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Analysis and control of Andronov-Hopf oscillators
with applications to neuronal populations

Elena Panteley Antonio Lorı́a Ali El Ati

Abstract— One of the main motivations for analysis of
networks of nonlinear oscillators lies in the role these play
in undertanding synchronization and collective behavior in
chemical and biological systems. In medical systems such
networks are used for synchronization analysis of neuronal
populations and control design for synchrony suppression. In
this paper we use tools issued from nonlinear stability theory
and graph theory for analysis and control of heterogeneous
networked Andronov-Hopf oscillators.

I. INTRODUCTION

One of the key issues in synchronization analysis of net-
works of heterogeneous systems pertains to the emergence
of new collective phenomena and the manner how individual
dynamics, as well as the coupling architecture, affect the
arising synchronized dynamics. This is specially the case of
large networks of biological oscillators, such as circadian
rhythms, heart cells clocks and certain neuronal activity [18].
For instance, the cause-effect of neuronal synchronization and
certain brain disorders, such as Parkinson’s diseases, is well-
recognized –see [2]. To model and analyze these phenomena,
the Andronov-Hopf oscillator is often used, individually or
coupled in a network –[19], [6], [8].

From a theoretical viewpoint, issues related to the depen-
dence of the synchronization on the coupling strength among
the oscillators, and to the stability properties of the syn-
chronous dynamics, have attracted steadily increasing atten-
tion during the last few decades. In the case of heterogeneous
networks, the coupled Andronov-Hopf oscillators are only
frequency synchronized that is, the amplitudes of their oscilla-
tions do not coincide. Different tools, such as Dula’s theorem
and Lyapunov exponents, have been used in the literature
to study stability properties of the limit cycle for a single
Andronov-Hopf oscillator and for networks of such oscillators,
see e.g., [17]; in [13] Lyapunov type techniques were used to
study stability for a network of identical oscillators. However,
in the general case of heterogeneous networks of Andronov-
Hopf oscillations, finding the synchronization frequency is a
challenging and, to the best of our knowledge, open problem.

In this paper we give an approximate expression for this
frequency, which depends on the parameters of the individual
oscillators and on the matrix of the interconnections. Further-
more, we present results on synchronization of Andronov-
Hopf oscillators with different oscillating frequencies, under
diffusive coupling. The analysis that we carry out relies on
the framework of emergent dynamics, presented in [11] which
consists in two main parts: the stability analysis of the average
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dynamics and that of the synchronization manifold corre-
sponding to the synchronization errors.

The rest of the paper is organized as follows. In Section
II we describe the network model under study and give a
problem formulation. In Sections III and IV we transform
the network model in a new set of coordinates suitable for
our analysis purposes. In Section V we present our main
statements, followed by Section VI where we present a brief
case-study of controlled synchronization that includes some
numerical simulations. The paper is wrapped up with conclud-
ing remarks.

II. SYNCHRONISATION OF NETWORKED
ANDRONOV-HOPF OSCILLATORS

We consider a network composed of N heterogeneous dif-
fusively coupled Andronov-Hopf oscillators,

żi = f(zi, µi) + ui, i ∈ I := {1, . . . , N} (1)
f(zi, µi) := −|zi|2zi + µizi

where zi, ui ∈ C are, respectively, the state and the input of ith
oscillator, µi = µRi + iµIi ∈ C is a complex parameter which
defines the asymptotic behaviour of the ith oscillator. Hetero-
geneity of the network is due to the fact that the parameters
µi ∈ C are different for each oscillator.

We assume that the oscillators are interconnected via diffu-
sive coupling, i.e., for the i-th oscillator the input is given by

ui = −γ
[
di1(zi−z1)+di2(zi−z2) . . .+diN (zi−zN )

]
, (2)

where dij ≥ 0 for all i, j ∈ I and the scalar parameter γ > 0
corresponds to the coupling strength.

In the case of a homogeneous (i.e. µi = µj for all i, j ∈ I)
and symmetric network, all of the systems tend to oscillate
at the same frequency and with zero phase differences. This
effect, which is called complete network synchronization, may
be formulated as a problem of asymptotic stability of the
synchronization manifold

S = {zi ∈ C : z1 = z2 = . . . = zN} (3)

and it may be broached using analysis tools developed for
semi-passive, incrementally passive or incrementally input-
output stable systems –see [14], [5], [15] among others.

The behaviour of networks of systems with non-identical
models is more complex due to the fact that the synchro-
nization manifold S does not necessarily exist due to the
differences among the dynamics of the oscillators. According
to the approach introduced in [10] the behaviour of the oscil-
lators interconnected over the network (2), may be completely
characterized in terms of two properties: the stability of what



we call the emergent dynamics and, complementarily, the
asymptotic convergence of each unit’s motion to that of an av-
eraged system, called mean-field oscillator. The first property
is analyzed in terms of input to state stability of the average
system dynamics with respect to a decomposable compact
invariant set [12]. The second is captured by the stability of
the synchronization errors manifold

S = {e ∈ CN : e1 = e2 = . . . = eN = 0} (4)

where ei = zi − zm. However, due to the heterogeneity
of the network, perfect synchronization may not be expected
in general. Hence, we introduce the following definition of
practical stability of a set, which is similar to that of practical
stability of an equilibrium point –see [16].

Consider a parameterized system of differential equations

ẋ = f(x, ε), (5)

where x ∈ Rn and the function f : Rn → Rn is locally
Lipschitz and ε > 0 is a scalar parameter. We assume that
ε ∈ (0, ε◦]. For such a family we introduce the notion of global
practical uniform asymptotic stability with respect to closed,
not necessarily compact, sets.

Definition 1 For the system (5), we say that the closed set
A ⊂ Rn is practically uniformly asymptotically stable if there
exists a closed set D such that A ⊂ D ⊂ Rn and:

(1) the system is forward complete for all x◦ ∈ D;
(2) for any given δ > 0 and R > 0, there exist ε∗ ∈ (0, ε◦]

and a class KL function βδR such that, for all ε ∈ (0, ε∗]
and all x◦ ∈ D such that |x◦|A ≤ R, we have

|x(t, x◦, ε)|A ≤ δ + βδR(|x◦|A, t).

where |x|A := inf
y∈A
|x− y|.

III. NETWORK STRUCTURE

We assume that the network graph is connected and undi-
rected, moreover, for simplicity we assume that the intercon-
nections weights are real. Then, the corresponding Laplacian
matrix L has exactly one eigenvalue (say, λ1) equal to zero,
while others are positive, i.e., 0 = λ1 < λ2 ≤ . . . ≤ λN .
Furthermore, we denote the overall network’s state by z ∈
CN , z = [z1, . . . , zN ]>. Then, using (1) and the expression
for the diffusive coupling, (2), we see that the overall network
dynamics can be described by the equation

ż = F (z)− γLz, (6)

where the function F : CN → CN is given by

F (z) = [f(zi, µi)]i∈I . (7)

In order to analyze the behaviour of the solutions, z(t),
of (6) we proceed to rewrite the system dynamics in new
coordinates which exhibit the network emergent dynamics.
To that end, let us define the diagonal matrices M :=
diag(µ1, . . . , µN ) and C(z) := diag(|z1|2, . . . , |zN |2),
where |zi|2 := z̄izi and z̄i corresponds to the complex
conjugate of zi. Then, we may rewrite the system (6) as

ż = Aγz − C(z)z, (8a)
Aγ := M− γL. (8b)

Now, if we express the matrix Aγ as a “perturbed version”
of the Laplacian, i.e.,

Aγ = γ (−L+ εM) , ε :=
1

γ
,

then, for sufficiently large values of γ, we may use results
on perturbation theory for matrices (see, e.g., [4], [9]) to
characterize the eigenvalues and eigenvectors ofAγ in terms of
ε and the eigenvalues and eigenvectors of the Laplacian L. In
particular, [9, Theorem 2.1], as well as [4], allow to estimate
the eigenvalues of Aγ in terms of those of L, M and ε. In
general, a small perturbation of a matrix A is denoted by

Aε = A0 + εA1, ε→ 0 (9)

so, if we denote by λ1(A0) a simple eigenvalue of A0 and by
λ1ε its induced perturbation, then, for sufficiently small ε, we
may use the convergent power series representation

λε = λ1 + c1ε+ o(ε), (10)

in which the coefficient of the first-order term, c1ε, may be
characterized as

c1 =
w>A1v

w>v
(11)

wherew and v are normalized left and right eigenvectors of the
unperturbed matrix A0 associated to λ1 hence, |w| = |v| = 1.

On the other hand, Aγ ∈ CN×N is complex symmetric,
i.e., Aγ = A>γ and for any symmetric complex matrix A
there exists a complex orthogonal matrix T , i.e., satisfying
T−1 = T>, such that A = T>MT and matrix M has
the block-diagonal form M = diag(M1,M2,M3 . . .) where
each block Mk is either scalar, if the eigenvalue is simple, or
Mk = λkI + M̃k where M̃k ∈ Cq×q , if the eigenvalue has
multiplicity q, and the eigenvalues of M̃k equal to zero.

Now, for the system (8a) the matrix L is symmetric and
corresponds to a connected graph hence, it is diagonalizable,
the left and right eigenvectors of L that correspond to λ1(L) =
0 coincide and w = v = 1

N 1, where 1 := [1 · · · 1]>.

Thus, by assimilating Aε in (9) to (−L+ εM), and conse-
quently A0 to −L and A1 toM, we see from (11) that

c1 =
1

N
1>M1 =

1

N

N∑
i=1

µi.

We deduce that the eigenvalues of Aγ may be approximated
via (10) and

λ1(Aγ) = γ
[
− λ1(L) + c1ε+ o(ε)

]
=

1

N

N∑
i=1

µi +O
( 1

γ

)
.

We conclude that λ1(Aγ) is bounded as a function of γ and
it converges to 1

N

∑N
i=1 µi as the coupling strength γ → ∞.

Moreover, for all j ∈ {2, . . . , N} we have

λj(Aγ) = −γλj(L) + c1 +O(ε)

hence, the eigenvalues of Aj are proportional to γ and, since
<e[λj(L)] > 0, we have <e

[
λj(Aγ)

]
→ −∞ as γ →∞.

Now, we assume that the following hypothesis holds.
A1 There exists a number γ∗ > 0 and, for each γ ≥ γ∗, a
diagonal matrix Λγ ∈ CN×N , whose elements corresponds



to the eigenvalues of Aγ , and a complex orthogonal matrix
Vγ ∈ CN×N , i.e., such that

V >γ Vγ = IN , (12)

and the matrix Aγ defined in (8b) may be factorized as

Aγ = VγΛγV
−1
γ . (13)

Moreover, there exists k ≤ N such that <e[λk] >
max

j∈I ∩ j 6=k
<e[λj ].

Without loss of generality, in what follows we assume
that the eigenvalues of Aγ are ordered decreasingly, that is,
<e[λ1] > <e[λ2] ≥ . . . ≥ <e[λN ].

We remark that the ith column of the matrix Vγ corresponds
to the right eigenvector, denoted ϑri , associated to the ith
eigenvalue of Aγ . Correspondingly, we denote by ϑ`i the ith
left eigenvector, which corresponds to the ith row of V >γ . Due
to the orthogonality of Vγ , expressed by Eq. (12), we have

[ϑr ]2 := ϑ>r ϑr = 1. (14)

Another important feature of (8) is that it leads to a new
representation of the dynamics, which is reminiscent of that of
a homogeneous network. To see this, we proceed to decompose
the matrix Aγ as follows. According to Assumption A1, Λγ is
diagonal hence, let us introduce Λ1, Λ2 such that

Λ = Λ1 + Λ2, Λ1 := λ1(Aγ)IN , (15a)

Λ2 := diag (0, λ2(Aγ)− λ1(Aγ), . . . , λN (Aγ)− λ1(Aγ)).
Notice that if γ > γ∗, where γ∗ satisfies Assumption A1,

then (N − 1) non-zero eigenvalues of the matrix Λ2 have
negative real parts and, moreover, for all i ∈ {2, . . . , N} we
have <e[λi(Λ2)]→ −∞ as γ → +∞.

Using these notations we can rewrite the matrix Aγ as

Aγ = VγΛ1V
>
γ + VγΛ2V

>
γ = λ1(Aγ)I +D, (16)

where D = VγΛ2V
>
γ . The interest of the matrix D is that

it depends on the systems’ parameters µi but it inherits the
properties of the Laplacian matrix; indeed, in view of the
definition of Λ2 and Assumption A1 we have D ≤ 0 and,
moreover, N − 1 eigenvalues of this matrix have negative real
parts. As a matter of fact, for all i ∈ {2, . . . , N}, we have

λi(D) = λi(Λ2), <e[λi(Λ2)]→ −∞ as γ → +∞.

The overall conclusion is that the networked system (8a)
may be expressed in the following alternative form reminiscent
of a network of oscillators with equal parameters µi:

ż =
[
λ1I − C(z)

]
z +Dz. (17)

IV. NETWORK DYNAMICS

We show that the diagonalizability ofAγ allows to naturally
exhibit the intrinsic emergent dynamics, which is at the core of
the networked systems behaviour and, therefore, at the basis of
our analysis framework.

Firstly, we represent the system (8) in a coordinates frame
whose first coordinate corresponds to a certain “average” of all

the units’ states. The rest of the coordinates correspond to the
synchronization errors. Let

z̃ = Vγ
>z (18)

and Ṽγ :=
[
ϑr2 · · ·ϑrN

]
then,

z̃ =

[
ϑ>r1

Ṽ >γ

]
z. (19)

From Section III we know that λ1(Aγ) → λ1(L) as γ → ∞
and, ϑr1 , which corresponds to the first right eigenvector of
both, Aγ and D, satisfies ϑr1 → 1, as γ →∞ and z̃1 may be
regarded as a weighted average of the units’ states zi.

Next, let us consider the rest of the coordinates in z̃, i.e., the
vector z̃2 = Ṽ >γ z. From (12) we have Vγ> = V −1γ , so

Ṽγ Ṽ
>
γ = IN − ϑr1ϑ

>
r1 (20)

and z̃2 equals to zero if and only if z = ϑr1 z̃1 or, equivalently,
if the synchronization error e = z − ϑr1 z̃1 equals to zero.

Thus, the behaviour of the networked systems intercon-
nected via diffusive coupling is naturally and completely cap-
tured by the states

zm := ϑ>r1z (21a)
e := z − ϑr1zm. (21b)

By using these coordinates we decompose the analysis of the
network behaviour in two distinct parts: the first, pertains to
the “average” behaviour of the network and the second, to the
synchronization of the units. In what follows, we derive the
dynamics equations corresponding to zm and e.

To derive the mean-field dynamics we differentiate on both
sides of (21a) and use the network dynamics equation (17) to
obtain

żm = ϑ>r1
[(
λ1(Aγ)I − C(z)

)
z +Dz

]
= λ1(Aγ)zm − ϑ>r1C(z)z + ϑ>r1Dz (22)

however, since ϑr1 is an eigenvector associated to λ1(D), the
last term on the right-hand side of (22) equals to zero. We pro-
ceed to rewrite the rest of the right-hand side of (22) in terms of
zm and e. From (21b), we have C(z)z = C(z)[e + ϑr1zm].
Denoting Γ(z) := diag(z1, . . . , zN ), after some tedious but
straightforward calculations we obtain

żm =
[
λ1 − α|zm|2

]
zm + fm(zm, e) (23)

where

α = ϑ>r1Γ(ϑr1)Γ(ϑr1)ϑr1 ,

fm(zm, e) = −ϑ>r1
[
C(z) + Γ(z)∗Γ(ϑr1zm)

]
e

−ϑ>r1Γ
(

[ϑ2r11 · · · ϑ
2
r1N

]>
)
(zm)2ē.

We remark that fm ≡ 0 if |e|2 = 0 that is, if synchroniza-
tion is achieved asymptotically the dynamics of the average
unit, (23), converges to the emergent dynamics

że =
[
λ1 − α|ze|2

]
ze. (24)

Notice, also, that the interconnection gain γ does not appear
explicitly in the right-hand side of (23). Nonetheless, it easy to



see from (10) that λ1 is inversely proportional to γ. Indeed,
roughly speaking, we have λ1(D) = c + O( 1

γ ) where the
constant c depends only on the matrix M. The same type of
relationship is also valid for the eigenvector ϑr1 .

Finally, we derive the dynamics equation corresponding to
the synchronization error (21b). To that end, let us start by
introducing the matrix

P :=
(
I − ϑr1ϑ

>
r1

)
hence, we have e = Pz. Next, differentiating on both sides of
the latter and using (17) we obtain the error dynamics of e,

ė = PDz + P
[
λ1(Aγ)I − C(z)

]
z. (25)

Now, since ϑr1 is a right eigenvector associated to λ1(D) = 0,
it follows that DP = D = PD. Therefore, PDz = PDPz
and, since e = Pz, we obtain PDz = PDe. It follows from
this and (25) that

ė =
[
D + λ1(Aγ)I

]
e− PC(e + ϑr1zm)[e + ϑr1zm]. (26)

Thus, Equations (23) and (26) completely define the dynam-
ics of the networked oscillators and in coordinates meaningful
for our purposes of analysis. The next section is devoted to the
stability analysis of the solutions of these equations, which we
regroup for convenience:

żm =
[
λ1 − α|zm|2

]
zm + fm(zm, e), (27a)

ė = [D + λ1I]e− PC(e + ϑr1zm)[e + ϑr1zm]. (27b)

We investigate two different properties. Firstly, we establish
a bound on the synchronization errors e. Then, we make a
statement on stability of the natural attractor of the emergent
dynamics (24), which corresponds to the nominal part of (27a).

V. NETWORKED SYSTEMS’ STABILITY

As a preliminary but fundamental step in the analysis of
Equations (27) we formulate conditions that ensure that the
trajectories of the networked diffusively-coupled Andronov-
Hopf oscillators, as described by (6) and equivalently by (27),
are ultimately bounded. The property may be established for
Andronov-Hopf oscillators, for any interconnection gain γ >
0, using simple Lyapunov arguments –cf. [13], [7].

Proposition 1 Consider the system (6), (7) and let the graph
of the network be undirected and connected. Then, the solu-
tions are globally ultimately bounded and

|z(t, z◦)| ≤
√

2µ̄N, ∀ t ≥ T
µ̄ = max

i∈I
{µRi, 0}. (28)

Based on this and the following statement, which is reminis-
cent of results found in [3] for stability of an equilibrium, we
establish global practical asymptotic stability for the system
(27b) with respect to the set S . This implies that for large
values of the interconnection gain γ the norm of the error e(t)
is small and inversely proportional to γ.

Lemma 1 Consider the system ẋ = f(x), where x ∈ Rn and
f : Rn → Rn is continuous, locally Lipschitz. Assume that
the system is forward complete and that there exist a closed

setA ⊂ Rn, a C1 function V : Rn → R+, functions α1, α2 ∈
K∞, α3 ∈ K and a constant c > 0 such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A)

V̇ ≤ −α3(|x|A) + c.

Then for any R, ε > 0 there exists a T = T (R, ε) such that
for all t ≥ T and all x◦ ∈ Rn such that |x◦|A ≤ R

|x(t,x◦)|A ≤ r + ε,

where r = α−11 ◦ α2 ◦ α−13 (c).

We are ready to present our main statement of this section;
the proof is omitted due to space limitations –see [10].

Theorem 1 Consider the system (6), (7) under Assumption
A1. Let γ∗ be such that <e[λ2(Aγ∗)] ≤ 0. Then, the set S
is uniformly globally practically asymptotically stable for all
γ ≥ γ∗. Moreover, there exist T ∗ > 0, c1, c2 > 0, independent
of γ, such that synchronization errors e(t) satisfy

|e(t)|2 ≤ c

| <e[λ2(Aγ∗)] |
∀ t ≥ T ∗. (29)

Theorem 1 relies mostly upon two properties of the net-
worked system, namely, the negative definiteness of the second
smallest eigenvalue of the Laplacian matrix L and uniform
boundedness of the trajectories of the network. For a net-
work of the Andronov-Hopf oscillators with coupling gain γ
it establishes that, for a given arbitrary large ball of initial
conditions BR = {z◦ ∈ CN : |z◦| ≤ R} and an arbitrarily
small constant δ > 0, we can always find constants γ(R, δ)
and T ∗(R, δ) such that the synchronization errors e(t, z◦)
satisfy

|e(t, z◦)| ≤ δ for all t ≥ T ∗.

Finally, to complete our analysis, we consider the behaviour
of the solutions zm(t) of (27a). Notice that this equation may
be regarded as that of a single Andronov-Hopf oscillator with
a perturbation, that is,

żm = (λ1 − α|zm|2)zm + u, (30)

with u = fm(zm, e). Therefore, generally speaking, we
may use stability theory for perturbed systems with respect
to decomposable sets, as discussed in [1], [12]. Indeed, the
origin is an equilibrium point, however, so is the orbit |zm| =√
λ1R/αR, where α is defined in (24), which is determined

by the complex parameters of the systems in the network, µi.
More precisely, the set of equilibria is given by

W :=

{
z ∈ C : |z| =

√
λ1R

αR

}
∪
{
z = 0

}
. (31)

Theorem 2 Consider the network of Andronov-Hopf oscilla-
tors defined by Equations (6), (7) and the averaged oscillator
of the network defined by (21a), whose dynamics is given
by equation (30). Let Assumption A1 be satisfied. Then, the
system (30) has the asymptotic gain property and moreover
for any ε > 0 there exists a gain γ ≥ γ∗ such that

lim sup
t→+∞

|zm(t, z◦)|W ≤ ε.

The proof is omitted due to space limitations –see [10].



VI. CASE STUDY: CONTROL DESIGN USING MEAN FIELD
MEASUREMENTS

Motivated by neuroscience applications and notably by
techniques of DBS stimulation, we consider a desynchroniza-
tion problem for a neuronal network. Similar to [8] we model
a population of synchronized neurons as a network of N
controlled Andronov-Hopf oscillators, assume that the whole
network can be stimulated and that the effect of the external
control input u ∈ C is the same on all the neurons in the
population.Then, analogous to (6), dynamics of the population
can be written as

ż = F (z)− γLz + u1, (32)

where 1 = [1, . . . , 1]> ∈ RN and we recall that the function
F : CN → CN is given by

F (z) = [f(zi, µi)]i∈I .

In this type of applications, measurements of states (out-
puts) of individual neurons are usually not available, only
collective activity of the neurons can be measured and there-
fore similar to [19], [8] we assume that the only available
measurement is mean field of the population defined as

zm =
1

N

N∑
i=1

zi. (33)

Notice that in case where all oscillators are identical thus de-
fined mean-field coincides with the definition of the averaged
oscillator zm given in (21a).

Following the approach of [19], [8], we pose a desynchro-
nization problem as a problem of (feedback) controller design
which ensures that asymptotically |zm(t)| → 0 as t→∞.

Assuming that the population is composed of identical oscil-
lators and using framework proposed in the previous sections,
it is easy to show that a simple feedback proportional to the
mean field solves this problem.

Proposition 2 Consider the system (31) with F (z) =
[f(zi, µ] and let <(µ) > 0. Define control input u as

u = −Kzm (34)

where control gain K > 0 is such that K > <(µ)/N . Then
the sets S defined by (3) and the set W = {z : zm = 0}
are globally asymptotically stable for all γ ≥ 0 and therefore
zm(t)→ 0 as t→∞.

Sketch of the proof. In the closed loop form, system (31) can
be written as

ż = F (z)− γLz −K11>z = C(z) +Mz (35)

where C(z) = diag(|z1|2, . . . , |zN |2), M := µI − γL −
K11> and we used definition of the mean field zm and (34)
to obtain the last term in the first equality.

Since all the oscillators are identical and the average oscil-
lators is defined by (33), the network dynamics can be written
in terms of zm and e = z − zm1 = (I − 1

N 11>)z = Pz as

ė = PC(z)z+PMz = PC(z)z+µPz−P (γL+K11>)z.

Now, since L satisfies PL = LP and P11> = 0 we have

ė = PC(z)z + µe− γLe.
Global asymptotic stability of the set S may be concluded
using Lyapunov function Ve(e) = 1

2 |e|
2. Furthermore, mul-

tiplying (35) by 1
N 1> we obtain that the emergent dynamics

of the population has the form

żm = −|zm|2zm + (µ−NK)zm.

Since the coefficient <(µ)−NK < 0, then using Vm(zm) =
1
2 |zm|

2 we obtain that zm(t) converges to zero.

To illustrate our theoretical findings we have performed a
few simulation tests in SIMULINKTM of MATLABTM . We
consider a network of four diffusively coupled Andronov-Hopf
oscillators interconnected according to the Laplacian:

L =

−1 0 1 0
0 −2 1 1
1 1 −4 2
0 1 2 −3


The dynamics of the interconnected oscillators is given by

żj =
[
−|zj |2+µRj+jωj

]
zj+γ

N∑
i=1

lji(zi−zj)+uj (36)

where the coefficients lji correspond to the respective elements
of L for all i, j ≤ 4, γ is the interconnection gain and the
control input uj is defined as

uj := −K
4∑
i=1

zi. (37)

We performed four different simulation tests, corresponging
respectively, to the four cited figures. In the first two, we use a
network of identical oscillators, with parameters

wi = 5, µRj = 1, ∀ i ≤ 4.
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Fig. 1. Mutual synchronization of four identical oscillators without control
action (K = 0)

In Figure 1 we show the phase portrait for the four oscilla-
tors perfectly synchronized; in this case, the control action is
absent that is, K = 0. In Figure 2 we show the phase portrait
corresponding to the oscillators’ behaviours under the action
of controller (37) withK = 0.3. In a second set of simulations,
we consider a network of heterogeneous oscillators. We use the
numerical parameters:



µR1 = −1, µR2 = 1, µR3 = 1, µR4 = 1.5,

w1 = −1, w2 = 1, w3 = 1, w4 = 1.5.

As for the first two cases, we firstly performed a numerical
test in the absence of control that is, with K = 0. In Figure
3 we show the evolution of the four phase portraits over
time. Finally, in Figure 4 we show the response of the four
different interconnected oscillators, each under the action of
the controller uj in (37) with control gain K = 0.3.
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Fig. 2. Phase portrait of mutual synchronization of four identical oscillators
with control gain K = 0.3
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Fig. 3. Phase portrait of mutual synchronization of four different oscillators
without control (K = 0)
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Fig. 4. Phase portrait of mutual synchronization of four different oscillators
with control gain K = 0.3

VII. CONCLUSIONS

We presented a framework of analysis of synchronization
of heterogeneous oscillators described by the Andronov-Hopf
equations. The method consists in decoupling the analisis of
the collective behaviour, represented by an average oscillator
with its own attractor, and the synchronization errors. These
are defined, for each agent, relative to the mean-field oscillator.
Current research is pursued to develop a control design method
based on this analysis framework.

REFERENCES

[1] D. Angeli and D. Efimov. On input-to-state stability with respect to
decomposable invariant sets. In Proc. of the 52nd IEEE Conference
on Decision and Control, pages 5897–5902, Florence, Italy, 2013.

[2] H. Cagnan, H. G. Meijer, S. A. Gils, M. Krupa, T. Heida, M. Rudolph,
W. J. Wadman, and H. C. Martens. Frequency-selectivity of a
thalamocortical relay neuron during Parkinson’s disease and deep
brain stimulation : a computational study. European Journal of
Neuroscience, 30(7):1306–1317, 2009.

[3] M. Corless and G. Leitmann. Continuous state feedback guaranteeing
uniform ultimate boundedness for uncertain dynamic systems. IEEE
Trans. on Automatic Control, 26(5):1139–1144, 1981.

[4] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Press,
1985.

[5] J. Jouffroy and J. J. Slotine. Methodological remarks on contraction
theory. In Proc. of the 43rd IEEE Conference on Decision and Control,
volume 3, pages 2537–2543, 2004.

[6] Y. Kuramoto. Chemical oscillations, waves, and turbulence, vol-
ume 19. Springer Science & Business Media, 2012.

[7] P. C. Matthews, R. E. Mirollo, and S. H. Strogatz. Dynamics of a
large system of coupled nonlinear oscillators. Physica D: Nonlinear
Phenomena, 52:293 – 331, 1991.

[8] G. Montaseri, A. Adhami-Mirhosseini, and M. J. Yazdanpanah. Desyn-
chronization of coupled limit-cycle oscillators through nonlinear out-
put regulation. Systems & Control Letters, 71:38–43, 2014.

[9] J. Moro, J. Burke, and M. Overton. On the Lidskii-Vishik-Lyusternik
perturbation theory for eigenvalues of matrices with arbitrary Jor-
dan structure. SIAM Journal on Matrix Analysis and Applications,
18(4):793–817, 1997.

[10] E. Panteley. A stability-theory perspective to synchronisation of
heterogeneous networks. Habilitation à diriger des recherches (Doctor
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