + T ) 0n×mn 0.5In×mn

∗ 0mn×mn 0mn×mn

∗ ∗ 0mn×mn



 ζ,

where T =
∑m

i=1 Ti. With ∇Ḣ given by (IV.1) and W given

in (IV.3), we have that

V̇2 = ζ⊤





W⊤Y + YW 0n×mn YM
∗ 0mn×mn 0mn×mn

∗ ∗ 0mn×mn



 ζ,

with M given in (IV.3). Furthermore,

V̇3i = h̄2
iσi(s)− h̄i

∫ t

t−h̄i

σi(s)ds,

where

σi(s)=ζ⊤





(TiW)
⊤
Ri (TiW) 0n×nm (TiW)

⊤
RiTiM

∗ 0nm×nm 0nm×nm

∗ ∗ (TiM)
⊤
RiTiM



ζ,

with M given in (IV.3). By following [17],

−

∫ t

t−h̄i

σi(s)ds=−

∫ t−hi(t)

t−h̄i

σi(s)ds−

∫ t

t−hi(t)

σi(s)ds. (IV.6)

Suppose that the LMI (IV.4) is feasible. Applying Jensen´s

inequality together with Lemma 1 in [17], see also [22], to

both right hand side terms in (IV.6) yields4

−h̄i

∫ t

t−h̄i

σi(s)ds ≤ −

[

ei1
ei2

]⊤[

Ri S12,i

∗ Ri

][

ei1
ei2

]

, i=1, . . . ,m,

with ei1 = Ti(∇H −∇Hhi
) and ei2 = Ti(∇Hhi

−∇Hh̄i
).

Hence,
m
∑

i=1

(

−h̄i

∫ t

t−h̄

σi(s)ds

)

≤

ζ⊤





−
∑m

i=1(T
⊤
i RiTi) Φ12 B

∗ −R R− S⊤
12

∗ ∗ −2R+ S12 + S⊤
12



 ζ,

where R, S, S12, B and Φ12 are defined in (IV.3). In addition,

V̇4i = (Ti∇H)
⊤
Si (Ti∇H)−

(

Ti∇Hh̄i

)⊤
Si

(

Ti∇Hh̄i

)

.

Consequently, if

V̇ ≤ ζ⊤





Φ11 Φ12 Φ13

∗ −S −R R− S⊤
12

∗ ∗ Φ33



 ζ,

where Φ11, Φ12, Φ13 and Φ22 are defined in (IV.3). Clearly,

if (IV.2) is feasible, then V̇ ≤ −ε‖x(t)‖2 for some ε > 0.
The proof is completed by invoking the LK theorem, see,

e.g., Theorem 1 in [17] and arguments from [24] for systems

with piecewice-continuous delays.

Remark 4.4: The conditions given in Proposition 4.3 are

state-dependent. We note that, in many cases, the conditions

can be conveniently implemented numerically via a polytopic

approach [1], [15]. This is also the procedure taken in

Section V of the present paper to investigate stability of an

equilibrium of the system (II.8).

4Note that instead of Jensen´s inequality, also Wirtinger´s
inequality [15] could be employed to upper bound the terms

−h̄i

∫
t

t−h̄i
(Ti∇Ḣ(s))⊤Ri(Ti∇Ḣ(s))ds, i = 1, . . . ,m. In particular,

this could prove useful when considering a more complicated augmented
LK functional, see [23].
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Fig. 1. Benchmark model adapted from [25] with 6 main buses and inverter–
interfaced units of type: PV–Photovoltaic, FC–fuel cell, Bat–battery, FC
CHP. PCC denotes the point of common coupling to the main grid. The
sign ↓ denotes loads.

V. NUMERICAL EXAMPLE

Proposition 4.3 is illustrated via a numerical example

based on the inner ring of the islanded Subnetwork 1 of

the CIGRE benchmark MV distribution network [25]. The

network consists of eight main buses and is shown in Fig. 1.

We assume that the generation sources at buses 9b, 9c, 10b

and 10c are operated with droop control, while the remaining

sources are operated in PQ-mode [20]. See [25] or [6] for

a detailed discussion of the employed benchmark model.

Furthermore, we associate to each inverter a power rating

SN = [0.517, 0.353, 0.333, 0.023] pu, where pu denotes per

unit values with respect to the base power Sbase = 3 MVA.

Following Lemma 6.2 in [6], we select P d
i = 0.6SN

i pu

and kPi
= 0.2/SN

i Hz/pu, i ∼ n̄. The low pass filter time

constants are set to τP = [0.1, 0.6, 0.8, 0.2] s.

A. Estimate of region of attraction of non-delayed system

As the conditions given in Proposition 4.3 are state-

dependent, to perform a numerical analysis, it is useful to

obtain an estimate of a meaningful region of the state-space

in which the conditions of Proposition 4.3 shall be satisfied.

Here, we address this issue by deriving an estimate of the

region of attraction of the non-delayed version of system

(III.1). An extension to the delayed case may be of potential

interest and we plan to address this aspect in the future.

Besides, estimating the region of attraction in µGs and

power systems is an interesting and challenging problem on

its own [18]. In that regard, we remark that the result below

is an independent result for the non-delayed model of (III.1).

Lemma 5.1: Consider the system (III.1) with Assump-

tion 2.2 and h̄i = 0, i ∼ n̄. Fix a small positive number

ϑ, such that |θik + δsik| <
π
2 − ϑ, i ∼ n̄, k ∼ n̄i and an

arbitrarily large positive number β ≫ ϑ. Estimates of the

domain of attraction of the asymptotically stable equilibrium

point xs = 02n−1 are the sublevel sets

Ωc = {x = col(θ, ω̃) ∈ R
(2n−1) |H(x) ≤ c},

that are contained in

D = {x ∈ R
(2n−1) | ‖x‖ ≤ β,

|θik + δsik| ≤
π

2
− ϑ, i ∼ n̄, k ∼ n̄i}.

Proof: Following [26], the claim is established by

exploiting properties of sublevel sets of strongly convex

closed functions together with the fact that from (III.1) it

follows that

Ḣ = −∇H⊤R∇H ≤ 0 ∀x ∈ R
(2n−1). (V.1)

We start by noting that the continuity of H defined in

(III.2) together with the fact that D is a closed set implies

that H is a closed function on D, cf. A 3.3 of [27]. Hence,

the sublevel sets of H on D are closed, cf. A 3.3 of [27].

Next, we establish boundedness of the sublevel sets of H
contained in D. To this end, we recall the fact that if H
in (III.2) is a strongly convex closed function on some set

Sǫ ⊂ R
(2n−1), then the sublevel sets of H contained in Sǫ

are bounded, cf. Chapter 9 of [27]5. Strong convexity of H
on some set Sǫ ⊂ R

(2n−1) is equivalent to ∇2H ≥ ǫI(2n−1)

for some positive real ǫ and all x ∈ Sǫ, cf. Chapter 9, [27].

For H given in (III.2), we have that

∇2H =

[

L(θ) 0(n−1)×n

∗ diag(τPi
/kPi

)

]

,

where L : R
(n−1) → R

(n−1)×(n−1) with lii =
∑

k∼n̄ aik cos(θik + δsik), lip = −aip cos(θip + δsip), i ∼
n̄\{n}, p ∼ n̄\{n}. The image of L on the compact domain

Dθ := {θ ∈ R
n−1 | |θik + δsik| ≤

π
2 − ϑ, i ∼ n̄, k ∼ n̄i}

(recall from Section II-C that θn = 0 is a constant) is given

by the matrix polytope LP = {L =
∑q

i=1 αiLi |αi ≥
0,
∑q

i=1 αi = 1}, where m ≤ n(n − 1)/2 is the number

of angle differences and q = 2m the number of vertices

Li of the polytope. Denote the n − 1 eigenvalues of a

matrix L ∈ LP by λk, k = 1, . . . , n − 1. It follows from

Lemma 5.8 in [6] that λk > 0, k = 1, . . . , n − 1, for any

L ∈ LP . Following [28], define the eigenvalue set of the

matrix polytope LP by Λ(LP ) := {λk(L), k = 1, . . . , n−
1, L ∈ LP }. Denote the convex hull of all eigenvalues of

all vertex matrices Li, i = 1, . . . , q, by conv{λk(Li), k =
1, . . . , n−1, i = 1, . . . , q}. Note that any Li, i = 1, . . . , q,
is symmetric and, hence, normal. Then, by Theorem 1 in

[28], Λ(LP ) ⊂ conv{λk(Li), k = 1, . . . , n − 1, i =
1, . . . , q}. Let γ := minλk

conv{λk(Li), k = 1, . . . , n −
1, i = 1, . . . , q} > 0. Clearly, there also exists a constant

0 < ǫ < min
(

γ,mini∼n̄

(

τPi

kPi

))

, such that ∇2H ≥

ǫI(2n−1), ∀col(θ, w̃) ∈ D. This proves that H is strongly

convex on D, which implies that the sublevel sets Ωc = {x ∈
R

(2n−1) |H(x) ≤ c} contained in D are bounded.

Summarizing, we have shown that the sublevel sets of

H contained in D are closed and bounded, hence compact.

The proof is completed by noting that (V.1) implies that all

sublevel sets of H contained in D are positively invariant.

B. Stability analysis

We set m = 4 and h̄i = h̄ ∈ R>0, i ∼ n̄, in the

numerical analysis, i.e., we assume that all droop-controlled

units exhibit a delay with the same upper bound. Furthermore,

we recall the set D defined in Lemma 5.1 and note that for

the considered scenario a feasible choice is ϑ = 10−8. The

numerical implementation of the conditions (IV.2), (IV.4) is

done using Yalmip [29]. To this end, we note that in the

present case the variables θi only appear as arguments of

the cos-function in condition (IV.2). Therefore, it is fairly

5Note that strong convexity is a sufficient, not a necessary condition for
boundedness of sublevel sets [26], [27].
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straight-forward to adopt a polytopic approach, i.e., to repre-

sent the set {∇2H(x) |x ∈ D} as ∇H2 =
∑q

i=1 αi∇
2Hi,

0 ≤ αi ≤ 1,
∑q

i=1 αi = 1, where ∇2Hi denote the vertices

of the polytope containing all instances that ∇2H can take on

the set D, see also the proof of Lemma 5.1. We remark that

the region of attraction of the delayed system may, in general,

not be identical to D, yet the feasibility of the conditions

of Proposition 4.3 for all vertices ∇2Hi together with the

positive definiteness of the LK functional (IV.5) ensures the

existence of a compact positively invariant set for initial

conditions x0 close enough to xs and, thus, local asymptotic

stability of xs. For the considered network, the number of

nodes in the Kron-reduced network is 4. Hence, we have

n(n − 1)/2 = 6 angle differences and can describe the set

{∇2H(x) |x ∈ D} with q = 26 vertices. For the chosen set

of parameters, the maximal admissible delay is h̄ = 0.04.

C. Simulation example

Proposition 4.3 is illustrated via a simulation example.

We note that the largest R/X ratio in the Kron-reduced

network corresponding to that in Fig. 1 is 0.30. For HV

transmission lines it is typically 0.31, see [6]. Thus, the

assumption of dominantly inductive admittances is satisfied

and the resistive part of the line admittances is neglected

in the simulations. The results displayed in Fig. 2 show

that the trajectories of the system (II.8) with h̄i = 0.04,
i ∼ n̄, converge to a synchronized motion if the sufficient

conditions (IV.2), (IV.4) are satisfied. Here, we have assumed

constant sampling intervals hi,s = 2 · 10−4, see (II.2). With

h̄i = 0.04, the maximum admissible delay in simulation is

1.4h̄i. This indicates that the derived sufficient conditions are

very effective for the system under investigation. We note that

the conditions could be further improved by employing more

complex LK functionals, e.g., by using ideas from [16], [23].

VI. CONCLUSIONS

Motivated by the problem of stability in droop-controlled

inverter-based µGs with delays, we have provided sufficient

delay-dependent conditions for stability of a class of pH

systems. The conditions are derived via an LK functional and

have proven to be effective in a practical example of a µG.

Future work will extend the analysis to µGs with inverter- and

SG-interfaced DG units, as well as to more detailed inverter

and network models. Also, we seek to provide an estimate

of the region of attraction of µGs with delays.
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